default search action
MediaEval@CLEF 2017: Dublin, Ireland
- Guillaume Gravier, Benjamin Bischke, Claire-Hélène Demarty, Maia Zaharieva, Michael Riegler, Emmanuel Dellandréa, Dmitry Bogdanov, Richard F. E. Sutcliffe, Gareth J. F. Jones, Martha A. Larson:
Working Notes Proceedings of the MediaEval 2017 Workshop co-located with the Conference and Labs of the Evaluation Forum (CLEF 2017), Dublin, Ireland, September 13-15, 2017. CEUR Workshop Proceedings 1984, CEUR-WS.org 2017
Multimedia Satellite
- Benjamin Bischke, Patrick Helber, Christian Schulze, Venkat Srinivasan, Andreas Dengel, Damian Borth:
The Multimedia Satellite Task at MediaEval 2017. - Sheharyar Ahmad, Kashif Ahmad, Nasir Ahmad, Nicola Conci:
Convolutional Neural Networks for Disaster Images Retrieval. - Nataliya Tkachenko, Arkaitz Zubiaga, Rob Procter:
WISC at MediaEval 2017: Multimedia Satellite Task. - Laura Lopez-Fuentes, Joost van de Weijer, Marc Bolaños, Harald Skinnemoen:
Multi-modal Deep Learning Approach for Flood Detection. - Kashif Ahmad, Konstantin Pogorelov, Michael Riegler, Nicola Conci, Pål Halvorsen:
CNN and GAN Based Satellite and Social Media Data Fusion for Disaster Detection. - Minh-Son Dao, Minh Pham Quang Nhat, Duc-Tien Dang-Nguyen:
A Domain-based Late-Fusion for Disaster Image Retrieval from Social Media. - Konstantinos Avgerinakis, Anastasia Moumtzidou, Stelios Andreadis, Emmanouil Michail, Ilias Gialampoukidis, Stefanos Vrochidis, Ioannis Kompatsiaris:
Visual and Textual Analysis of Social Media and Satellite Images for Flood Detection @ Multimedia Satellite Task MediaEval 2017. - Keiller Nogueira, Samuel G. Fadel, Ícaro C. Dourado, Rafael de Oliveira Werneck, Javier A. V. Muñoz, Otávio A. B. Penatti, Rodrigo Tripodi Calumby, Lin Li, Jefersson Alex dos Santos, Ricardo da Silva Torres:
Data-Driven Flood Detection using Neural Networks. - Zhengyu Zhao, Martha A. Larson:
Retrieving Social Flooding Images Based on Multimodal Information. - Muhammad Hanif, Muhammad Atif Tahir, Mahrukh Khan, Muhammad Rafi:
Flood detection using Social Media Data and Spectral Regression based Kernel Discriminant Analysis. - Xiyao Fu, Yi Bin, Liang Peng, Jie Zhou, Yang Yang, Heng Tao Shen:
BMC@MediaEval 2017 Multimedia Satellite Task via Regression Random Forest. - Benjamin Bischke, Prakriti Bhardwaj, Aman Gautam, Patrick Helber, Damian Borth, Andreas Dengel:
Detection of Flooding Events in Social Multimedia and Satellite Imagery using Deep Neural Networks.
Predicting Media Interestingness
- Claire-Hélène Demarty, Mats Sjöberg, Bogdan Ionescu, Thanh-Toan Do, Michael Gygli, Ngoc Q. K. Duong:
MediaEval 2017 Predicting Media Interestingness Task. - Jayneel Parekh, Harshvardhan Tibrewal, Sanjeel Parekh:
The IITB Predicting Media Interestingness System for MediaEval 2017. - Rashi Gupta, Manish Narwaria:
DA-IICT at MediaEval 2017: Objective Prediction of Media Interestingness. - Eloïse Berson, Claire-Hélène Demarty, Ngoc Q. K. Duong:
Multimodality and Deep Learning when Predicting Media Interestingness. - Yang Liu, Zhonglei Gu, Tobey H. Ko:
Predicting Media Interestingness via Biased Discriminant Embedding and Supervised Manifold Regression. - Sejong Yoon:
TCNJ-CS@MediaEval 2017 Predicting Media Interestingness Task. - Jurandy Almeida, Ricardo Manhães Savii:
GIBIS at MediaEval 2017: Predicting Media Interestingness Task. - Reza Aditya Permadi, Septian Gilang Permana Putra, Helmiriawan, Cynthia C. S. Liem:
DUT-MMSR at MediaEval 2017: Predicting Media Interestingness Task. - Mihai Gabriel Constantin, Bogdan Andrei Boteanu, Bogdan Ionescu:
LAPI at MediaEval 2017 - Predicting Media Interestingness. - Olfa Ben Ahmed, Jonas Wacker, Alessandro Gaballo, Benoit Huet:
EURECOM@MediaEval 2017: Media Genre Inference for Predicting Media Interestingness. - Shuai Wang, Shizhe Chen, Jinming Zhao, Wenxuan Wang, Qin Jin:
RUC at MediaEval 2017: Predicting Media Interestingness Task.
Retrieving Diverse Social Images
- Maia Zaharieva, Bogdan Ionescu, Alexandru-Lucian Gînsca, Rodrygo L. T. Santos, Henning Müller:
Retrieving Diverse Social Images at MediaEval 2017: Challenges, Dataset and Evaluation. - Omar Seddati, Nada Ben-Lhachemi, Stéphane Dupont, Saïd Mahmoudi:
UMONS @ MediaEval 2017: Diverse Social Images Retrieval. - Liang Peng, Yi Bin, Xiyao Fu, Jie Zhou, Yang Yang, Heng Tao Shen:
CFM@MediaEval 2017 Retrieving Diverse Social Images Task via Re-ranking and Hierarchical Clustering. - Jean-Michel Renders, Gabriela Csurka:
NLE@MediaEval'17: Combining Cross-Media Similarity and Embeddings for Retrieving Diverse Social Images. - Bogdan Boteanu, Mihai Gabriel Constantin, Bogdan Ionescu:
LAPI @ 2017 Retrieving Diverse Social Images Task: A Pseudo-Relevance Feedback Diversification Perspective. - Rodrigo Tripodi Calumby, Iago Breno Alves do Carmo Araujo, Felipe Souza Cordeiro, Fabiana Bertoni, Sérgio D. Canuto, Fabiano Belém, Marcos André Gonçalves, Ícaro C. Dourado, Javier A. V. Muñoz, Lin Li, Ricardo da Silva Torres:
Rank Fusion and Multimodal Per-topic Adaptiveness for Diverse Image Retrieval. - Bo Wang, Martha A. Larson:
Exploiting Visual-based Intent Classification for Diverse Social Image Retrieval.
Medico
- Michael Riegler, Konstantin Pogorelov, Pål Halvorsen, Kristin Ranheim Randel, Sigrun Losada Eskeland, Duc-Tien Dang-Nguyen, Mathias Lux, Carsten Griwodz, Concetto Spampinato, Thomas de Lange:
Multimedia for Medicine: The Medico Task at MediaEval 2017. - Yang Liu, Zhonglei Gu, William K. Cheung:
HKBU at MediaEval 2017 - Medico: Medical Multimedia Task. - Stefan Petscharnig, Klaus Schöffmann, Mathias Lux:
An Inception-like CNN Architecture for GI Disease and Anatomical Landmark Classification. - Taruna Agrawal, Rahul Gupta, Saurabh Sahu, Carol Y. Espy-Wilson:
SCL-UMD at the Medico Task-MediaEval 2017: Transfer Learning based Classification of Medical Images. - Syed Sadiq Ali Naqvi, Shees Nadeem, Muhammad Zaid, Muhammad Atif Tahir:
Ensemble of Texture Features for Finding Abnormalities in the Gastro-Intestinal Tract. - Konstantin Pogorelov, Michael Riegler, Pål Halvorsen, Carsten Griwodz, Thomas de Lange, Kristin Ranheim Randel, Sigrun Losada Eskeland, Duc-Tien Dang-Nguyen, Olga Ostroukhova, Mathias Lux, Concetto Spampinato:
A Comparison of Deep Learning with Global Features for Gastrointestinal Disease Detection.
Emotional Impact of Movies
- Emmanuel Dellandréa, Martijn Huigsloot, Liming Chen, Yoann Baveye, Mats Sjöberg:
The MediaEval 2017 Emotional Impact of Movies Task. - Yun Yi, Hanli Wang, Jiangchuan Wei:
MIC-TJU in MediaEval 2017 Emotional Impact of Movies Task. - Sejong Yoon:
TCNJ-CS@MediaEval 2017 Emotional Impact of Movie Task. - Zitong Jin, Yuqi Yao, Ye Ma, Mingxing Xu:
THUHCSI in MediaEval 2017 Emotional Impact of Movies Task. - Nihan Karslioglu, Yasemin Timar, Albert Ali Salah, Heysem Kaya:
BOUN-NKU in MediaEval 2017 Emotional Impact of Movies Task. - Yang Liu, Zhonglei Gu, Tobey H. Ko:
HKBU at MediaEval 2017 - Emotional Impact of Movies Task.
AcousticBrainz Genre
- Dmitry Bogdanov, Alastair Porter, Julián Urbano, Hendrik Schreiber:
The MediaEval 2017 AcousticBrainz Genre Task: Content-based Music Genre Recognition from Multiple Sources. - Khaled Koutini, Alina Imenina, Matthias Dorfer, Alexander Gruber, Markus Schedl:
MediaEval 2017 AcousticBrainz Genre Task: Multilayer Perceptron Approach. - Benjamin Murauer, Maximilian Mayerl, Michael Tschuggnall, Eva Zangerle, Martin Pichl, Günther Specht:
Hierarchical Multilabel Classification and Voting for Genre Classification. - Chang Wook Kim, Jaehun Kim, Kwangsub Kim, Minz Won:
Single and Multi Column Neural Networks for Content-based Music Genre Recognition. - Nicolas Dauban:
DNN in the AcousticBrainz Genre Task 2017. - Kijung Kim, Jaeyoung Choi:
ICSI in MediaEval 2017 Multi-Genre Music Task.
C@MERATA
- Richard F. E. Sutcliffe, Donncha Ó Maidín, Eduard H. Hovy:
The C@merata task at MediaEval 2017: Natural Language Queries about Music, their JSON Representations, and Matching Passages in MusicXML Scores. - Stephen Wan:
The CLAS System at the MediaEval 2017 C@merata Task. - Andreas Katsiavalos:
The DMUN System at the MediaEval 2017 C@merata Task.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.