default search action
Hong-Bin Shen
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j100]Meihong Pan, Hongbin Shen:
Multimodal variational contrastive learning for few-shot classification. Appl. Intell. 54(2): 1879-1892 (2024) - [j99]Hehe Wu, Xiaojian Liu, Yi Fang, Yang Yang, Yan Huang, Xiaoyong Pan, Hong-Bin Shen:
Decoding protein binding landscape on circular RNAs with base-resolution transformer models. Comput. Biol. Medicine 171: 108175 (2024) - [j98]Meihong Pan, Hongyi Xin, Hong-Bin Shen:
Semantic-Based Implicit Feature Transform for Few-Shot Classification. Int. J. Comput. Vis. 132(11): 5014-5029 (2024) - [j97]Meihong Pan, Hong-Bin Shen:
Cross-modal de-deviation for enhancing few-shot classification. Pattern Recognit. 152: 110475 (2024) - 2023
- [j96]Chun-Qiu Xia, Shi-Hao Feng, Ying Xia, Xiaoyong Pan, Hong-Bin Shen:
Leveraging scaffold information to predict protein-ligand binding affinity with an empirical graph neural network. Briefings Bioinform. 24(1) (2023) - [j95]Pei-Dong Zhang, Chun-Qiu Xia, Hong-Bin Shen:
High-accuracy protein model quality assessment using attention graph neural networks. Briefings Bioinform. 24(2) (2023) - [j94]Yi Fang, Xiaoyong Pan, Hong-Bin Shen:
De novodrug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment. Bioinform. 39(4) (2023) - [j93]Qunzhuo Wu, Zhaohong Deng, Wei Zhang, Xiaoyong Pan, Kup-Sze Choi, Yun Zuo, Hong-Bin Shen, Dong-Jun Yu:
MLNGCF: circRNA-disease associations prediction with multilayer attention neural graph-based collaborative filtering. Bioinform. 39(8) (2023) - [j92]Meihong Pan, Hongyi Xin, Chun-Qiu Xia, Hong-Bin Shen:
Few-shot classification with task-adaptive semantic feature learning. Pattern Recognit. 141: 109594 (2023) - [c18]Kuo Guo, Yifan Li, Hao Chen, Hong-Bin Shen, Yang Yang:
Isoform Function Prediction Based on Heterogeneous Graph Attention Networks. BIBM 2023: 522-527 - 2022
- [j91]Hui Li, Zhaohong Deng, Haitao Yang, Xiaoyong Pan, Zhisheng Wei, Hong-Bin Shen, Kup-Sze Choi, Lei Wang, Shitong Wang, Jing Wu:
circRNA-binding protein site prediction based on multi-view deep learning, subspace learning and multi-view classifier. Briefings Bioinform. 23(1) (2022) - [j90]Yanlun Tu, Houchao Lei, Hong-Bin Shen, Yang Yang:
SIFLoc: a self-supervised pre-training method for enhancing the recognition of protein subcellular localization in immunofluorescence microscopic images. Briefings Bioinform. 23(2) (2022) - [j89]Ge Wang, Min-Qi Xue, Hong-Bin Shen, Ying-Ying Xu:
Learning protein subcellular localization multi-view patterns from heterogeneous data of imaging, sequence and networks. Briefings Bioinform. 23(2) (2022) - [j88]Biao Zhang, Dong Liu, Yang Zhang, Hong-Bin Shen, Gui-Jun Zhang:
Accurate flexible refinement for atomic-level protein structure using cryo-EM density maps and deep learning. Briefings Bioinform. 23(2) (2022) - [j87]Qunzhuo Wu, Zhaohong Deng, Xiaoyong Pan, Hong-Bin Shen, Kup-Sze Choi, Shitong Wang, Jing Wu, Dong-Jun Yu:
MDGF-MCEC: a multi-view dual attention embedding model with cooperative ensemble learning for CircRNA-disease association prediction. Briefings Bioinform. 23(5) (2022) - [j86]Shi-Hao Feng, Chun-Qiu Xia, Hong-Bin Shen:
CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks. Bioinform. 38(3): 720-729 (2022) - [j85]Lujing Zheng, Zhenhuan Liu, Yang Yang, Hong-Bin Shen:
Accurate inference of gene regulatory interactions from spatial gene expression with deep contrastive learning. Bioinform. 38(3): 746-753 (2022) - [j84]Jin-Xian Hu, Yang Yang, Ying-Ying Xu, Hong-Bin Shen:
GraphLoc: a graph neural network model for predicting protein subcellular localization from immunohistochemistry images. Bioinform. 38(21): 4941-4948 (2022) - [j83]Xi-Liang Zhu, Hong-Bin Shen, Haitao Sun, Li-Xia Duan, Ying-Ying Xu:
Improving segmentation and classification of renal tumors in small sample 3D CT images using transfer learning with convolutional neural networks. Int. J. Comput. Assist. Radiol. Surg. 17(7): 1303-1311 (2022) - [j82]Jiachen Li, Siheng Chen, Xiaoyong Pan, Ye Yuan, Hong-Bin Shen:
Cell clustering for spatial transcriptomics data with graph neural networks. Nat. Comput. Sci. 2(6): 399-408 (2022) - [j81]Chun-Qiu Xia, Shi-Hao Feng, Ying Xia, Xiaoyong Pan, Hong-Bin Shen:
Fast protein structure comparison through effective representation learning with contrastive graph neural networks. PLoS Comput. Biol. 18(3) (2022) - [j80]Yi Fang, Xiaoyong Pan, Hong-Bin Shen:
Recent Deep Learning Methodology Development for RNA-RNA Interaction Prediction. Symmetry 14(7): 1302 (2022) - [j79]Shi-Hao Feng, Chun-Qiu Xia, Pei-Dong Zhang, Hong-Bin Shen:
Ab-Initio Membrane Protein Amphipathic Helix Structure Prediction Using Deep Neural Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 19(2): 795-805 (2022) - [j78]Wei Zhang, Zhaohong Deng, Jun Wang, Kup-Sze Choi, Te Zhang, Xiaoqing Luo, Hong-Bin Shen, Wenhao Ying, Shitong Wang:
Transductive Multiview Modeling With Interpretable Rules, Matrix Factorization, and Cooperative Learning. IEEE Trans. Cybern. 52(10): 11226-11239 (2022) - [j77]Qiongdan Lou, Zhaohong Deng, Kup-Sze Choi, Hong-Bin Shen, Jun Wang, Shitong Wang:
Robust Multi-Label Relief Feature Selection Based on Fuzzy Margin Co-Optimization. IEEE Trans. Emerg. Top. Comput. Intell. 6(2): 387-398 (2022) - [i3]Jiachen Li, Ye Yuan, Hong-Bin Shen:
Symbolic Expression Transformer: A Computer Vision Approach for Symbolic Regression. CoRR abs/2205.11798 (2022) - [i2]Yu-Xuan Chen, Dagan Feng, Hong-Bin Shen:
Unsupervised Difference Learning for Noisy Rigid Image Alignment. CoRR abs/2205.11829 (2022) - 2021
- [j76]Haitao Yang, Zhaohong Deng, Xiaoyong Pan, Hong-Bin Shen, Kup-Sze Choi, Lei Wang, Shitong Wang, Jing Wu:
RNA-binding protein recognition based on multi-view deep feature and multi-label learning. Briefings Bioinform. 22(3) (2021) - [j75]Hehe Wu, Xiaoyong Pan, Yang Yang, Hong-Bin Shen:
Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network. Briefings Bioinform. 22(6) (2021) - [j74]Xiaoyong Pan, Jasper Zuallaert, Xi Wang, Hong-Bin Shen, Elda Posada Campos, Denys O. Marushchak, Wesley De Neve:
ToxDL: deep learning using primary structure and domain embeddings for assessing protein toxicity. Bioinform. 36(21): 5159-5168 (2021) - [j73]Yang Lin, Xiaoyong Pan, Hong-Bin Shen:
lncLocator 2.0: a cell-line-specific subcellular localization predictor for long non-coding RNAs with interpretable deep learning. Bioinform. 37(16): 2308-2316 (2021) - [j72]Yu-Xuan Chen, Rui Xie, Yang Yang, Lin He, Dagan Feng, Hong-Bin Shen:
Fast Cryo-EM Image Alignment Algorithm Using Power Spectrum Features. J. Chem. Inf. Model. 61(9): 4795-4806 (2021) - [j71]Wei Long, Tiange Li, Yang Yang, Hong-Bin Shen:
FlyIT: Drosophila Embryogenesis Image Annotation based on Image Tiling and Convolutional Neural Networks. IEEE ACM Trans. Comput. Biol. Bioinform. 18(1): 194-204 (2021) - [i1]Andong Li, Zhaohong Deng, Qiongdan Lou, Kup-Sze Choi, Hong-Bin Shen, Shitong Wang:
A Novel TSK Fuzzy System Incorporating Multi-view Collaborative Transfer Learning for Personalized Epileptic EEG Detection. CoRR abs/2111.08457 (2021) - 2020
- [j70]Di Wang, Ling Geng, Yu-Jun Zhao, Yang Yang, Yan Huang, Yang Zhang, Hong-Bin Shen:
Artificial intelligence-based multi-objective optimization protocol for protein structure refinement. Bioinform. 36(2): 437-448 (2020) - [j69]Ying-Ying Xu, Hong-Bin Shen, Robert F. Murphy:
Learning complex subcellular distribution patterns of proteins via analysis of immunohistochemistry images. Bioinform. 36(6): 1908-1914 (2020) - [j68]Wei Long, Yang Yang, Hong-Bin Shen:
ImPLoc: a multi-instance deep learning model for the prediction of protein subcellular localization based on immunohistochemistry images. Bioinform. 36(7): 2244-2250 (2020) - [j67]Chun-Qiu Xia, Xiaoyong Pan, Hong-Bin Shen:
Protein-ligand binding residue prediction enhancement through hybrid deep heterogeneous learning of sequence and structure data. Bioinform. 36(10): 3018-3027 (2020) - [j66]Rui Xie, Yu-Xuan Chen, Jia-Ming Cai, Yang Yang, Hong-Bin Shen:
SPREAD: A Fully Automated Toolkit for Single-Particle Cryogenic Electron Microscopy Data 3D Reconstruction with Image-Network-Aided Orientation Assignment. J. Chem. Inf. Model. 60(5): 2614-2625 (2020) - [j65]Wei-Xun Zhang, Xiaoyong Pan, Hong-Bin Shen:
Signal-3L 3.0: Improving Signal Peptide Prediction through Combining Attention Deep Learning with Window-Based Scoring. J. Chem. Inf. Model. 60(7): 3679-3686 (2020) - [j64]Xiaoyong Pan, Hong-Bin Shen:
Scoring disease-microRNA associations by integrating disease hierarchy into graph convolutional networks. Pattern Recognit. 105: 107385 (2020) - [c17]Rui Hu, Jia-Ming Cai, Wangjie Zheng, Yang Yang, Hong-Bin Shen:
NiuEM: A Nested-iterative Unsupervised Learning Model for Single-particle Cryo-EM Image Processing. BIBM 2020: 583-588
2010 – 2019
- 2019
- [j63]Yang Yang, Mingyu Zhou, Qingwei Fang, Hong-Bin Shen:
AnnoFly: annotating Drosophila embryonic images based on an attention-enhanced RNN model. Bioinform. 35(16): 2834-2842 (2019) - [j62]Xiaoyong Pan, Yong-Xian Fan, Jue Jia, Hong-Bin Shen:
Identifying RNA-binding proteins using multi-label deep learning. Sci. China Inf. Sci. 62(1): 19103:1-19103:3 (2019) - [j61]Shuo Yin, Biao Zhang, Yang Yang, Yan Huang, Hong-Bin Shen:
Clustering Enhancement of Noisy Cryo-Electron Microscopy Single-Particle Images with a Network Structural Similarity Metric. J. Chem. Inf. Model. 59(4): 1658-1667 (2019) - [j60]Yang Yang, Qingwei Fang, Hong-Bin Shen:
Predicting gene regulatory interactions based on spatial gene expression data and deep learning. PLoS Comput. Biol. 15(9) (2019) - 2018
- [j59]Hanjin Zhang, Yang Yang, Hong-Bin Shen:
Line Junction Detection Without Prior-Delineation of Curvilinear Structure in Biomedical Images. IEEE Access 6: 2016-2027 (2018) - [j58]Hanjin Zhang, Yang Yang, Hong-Bin Shen:
Detection of Curvilinear Structure in Images by a Multi-Centered Hough Forest Method. IEEE Access 6: 22684-22694 (2018) - [j57]Jing Yang, Hong-Bin Shen:
MemBrain-contact 2.0: a new two-stage machine learning model for the prediction enhancement of transmembrane protein residue contacts in the full chain. Bioinform. 34(2): 230-238 (2018) - [j56]Zhen Cao, Xiaoyong Pan, Yang Yang, Yan Huang, Hong-Bin Shen:
The lncLocator: a subcellular localization predictor for long non-coding RNAs based on a stacked ensemble classifier. Bioinform. 34(13): 2185-2194 (2018) - [j55]Xiaoyong Pan, Hong-Bin Shen:
Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks. Bioinform. 34(20): 3427-3436 (2018) - [j54]Yang Yang, Xiaofeng Fu, Wenhao Qu, Yiqun Xiao, Hong-Bin Shen:
MiRGOFS: a GO-based functional similarity measurement for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNA-disease association. Bioinform. 34(20): 3547-3556 (2018) - [j53]Ying-Ying Xu, Li-Xiu Yao, Hong-Bin Shen:
Bioimage-based protein subcellular location prediction: a comprehensive review. Frontiers Comput. Sci. 12(1): 26-39 (2018) - [j52]Xu-Hao Zhi, Shu Meng, Hong-Bin Shen:
High density cell tracking with accurate centroid detections and active area-based tracklet clustering. Neurocomputing 295: 86-97 (2018) - [j51]Xiaoyong Pan, Hong-Bin Shen:
Learning distributed representations of RNA sequences and its application for predicting RNA-protein binding sites with a convolutional neural network. Neurocomputing 305: 51-58 (2018) - [j50]Yu-Jiao Yang, Shuai Wang, Biao Zhang, Hong-Bin Shen:
Resolution Measurement from a Single Reconstructed Cryo-EM Density Map with Multiscale Spectral Analysis. J. Chem. Inf. Model. 58(6): 1303-1311 (2018) - [j49]Xu-Hao Zhi, Hong-Bin Shen:
Saliency driven region-edge-based top down level set evolution reveals the asynchronous focus in image segmentation. Pattern Recognit. 80: 241-255 (2018) - [j48]Wei Shao, Mingxia Liu, Ying-Ying Xu, Hong-Bin Shen, Daoqiang Zhang:
An Organelle Correlation-Guided Feature Selection Approach for Classifying Multi-Label Subcellular Bio-Images. IEEE ACM Trans. Comput. Biol. Bioinform. 15(3): 828-838 (2018) - [c16]Tiange Li, Yang Yang, Hong-Bin Shen:
HMIML: Hierarchical Multi-Instance Multi-Label Learning of Drosophila Embryogenesis Images Using Convolutional Neural Networks. BIBM 2018: 907-912 - [c15]Guowei Ji, Yang Yang, Hong-Bin Shen:
IterVM: An Iterative Model for Single-Particle Cryo-EM Image Clustering Based on Variational Autoencoder and Multi-Reference Alignment. BIBM 2018: 999-1002 - [c14]Yiqun Xiao, Jiaxun Cai, Yang Yang, Hai Zhao, Hong-Bin Shen:
Prediction of MicroRNA Subcellular Localization by Using a Sequence-to-Sequence Model. ICDM 2018: 1332-1337 - 2017
- [j47]Hang Zhou, Yang Yang, Hong-Bin Shen:
Hum-mPLoc 3.0: prediction enhancement of human protein subcellular localization through modeling the hidden correlations of gene ontology and functional domain features. Bioinform. 33(6): 843-853 (2017) - [j46]Baoji He, S. M. Mortuza, Yanting Wang, Hong-Bin Shen, Yang Zhang:
NeBcon: protein contact map prediction using neural network training coupled with naïve Bayes classifiers. Bioinform. 33(15): 2296-2306 (2017) - [j45]Xiaoyong Pan, Hong-Bin Shen:
RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach. BMC Bioinform. 18(1): 136:1-136:14 (2017) - [j44]Wei Shao, Yi Ding, Hong-Bin Shen, Daoqiang Zhang:
Deep model-based feature extraction for predicting protein subcellular localizations from bio-images. Frontiers Comput. Sci. 11(2): 243-252 (2017) - [j43]Yi-Ze Zhang, Hong-Bin Shen:
Signal-3L 2.0: A Hierarchical Mixture Model for Enhancing Protein Signal Peptide Prediction by Incorporating Residue-Domain Cross-Level Features. J. Chem. Inf. Model. 57(4): 988-999 (2017) - [j42]Jun Hu, Yang Li, Ming Zhang, Xibei Yang, Hong-Bin Shen, Dong-Jun Yu:
Predicting Protein-DNA Binding Residues by Weightedly Combining Sequence-Based Features and Boosting Multiple SVMs. IEEE ACM Trans. Comput. Biol. Bioinform. 14(6): 1389-1398 (2017) - [j41]Ngaam J. Cheung, Xueming Ding, Hong-Bin Shen:
A Nonhomogeneous Cuckoo Search Algorithm Based on Quantum Mechanism for Real Parameter Optimization. IEEE Trans. Cybern. 47(2): 391-402 (2017) - [c13]Hanjin Zhang, Yang Yang, Hong-Bin Shen:
Detection of Curvilinear Centerline by Using Hough Voting. ACPR 2017: 120-125 - [c12]Jin-Xian Hu, Ying-Ying Xu, Yang Yang, Hong-Bin Shen:
Deep Learning-Based Classification of Protein Subcellular Localization from Immunohistochemistry Images. ACPR 2017: 599-604 - [c11]Ling Geng, Hong-Bin Shen:
A protein structure refinement method using bi-objective particle swarm optimization algorithm. CISP-BMEI 2017: 1-5 - [c10]Yu-Jiao Yang, Hong-Bin Shen:
Resolution determination method of a cryo-EM density map based on multi-scale spectral signal to noise analysis. CISP-BMEI 2017: 1-5 - 2016
- [j40]Ying-Ying Xu, Fan Yang, Hong-Bin Shen:
Incorporating organelle correlations into semi-supervised learning for protein subcellular localization prediction. Bioinform. 32(14): 2184-2192 (2016) - [j39]Jing Yang, Qi-Yu Jin, Biao Zhang, Hong-Bin Shen:
R2C: improving ab initio residue contact map prediction using dynamic fusion strategy and Gaussian noise filter. Bioinform. 32(16): 2435-2443 (2016) - [j38]Jun Hu, Yang Li, Jing-Yu Yang, Hong-Bin Shen, Dong-Jun Yu:
GPCR-drug interactions prediction using random forest with drug-association-matrix-based post-processing procedure. Comput. Biol. Chem. 60: 59-71 (2016) - [j37]Jun Hu, Yang Li, Wuxia Yan, Jing-Yu Yang, Hong-Bin Shen, Dong-Jun Yu:
KNN-based dynamic query-driven sample rescaling strategy for class imbalance learning. Neurocomputing 191: 363-373 (2016) - [j36]Zhisen Wei, Ke Han, Jing-Yu Yang, Hong-Bin Shen, Dong-Jun Yu:
Protein-protein interaction sites prediction by ensembling SVM and sample-weighted random forests. Neurocomputing 193: 201-212 (2016) - [j35]Ngaam J. Cheung, Xueming Ding, Hong-Bin Shen:
Protein folds recognized by an intelligent predictor based-on evolutionary and structural information. J. Comput. Chem. 37(4): 426-436 (2016) - [j34]Ngaam J. Cheung, Xueming Ding, Hong-Bin Shen:
A Non-homogeneous Firefly Algorithm and Its Convergence Analysis. J. Optim. Theory Appl. 170(2): 616-628 (2016) - [j33]Xi Yin, Ying-Ying Xu, Hong-Bin Shen:
Enhancing the Prediction of Transmembrane β-Barrel Segments with Chain Learning and Feature Sparse Representation. IEEE ACM Trans. Comput. Biol. Bioinform. 13(6): 1016-1026 (2016) - [c9]Yi-Ze Zhang, Hong-Bin Shen:
Improve signal peptide prediction by using functional domain information. CISP-BMEI 2016: 1814-1819 - [c8]Hang Zhou, Yang Yang, Hong-Bin Shen:
A New Subcellular Localization Predictor for Human Proteins Considering the Correlation of Annotation Features and Protein Multi-localization. CCPR (2) 2016: 499-512 - 2015
- [j32]Ngaam J. Cheung, Xueming Ding, Hong-Bin Shen:
A supervised particle swarm algorithm for real-parameter optimization. Appl. Intell. 43(4): 825-839 (2015) - [j31]Peng-Jie Jing, Hong-Bin Shen:
MACOED: a multi-objective ant colony optimization algorithm for SNP epistasis detection in genome-wide association studies. Bioinform. 31(5): 634-641 (2015) - [j30]Ying-Ying Xu, Fan Yang, Yang Zhang, Hong-Bin Shen:
Bioimaging-based detection of mislocalized proteins in human cancers by semi-supervised learning. Bioinform. 31(7): 1111-1119 (2015) - [j29]Jing Yang, Bao-Ji He, Richard Jang, Yang Zhang, Hong-Bin Shen:
Accurate disulfide-bonding network predictions improve ab initio structure prediction of cysteine-rich proteins. Bioinform. 31(23): 3773-3781 (2015) - [j28]Ngaam J. Cheung, Zhenkai Xu, Xueming Ding, Hong-Bin Shen:
Modeling nonlinear dynamic biological systems with human-readable fuzzy rules optimized by convergent heterogeneous particle swarm. Eur. J. Oper. Res. 247(2): 349-358 (2015) - [j27]Feng Xiao, Hong-Bin Shen:
Prediction Enhancement of Residue Real-Value Relative Accessible Surface Area in Transmembrane Helical Proteins by Solving the Output Preference Problem of Machine Learning-Based Predictors. J. Chem. Inf. Model. 55(11): 2464-2474 (2015) - [j26]Dong-Jun Yu, Yang Li, Jun Hu, Xibei Yang, Jing-Yu Yang, Hong-Bin Shen:
Disulfide Connectivity Prediction Based on Modelled Protein 3D Structural Information and Random Forest Regression. IEEE ACM Trans. Comput. Biol. Bioinform. 12(3): 611-621 (2015) - 2014
- [j25]Dong-Jun Yu, Jun Hu, Hui Yan, Xibei Yang, Jing-Yu Yang, Hong-Bin Shen:
Enhancing protein-vitamin binding residues prediction by multiple heterogeneous subspace SVMs ensemble. BMC Bioinform. 15: 297 (2014) - [j24]Yong-Xian Fan, Hong-Bin Shen:
Predicting pupylation sites in prokaryotic proteins using pseudo-amino acid composition and extreme learning machine. Neurocomputing 128: 267-272 (2014) - [j23]Fan Yang, Ying-Ying Xu, Shitong Wang, Hong-Bin Shen:
Image-based classification of protein subcellular location patterns in human reproductive tissue by ensemble learning global and local features. Neurocomputing 131: 113-123 (2014) - [j22]Ngaam J. Cheung, Xueming Ding, Hong-Bin Shen:
OptiFel: A Convergent Heterogeneous Particle Swarm Optimization Algorithm for Takagi-Sugeno Fuzzy Modeling. IEEE Trans. Fuzzy Syst. 22(4): 919-933 (2014) - [c7]Hai-Ping Sun, Hong-Bin Shen:
A Global Eigenvalue-Driven Balanced Deconvolution Approach for Network Direct-Coupling Analysis. CCPR (2) 2014: 409-418 - [c6]Feng Xiao, Hong-Bin Shen:
Sequence-Based Prediction of Protein-Protein Binding Residues in Alpha-Helical Membrane Proteins. CCPR (2) 2014: 419-427 - [c5]Peng-Jie Jing, Hong-Bin Shen:
A Novel Two-Stage Multi-objective Ant Colony Optimization Approach for Epistasis Learning. CCPR (2) 2014: 528-535 - 2013
- [j21]Ying-Ying Xu, Fan Yang, Yang Zhang, Hong-Bin Shen:
An image-based multi-label human protein subcellular localization predictor (iLocator) reveals protein mislocalizations in cancer tissues. Bioinform. 29(16): 2032-2040 (2013) - [j20]Jing Yang, Richard Jang, Yang Zhang, Hong-Bin Shen:
High-accuracy prediction of transmembrane inter-helix contacts and application to GPCR 3D structure modeling. Bioinform. 29(20): 2579-2587 (2013) - [j19]Bairong Shen, Hong-Bin Shen, Tianhai Tian, Qiang Lü, Guang Hu:
Translational Bioinformatics and Computational Systems Medicine. Comput. Math. Methods Medicine 2013: 375641:1-375641:2 (2013) - [j18]Jian-Bo Lei, Jiang-Bo Yin, Hong-Bin Shen:
GFO: A data driven approach for optimizing the Gaussian function based similarity metric in computational biology. Neurocomputing 99: 307-315 (2013) - [j17]Dong-Jun Yu, Jun Hu, Zhenmin Tang, Hong-Bin Shen, Jian Yang, Jing-Yu Yang:
Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling. Neurocomputing 104: 180-190 (2013) - [j16]Dong-Jun Yu, Jun Hu, Yan Huang, Hong-Bin Shen, Yong Qi, Zhenmin Tang, Jing-Yu Yang:
TargetATPsite: A template-free method for ATP-binding sites prediction with residue evolution image sparse representation and classifier ensemble. J. Comput. Chem. 34(11): 974-985 (2013) - [j15]Dong-Jun Yu, Jun Hu, Jing Yang, Hong-Bin Shen, Jinhui Tang, Jing-Yu Yang:
Designing Template-Free Predictor for Targeting Protein-Ligand Binding Sites with Classifier Ensemble and Spatial Clustering. IEEE ACM Trans. Comput. Biol. Bioinform. 10(4): 994-1008 (2013) - 2012
- [j14]Ya-Nan Zhang, Dong-Jun Yu, Shu-Sen Li, Yong-Xian Fan, Yan Huang, Hong-Bin Shen:
Predicting protein-ATP binding sites from primary sequence through fusing bi-profile sampling of multi-view features. BMC Bioinform. 13: 118 (2012) - [c4]Fan Yang, Ying-Ying Xu, Hong-Bin Shen:
Automated Classification of Protein Subcellular Location Patterns on Images of Human Reproductive Tissues. IScIDE 2012: 254-262 - 2011
- [j13]Qing-Ju Jiao, Yan Huang, Hong-Bin Shen:
Large-scale mining co-expressed genes in Arabidopsis anther: From pair to group. Comput. Biol. Chem. 35(2): 62-68 (2011) - [j12]Jiang-Bo Yin, Tao Li, Hong-Bin Shen:
Gaussian kernel optimization: Complex problem and a simple solution. Neurocomputing 74(18): 3816-3822 (2011) - [j11]Jiangning Song, Hao Tan, Sarah E. Boyd, Hong-Bin Shen, Khalid Mahmood, Geoffrey I. Webb, Tatsuya Akutsu, James C. Whisstock, Robert N. Pike:
Bioinformatic Approaches for Predicting substrates of Proteases. J. Bioinform. Comput. Biol. 9(1): 149-178 (2011) - 2010
- [j10]Jiangning Song, Hao Tan, Hong-Bin Shen, Khalid Mahmood, Sarah E. Boyd, Geoffrey I. Webb, Tatsuya Akutsu, James C. Whisstock:
Cascleave: towards more accurate prediction of caspase substrate cleavage sites. Bioinform. 26(6): 752-760 (2010) - [j9]Jiangning Song, Kazuhiro Takemoto, Hongbin Shen, Hao Tan, M. Michael Gromiha, Tatsuya Akutsu:
Prediction of Protein Folding Rates from Structural Topology and Complex Network Properties. Inf. Media Technol. 5(3): 980-993 (2010) - [j8]Lin Zhu, Jie Yang, Jiangning Song, Kuo-Chen Chou, Hong-Bin Shen:
Improving the accuracy of predicting disulfide connectivity by feature selection. J. Comput. Chem. 31(7): 1478-1485 (2010)
2000 – 2009
- 2006
- [j7]Hong-Bin Shen, Kuo-Chen Chou:
Ensemble classifier for protein fold pattern recognition. Bioinform. 22(14): 1717-1722 (2006) - [j6]Hong-Bin Shen, Jie Yang, Shitong Wang, Xiaojun Liu:
Attribute weighted mercer kernel based fuzzy clustering algorithm for general non-spherical datasets. Soft Comput. 10(11): 1061-1073 (2006) - [c3]Xiaojun Liu, Jie Yang, Hong-Bin Shen, Xiangyang Wang:
A New Scaling Kernel-Based Fuzzy System with Low Computational Complexity. CSR 2006: 466-474 - 2005
- [j5]Shitong Wang, Fu-Lai Chung, Hong-Bin Shen, Dewen Hu:
Cascaded centralized TSK fuzzy system: universal approximator and high interpretation. Appl. Soft Comput. 5(2): 131-145 (2005) - [j4]Shitong Wang, Korris Fu-Lai Chung, Hong-Bin Shen:
Fuzzy taxonomy, quantitative database and mining generalized association rules. Intell. Data Anal. 9(2): 207-217 (2005) - [j3]Hong-Bin Shen, Jie Yang, Ningjiang Chen, Yifei Dong, Shitong Wang:
Performing clustering analysis on collaborative models. Intell. Data Anal. 9(5): 419-438 (2005) - 2004
- [j2]Shitong Wang, Korris Fu-Lai Chung, Hong-Bin Shen, Ruiqiang Zhu:
Note on the relationship between probabilistic and fuzzy clustering. Soft Comput. 8(5): 366-369 (2004) - [j1]Korris Fu-Lai Chung, Shitong Wang, Hong-Bin Shen, Ruiqiang Zhu:
Note on the relationship between probabilistic and fuzzy clustering. Soft Comput. 8(7): 523-526 (2004) - [c2]Hong-Bin Shen, Jie Yang, Shitong Wang:
Outlier Detecting in Fuzzy Switching Regression Models. AIMSA 2004: 208-215 - [c1]Hong-Bin Shen, Shitong Wang, Jie Yang:
Fuzzy Taxonomic, Quantitative Database and Mining Generalized Association Rules. Rough Sets and Current Trends in Computing 2004: 610-617
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-11 21:30 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint