default search action
Miguel Á. Carreira-Perpiñán
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j10]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán, Arman Zharmagambetov:
Sparse oblique decision trees: a tool to understand and manipulate neural net features. Data Min. Knowl. Discov. 38(5): 2863-2902 (2024) - [c101]Magzhan Gabidolla, Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Beyond the ROC Curve: Classification Trees Using Cost-Optimal Curves, with Application to Imbalanced Datasets. ICML 2024 - [c100]Rasul Kairgeldin, Miguel Á. Carreira-Perpiñán:
Bivariate Decision Trees: Smaller, Interpretable, More Accurate. KDD 2024: 1336-1347 - [i28]Louis Rustenholz, Maximiliano Klemen, Miguel Á. Carreira-Perpiñán, Pedro López-García:
A Machine Learning-based Approach for Solving Recurrence Relations and its use in Cost Analysis of Logic Programs. CoRR abs/2405.06972 (2024) - 2023
- [c99]Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada:
Very Fast, Approximate Counterfactual Explanations for Decision Forests. AAAI 2023: 6935-6943 - [c98]Miguel Á. Carreira-Perpiñán, Magzhan Gabidolla, Arman Zharmagambetov:
Towards Better Decision Forests: Forest Alternating Optimization. CVPR 2023: 7589-7598 - [c97]Maximiliano Klemen, Miguel Á. Carreira-Perpiñán, Pedro López-García:
Solving Recurrence Relations using Machine Learning, with Application to Cost Analysis. ICLP 2023: 155-168 - [i27]Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada:
Very fast, approximate counterfactual explanations for decision forests. CoRR abs/2303.02883 (2023) - [i26]Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada:
Inverse classification with logistic and softmax classifiers: efficient optimization. CoRR abs/2309.08945 (2023) - 2022
- [c96]Arman Serikuly Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Learning Interpretable, Tree-Based Projection Mappings for Nonlinear Embeddings. AISTATS 2022: 9550-9570 - [c95]Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Pushing the Envelope of Gradient Boosting Forests via Globally-Optimized Oblique Trees. CVPR 2022: 285-294 - [c94]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Interpretable Image Classification Using Sparse Oblique Decision Trees. ICASSP 2022: 2759-2763 - [c93]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Exploring the Effect of ℓ0/ℓ2 Regularization in Neural Network Pruning using the LC Toolkit. ICASSP 2022: 3373-3377 - [c92]Magzhan Gabidolla, Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Improved Multiclass AdaBoost Using Sparse Oblique Decision Trees. IJCNN 2022: 1-8 - [c91]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Sparse Oblique Decision Trees: A Tool to Interpret Natural Language Processing Datasets. IJCNN 2022: 1-8 - [c90]Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Optimal Interpretable Clustering Using Oblique Decision Trees. KDD 2022: 400-410 - [c89]Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Semi-Supervised Learning with Decision Trees: Graph Laplacian Tree Alternating Optimization. NeurIPS 2022 - 2021
- [c88]Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada:
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms. AAAI 2021: 6903-6911 - [c87]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
LC: A Flexible, Extensible Open-Source Toolkit for Model Compression. CIKM 2021: 4504-4514 - [c86]Yerlan Idelbayev, Pavlo Molchanov, Maying Shen, Hongxu Yin, Miguel Á. Carreira-Perpiñán, José M. Álvarez:
Optimal Quantization Using Scaled Codebook. CVPR 2021: 12095-12104 - [c85]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Neural Network Compression via Additive Combination of Reshaped, Low-Rank Matrices. DCC 2021: 243-252 - [c84]Arman Zharmagambetov, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Softmax Tree: An Accurate, Fast Classifier When the Number of Classes Is Large. EMNLP (1) 2021: 10730-10745 - [c83]Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Learning a Tree of Neural Nets. ICASSP 2021: 3140-3144 - [c82]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Optimal Selection of Matrix Shape and Decomposition Scheme for Neural Network Compression. ICASSP 2021: 3250-3254 - [c81]Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
A Simple, Effective Way To Improve Neural Net Classification: Ensembling Unit Activations With A Sparse Oblique Decision Tree. ICIP 2021: 369-373 - [c80]Arman Zharmagambetov, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Improved Multiclass Adaboost For Image Classification: The Role Of Tree Optimization. ICIP 2021: 424-428 - [c79]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Beyond Flops In Low-Rank Compression Of Neural Networks: Optimizing Device-Specific Inference Runtime. ICIP 2021: 2843-2847 - [c78]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán, Arman Zharmagambetov:
Understanding And Manipulating Neural Net Features Using Sparse Oblique Classification Trees. ICIP 2021: 3707-3711 - [c77]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Sampling The "Inverse Set" of a Neuron. ICIP 2021: 3712-3716 - [c76]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
An Empirical Comparison of Quantization, Pruning and Low-rank Neural Network Compression using the LC Toolkit. IJCNN 2021: 1-8 - [c75]Arman Zharmagambetov, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Improved Boosted Regression Forests Through Non-Greedy Tree Optimization. IJCNN 2021: 1-8 - [c74]Arman Zharmagambetov, Suryabhan Singh Hada, Magzhan Gabidolla, Miguel Á. Carreira-Perpiñán:
Non-Greedy Algorithms for Decision Tree Optimization: An Experimental Comparison. IJCNN 2021: 1-8 - [c73]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
More General and Effective Model Compression via an Additive Combination of Compressions. ECML/PKDD (3) 2021: 233-248 - [c72]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Exploring Counterfactual Explanations for Classification and Regression Trees. PKDD/ECML Workshops (1) 2021: 489-504 - [c71]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Style Transfer by Rigid Alignment in Neural Net Feature Space. WACV 2021: 2575-2584 - [i25]Miguel Á. Carreira-Perpiñán, Suryabhan Singh Hada:
Counterfactual Explanations for Oblique Decision Trees: Exact, Efficient Algorithms. CoRR abs/2103.01096 (2021) - [i24]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán, Arman Zharmagambetov:
Sparse Oblique Decision Trees: A Tool to Understand and Manipulate Neural Net Features. CoRR abs/2104.02922 (2021) - [i23]Miguel Á. Carreira-Perpiñán, Yerlan Idelbayev:
Model compression as constrained optimization, with application to neural nets. Part V: combining compressions. CoRR abs/2107.04380 (2021) - 2020
- [j9]Daniel A. Winkler, Miguel Á. Carreira-Perpiñán, Alberto E. Cerpa:
OPTICS: OPTimizing Irrigation Control at Scale. ACM Trans. Sens. Networks 16(3): 22:1-22:38 (2020) - [c70]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Low-Rank Compression of Neural Nets: Learning the Rank of Each Layer. CVPR 2020: 8046-8056 - [c69]Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Structured Multi-Hashing for Model Compression. CVPR 2020: 11900-11909 - [c68]Miguel Á. Carreira-Perpiñán, Arman Zharmagambetov:
Ensembles of Bagged TAO Trees Consistently Improve over Random Forests, AdaBoost and Gradient Boosting. FODS 2020: 35-46 - [c67]Arman Zharmagambetov, Miguel Á. Carreira-Perpiñán:
Smaller, more accurate regression forests using tree alternating optimization. ICML 2020: 11398-11408 - [i22]Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
A flexible, extensible software framework for model compression based on the LC algorithm. CoRR abs/2005.07786 (2020)
2010 – 2019
- 2019
- [j8]Daniel A. Winkler, Robert Wang, François Blanchette, Miguel Á. Carreira-Perpiñán, Alberto E. Cerpa:
DICTUM: Distributed Irrigation aCtuation with Turf hUmidity Modeling. ACM Trans. Sens. Networks 15(4): 41:1-41:33 (2019) - [c66]Miguel Á. Carreira-Perpiñán, Mehdi Alizadeh:
Parmac: Distributed Optimisation Of Nested Functions, With Application To Learning Binary Autoencoders. SysML 2019 - [i21]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Style Transfer by Rigid Alignment in Neural Net Feature Space. CoRR abs/1909.13690 (2019) - [i20]Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
Sampling the "Inverse Set" of a Neuron: An Approach to Understanding Neural Nets. CoRR abs/1910.04857 (2019) - [i19]Arman Zharmagambetov, Suryabhan Singh Hada, Miguel Á. Carreira-Perpiñán:
An Experimental Comparison of Old and New Decision Tree Algorithms. CoRR abs/1911.03054 (2019) - [i18]Elad Eban, Yair Movshovitz-Attias, Hao Wu, Mark Sandler, Andrew Poon, Yerlan Idelbayev, Miguel Á. Carreira-Perpiñán:
Structured Multi-Hashing for Model Compression. CoRR abs/1911.11177 (2019) - 2018
- [c65]Miguel Á. Carreira-Perpiñán, Yerlan Idelbayev:
"Learning-Compression" Algorithms for Neural Net Pruning. CVPR 2018: 8532-8541 - [c64]Daniel A. Winkler, Miguel Á. Carreira-Perpiñán, Alberto E. Cerpa:
Plug-and-play irrigation control at scale. IPSN 2018: 1-12 - [c63]Miguel Á. Carreira-Perpiñán, Pooya Tavallali:
Alternating optimization of decision trees, with application to learning sparse oblique trees. NeurIPS 2018: 1219-1229 - 2017
- [c62]Ramin Raziperchikolaei, Miguel Á. Carreira-Perpiñán:
Learning circulant support vector machines for fast image search. ICIP 2017: 385-389 - [c61]Ramin Raziperchikolaei, Miguel Á. Carreira-Perpiñán:
Learning supervised binary hashing: Optimization vs diversity. ICIP 2017: 3695-3699 - [c60]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Fast, accurate spectral clustering using locally linear landmarks. IJCNN 2017: 3870-3879 - [i17]Miguel Á. Carreira-Perpiñán:
Model compression as constrained optimization, with application to neural nets. Part I: general framework. CoRR abs/1707.01209 (2017) - [i16]Miguel Á. Carreira-Perpiñán, Yerlan Idelbayev:
Model compression as constrained optimization, with application to neural nets. Part II: quantization. CoRR abs/1707.04319 (2017) - 2016
- [c59]Ramin Raziperchikolaei, Miguel Á. Carreira-Perpiñán:
Learning Independent, Diverse Binary Hash Functions: Pruning and Locality. ICDM 2016: 1173-1178 - [c58]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
The Variational Nystrom method for large-scale spectral problems. ICML 2016: 211-220 - [c57]Daniel A. Winkler, Robert Wang, François Blanchette, Miguel Á. Carreira-Perpiñán, Alberto E. Cerpa:
MAGIC: Model-Based Actuation for Ground Irrigation Control. IPSN 2016: 9:1-9:12 - [c56]Ramin Raziperchikolaei, Miguel Á. Carreira-Perpiñán:
Optimizing affinity-based binary hashing using auxiliary coordinates. NIPS 2016: 640-648 - [c55]Miguel Á. Carreira-Perpiñán, Ramin Raziperchikolaei:
An ensemble diversity approach to supervised binary hashing. NIPS 2016: 757-765 - [i15]Miguel Á. Carreira-Perpiñán, Ramin Raziperchikolaei:
An ensemble diversity approach to supervised binary hashing. CoRR abs/1602.01557 (2016) - [i14]Miguel Á. Carreira-Perpiñán, Mehdi Alizadeh:
ParMAC: distributed optimisation of nested functions, with application to learning binary autoencoders. CoRR abs/1605.09114 (2016) - 2015
- [c54]Miguel Á. Carreira-Perpiñán, Ramin Raziperchikolaei:
Hashing with binary autoencoders. CVPR 2015: 557-566 - [c53]Miguel Á. Carreira-Perpiñán, Max Vladymyrov:
A fast, universal algorithm to learn parametric nonlinear embeddings. NIPS 2015: 253-261 - [c52]Daniel A. Winkler, Robert Wang, François Blanchette, Miguel Á. Carreira-Perpiñán, Alberto E. Cerpa:
Poster: MICO: Model-Based Irrigation Control Optimization. SenSys 2015: 409-410 - [i13]Miguel Á. Carreira-Perpiñán, Ramin Raziperchikolaei:
Hashing with binary autoencoders. CoRR abs/1501.00756 (2015) - [i12]Ramin Raziperchikolaei, Miguel Á. Carreira-Perpiñán:
Learning hashing with affinity-based loss functions using auxiliary coordinates. CoRR abs/1501.05352 (2015) - [i11]Miguel Á. Carreira-Perpiñán:
A review of mean-shift algorithms for clustering. CoRR abs/1503.00687 (2015) - 2014
- [j7]Varick L. Erickson, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Occupancy Modeling and Prediction for Building Energy Management. ACM Trans. Sens. Networks 10(3): 42:1-42:28 (2014) - [c51]Miguel Á. Carreira-Perpiñán, Weiran Wang:
LASS: A Simple Assignment Model with Laplacian Smoothing. AAAI 2014: 1715-1721 - [c50]Weiran Wang, Miguel Á. Carreira-Perpiñán:
The Role of Dimensionality Reduction in Classification. AAAI 2014: 2128-2134 - [c49]Miguel Á. Carreira-Perpiñán, Weiran Wang:
Distributed optimization of deeply nested systems. AISTATS 2014: 10-19 - [c48]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Linear-time training of nonlinear low-dimensional embeddings. AISTATS 2014: 968-977 - [i10]Miguel Á. Carreira-Perpiñán, Weiran Wang:
LASS: a simple assignment model with Laplacian smoothing. CoRR abs/1405.5960 (2014) - [i9]Weiran Wang, Miguel Á. Carreira-Perpiñán:
The role of dimensionality reduction in linear classification. CoRR abs/1405.6444 (2014) - [i8]Weiran Wang, Miguel Á. Carreira-Perpiñán:
The Laplacian K-modes algorithm for clustering. CoRR abs/1406.3895 (2014) - [i7]Miguel Á. Carreira-Perpiñán:
An ADMM algorithm for solving a proximal bound-constrained quadratic program. CoRR abs/1412.8493 (2014) - 2013
- [j6]Ankur Kamthe, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Improving wireless link simulation using multilevel markov models. ACM Trans. Sens. Networks 10(1): 17:1-17:28 (2013) - [c47]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Entropic Affinities: Properties and Efficient Numerical Computation. ICML (3) 2013: 477-485 - [c46]Ankur Kamthe, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Quick construction of data-driven models of the short-term behavior of wireless links. INFOCOM 2013: 160-164 - [c45]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Locally Linear Landmarks for Large-Scale Manifold Learning. ECML/PKDD (3) 2013: 256-271 - [i6]Miguel Á. Carreira-Perpiñán, Weiran Wang:
The K-modes algorithm for clustering. CoRR abs/1304.6478 (2013) - [i5]Weiran Wang, Miguel Á. Carreira-Perpiñán:
Projection onto the probability simplex: An efficient algorithm with a simple proof, and an application. CoRR abs/1309.1541 (2013) - 2012
- [c44]Mohsen Farhadloo, Miguel Á. Carreira-Perpiñán:
Learning and adaptation of a tongue shape modelwith missing data. ICASSP 2012: 3981-3984 - [c43]Mohsen Farhadloo, Miguel Á. Carreira-Perpiñán:
Regularising an adaptation algorithm for tongue shape models. ICASSP 2012: 4481-4484 - [c42]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Fast Training of Nonlinear Embedding Algorithms. ICML 2012 - [c41]Weiran Wang, Miguel Á. Carreira-Perpiñán:
Nonlinear low-dimensional regression using auxiliary coordinates. AISTATS 2012: 1295-1304 - [i4]Max Vladymyrov, Miguel Á. Carreira-Perpiñán:
Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings. CoRR abs/1206.4646 (2012) - [i3]Miguel Á. Carreira-Perpiñán, Weiran Wang:
Distributed optimization of deeply nested systems. CoRR abs/1212.5921 (2012) - 2011
- [c40]Miguel Á. Carreira-Perpiñán, Zhengdong Lu:
Manifold Learning and Missing Data Recovery through Unsupervised Regression. ICDM 2011: 1014-1019 - [c39]Ankur Kamthe, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Adaptation of a Mixture of Multivariate Bernoulli Distributions. IJCAI 2011: 1336-1341 - [c38]Varick L. Erickson, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
OBSERVE: Occupancy-based system for efficient reduction of HVAC energy. IPSN 2011: 258-269 - [c37]Weiran Wang, Miguel Á. Carreira-Perpiñán, Zhengdong Lu:
A Denoising View of Matrix Completion. NIPS 2011: 334-342 - [c36]Ankur Kamthe, Varick L. Erickson, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Enabling building energy auditing using adapted occupancy models. BuildSys@SenSys 2011: 31-36 - [i2]Miguel Á. Carreira-Perpiñán, Geoffrey J. Goodhill:
Generalised elastic nets. CoRR abs/1108.2840 (2011) - [i1]Miguel Á. Carreira-Perpiñán:
Reconstruction of sequential data with density models. CoRR abs/1109.3248 (2011) - 2010
- [c35]Weiran Wang, Miguel Á. Carreira-Perpiñán:
Manifold blurring mean shift algorithms for manifold denoising. CVPR 2010: 1759-1766 - [c34]Miguel Á. Carreira-Perpiñán, Zhengdong Lu:
Parametric dimensionality reduction by unsupervised regression. CVPR 2010: 1895-1902 - [c33]Chao Qin, Miguel Á. Carreira-Perpiñán:
Reconstructing the full tongue contour from EMA/X-ray microbeam. ICASSP 2010: 4190-4193 - [c32]Ling Xie, Miguel Á. Carreira-Perpiñán, Shawn D. Newsam:
Semi-supervised regression with temporal image sequences. ICIP 2010: 2637-2640 - [c31]Miguel Á. Carreira-Perpiñán:
The Elastic Embedding Algorithm for Dimensionality Reduction. ICML 2010: 167-174 - [c30]Chao Qin, Miguel Á. Carreira-Perpiñán:
Estimating missing data sequences in x-ray microbeam recordings. INTERSPEECH 2010: 1592-1595 - [c29]Chao Qin, Miguel Á. Carreira-Perpiñán, Mohsen Farhadloo:
Adaptation of a tongue shape model by local feature transformations. INTERSPEECH 2010: 1596-1599 - [c28]Chao Qin, Miguel Á. Carreira-Perpiñán:
Articulatory inversion of american English /turnr/ by conditional density modes. INTERSPEECH 2010: 1998-2001
2000 – 2009
- 2009
- [c27]Dominic W. Massaro, Miguel Á. Carreira-Perpiñán, David J. Merrill:
Optimizing Visual Feature Perception for an Automatic Wearable Speech Supplement in Face-to-Face Communication and Classroom Situations. HICSS 2009: 1-10 - [c26]Chao Qin, Miguel Á. Carreira-Perpiñán:
Adaptation of a predictive model of tongue shapes. INTERSPEECH 2009: 772-775 - [c25]Ankur Kamthe, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
M&M: multi-level Markov model for wireless link simulations. SenSys 2009: 57-70 - [c24]Ankur Kamthe, Miguel Á. Carreira-Perpiñán, Alberto Cerpa:
Wireless link simulations using multi-level Markov models. SenSys 2009: 391-392 - 2008
- [c23]Miguel Á. Carreira-Perpiñán:
Generalised blurring mean-shift algorithms for nonparametric clustering. CVPR 2008 - [c22]Miguel Á. Carreira-Perpiñán, Zhengdong Lu:
Dimensionality reduction by unsupervised regression. CVPR 2008 - [c21]Zhengdong Lu, Miguel Á. Carreira-Perpiñán:
Constrained spectral clustering through affinity propagation. CVPR 2008 - [c20]Umut Ozertem, Deniz Erdogmus, Miguel Á. Carreira-Perpiñán:
Density geodesics for similarity clustering. ICASSP 2008: 1977-1980 - [c19]Chao Qin, Miguel Á. Carreira-Perpiñán:
Trajectory inverse kinematics by nonlinear, nongaussian tracking. ICASSP 2008: 2057-2060 - [c18]Dominic W. Massaro, Miguel Á. Carreira-Perpiñán, David J. Merrill, Cass Sterling, Stephanie Bigler, Elise Piazza, Marcus Perlman:
IGlasses: an automatic wearable speech supplementin face-to-face communication and classroom situations. ICMI 2008: 197-198 - [c17]Chao Qin, Miguel Á. Carreira-Perpiñán:
Trajectory inverse kinematics by conditional density modes. ICRA 2008: 1979-1986 - [c16]Chao Qin, Miguel Á. Carreira-Perpiñán, Korin Richmond, Alan Wrench, Steve Renals:
Predicting tongue shapes from a few landmark locations. INTERSPEECH 2008: 2306-2309 - 2007
- [j5]Miguel Á. Carreira-Perpiñán:
Gaussian Mean-Shift Is an EM Algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 29(5): 767-776 (2007) - [c15]Andriy Myronenko, Xubo B. Song, Miguel Á. Carreira-Perpiñán:
Free-Form Nonrigid Image Registration Using Generalized Elastic Nets. CVPR 2007 - [c14]Chao Qin, Miguel Á. Carreira-Perpiñán:
An empirical investigation of the nonuniqueness in the acoustic-to-articulatory mapping. INTERSPEECH 2007: 74-77 - [c13]Chao Qin, Miguel Á. Carreira-Perpiñán:
A comparison of acoustic features for articulatory inversion. INTERSPEECH 2007: 2469-2472 - [c12]Zhengdong Lu, Miguel Á. Carreira-Perpiñán, Cristian Sminchisescu:
People Tracking with the Laplacian Eigenmaps Latent Variable Model. NIPS 2007: 1705-1712 - [c11]Miguel Á. Carreira-Perpiñán, Zhengdong Lu:
The Laplacian Eigenmaps Latent Variable Model. AISTATS 2007: 59-66 - 2006
- [c10]Miguel Á. Carreira-Perpiñán:
Acceleration Strategies for Gaussian Mean-Shift Image Segmentation. CVPR (1) 2006: 1160-1167 - [c9]Deniz Erdogmus, Miguel Á. Carreira-Perpiñán, Umut Ozertem:
Kernel Density Estimation, Affinity-Based Clustering, And Typical Cuts. ICASSP (5) 2006: 569-572 - [c8]Miguel Á. Carreira-Perpiñán:
Fast nonparametric clustering with Gaussian blurring mean-shift. ICML 2006: 153-160 - [c7]Andriy Myronenko, Xubo B. Song, Miguel Á. Carreira-Perpiñán:
Non-rigid point set registration: Coherent Point Drift. NIPS 2006: 1009-1016 - 2005
- [c6]Miguel Á. Carreira-Perpiñán, Geoffrey E. Hinton:
On Contrastive Divergence Learning. AISTATS 2005: 33-40 - [c5]Miguel Á. Carreira-Perpiñán, Peter Dayan, Geoffrey J. Goodhill:
Differential Priors for Elastic Nets. IDEAL 2005: 335-342 - 2004
- [c4]Xuming He, Richard S. Zemel, Miguel Á. Carreira-Perpiñán:
Multiscale Conditional Random Fields for Image Labeling. CVPR (2) 2004: 695-702 - [c3]Miguel Á. Carreira-Perpiñán, Richard S. Zemel:
Proximity Graphs for Clustering and Manifold Learning. NIPS 2004: 225-232 - 2003
- [c2]Miguel Á. Carreira-Perpiñán, Christopher K. I. Williams:
On the Number of Modes of a Gaussian Mixture. Scale-Space 2003: 625-640 - 2002
- [j4]Miguel Á. Carreira-Perpiñán, Geoffrey J. Goodhill:
Are Visual Cortex Maps Optimized for Coverage? Neural Comput. 14(7): 1545-1560 (2002) - 2001
- [b1]Miguel Á. Carreira-Perpiñán:
Continuous latent variable models for dimensionality reduction and sequential data reconstruction. University of Sheffield, UK, 2001 - 2000
- [j3]Miguel Á. Carreira-Perpiñán, Steve Renals:
Practical Identifiability of Finite Mixtures of Multivariate Bernoulli Distributions. Neural Comput. 12(1): 141-152 (2000) - [j2]Miguel Á. Carreira-Perpiñán:
Mode-Finding for Mixtures of Gaussian Distributions. IEEE Trans. Pattern Anal. Mach. Intell. 22(11): 1318-1323 (2000)
1990 – 1999
- 1999
- [c1]Miguel Á. Carreira-Perpiñán:
Reconstruction of Sequential Data with Probabilistic Models and Continuity Constraints. NIPS 1999: 414-420 - 1998
- [j1]Miguel Á. Carreira-Perpiñán, Steve Renals:
Dimensionality reduction of electropalatographic data using latent variable models. Speech Commun. 26(4): 259-282 (1998)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-10-07 21:19 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint