default search action
Adam Dziedzic
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c22]Marcin Podhajski, Jan Dubinski, Franziska Boenisch, Adam Dziedzic, Agnieszka Pregowska, Tomasz P. Michalak:
Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks. ECAI 2024: 1438-1445 - [c21]Wenhao Wang, Muhammad Ahmad Kaleem, Adam Dziedzic, Michael Backes, Nicolas Papernot, Franziska Boenisch:
Memorization in Self-Supervised Learning Improves Downstream Generalization. ICLR 2024 - [i34]Wenhao Wang, Muhammad Ahmad Kaleem, Adam Dziedzic, Michael Backes, Nicolas Papernot, Franziska Boenisch:
Memorization in Self-Supervised Learning Improves Downstream Generalization. CoRR abs/2401.12233 (2024) - [i33]Congyu Fang, Adam Dziedzic, Lin Zhang, Laura Oliva, Amol A. Verma, Fahad Razak, Nicolas Papernot, Bo Wang:
Decentralised, Collaborative, and Privacy-preserving Machine Learning for Multi-Hospital Data. CoRR abs/2402.00205 (2024) - [i32]Marcin Podhajski, Jan Dubinski, Franziska Boenisch, Adam Dziedzic, Agnieszka Pregowska, Tomasz P. Michalak:
Efficient Model-Stealing Attacks Against Inductive Graph Neural Networks. CoRR abs/2405.12295 (2024) - [i31]Dominik Hintersdorf, Lukas Struppek, Kristian Kersting, Adam Dziedzic, Franziska Boenisch:
Finding NeMo: Localizing Neurons Responsible For Memorization in Diffusion Models. CoRR abs/2406.02366 (2024) - [i30]Yihan Wang, Yiwei Lu, Guojun Zhang, Franziska Boenisch, Adam Dziedzic, Yaoliang Yu, Xiao-Shan Gao:
Alignment Calibration: Machine Unlearning for Contrastive Learning under Auditing. CoRR abs/2406.03603 (2024) - [i29]Pratyush Maini, Hengrui Jia, Nicolas Papernot, Adam Dziedzic:
LLM Dataset Inference: Did you train on my dataset? CoRR abs/2406.06443 (2024) - [i28]Dariush Wahdany, Matthew Jagielski, Adam Dziedzic, Franziska Boenisch:
Beyond the Mean: Differentially Private Prototypes for Private Transfer Learning. CoRR abs/2406.08039 (2024) - [i27]Antoni Kowalczuk, Jan Dubinski, Atiyeh Ashari Ghomi, Yi Sui, George Stein, Jiapeng Wu, Jesse C. Cresswell, Franziska Boenisch, Adam Dziedzic:
Benchmarking Robust Self-Supervised Learning Across Diverse Downstream Tasks. CoRR abs/2407.12588 (2024) - [i26]Wenhao Wang, Adam Dziedzic, Michael Backes, Franziska Boenisch:
Localizing Memorization in SSL Vision Encoders. CoRR abs/2409.19069 (2024) - [i25]Vincent Hanke, Tom Blanchard, Franziska Boenisch, Iyiola E. Olatunji, Michael Backes, Adam Dziedzic:
Open LLMs are Necessary for Current Private Adaptations and Outperform their Closed Alternatives. CoRR abs/2411.05818 (2024) - [i24]Haonan Duan, Adam Dziedzic, Mohammad Yaghini, Nicolas Papernot, Franziska Boenisch:
On the Privacy Risk of In-context Learning. CoRR abs/2411.10512 (2024) - [i23]Jan Dubinski, Antoni Kowalczuk, Franziska Boenisch, Adam Dziedzic:
CDI: Copyrighted Data Identification in Diffusion Models. CoRR abs/2411.12858 (2024) - 2023
- [j3]Franziska Boenisch, Christopher Mühl, Roy Rinberg, Jannis Ihrig, Adam Dziedzic:
Individualized PATE: Differentially Private Machine Learning with Individual Privacy Guarantees. Proc. Priv. Enhancing Technol. 2023(1): 158-176 (2023) - [j2]Adam Dziedzic, Christopher A. Choquette-Choo, Natalie Dullerud, Vinith M. Suriyakumar, Ali Shahin Shamsabadi, Muhammad Ahmad Kaleem, Somesh Jha, Nicolas Papernot, Xiao Wang:
Private Multi-Winner Voting for Machine Learning. Proc. Priv. Enhancing Technol. 2023(1): 527-555 (2023) - [c20]Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas Papernot:
When the Curious Abandon Honesty: Federated Learning Is Not Private. EuroS&P 2023: 175-199 - [c19]Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas Papernot:
Reconstructing Individual Data Points in Federated Learning Hardened with Differential Privacy and Secure Aggregation. EuroS&P 2023: 241-257 - [c18]Franziska Boenisch, Christopher Mühl, Adam Dziedzic, Roy Rinberg, Nicolas Papernot:
Have it your way: Individualized Privacy Assignment for DP-SGD. NeurIPS 2023 - [c17]Haonan Duan, Adam Dziedzic, Nicolas Papernot, Franziska Boenisch:
Flocks of Stochastic Parrots: Differentially Private Prompt Learning for Large Language Models. NeurIPS 2023 - [c16]Jan Dubinski, Stanislaw Pawlak, Franziska Boenisch, Tomasz Trzcinski, Adam Dziedzic:
Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders. NeurIPS 2023 - [c15]Nicholas Franzese, Adam Dziedzic, Christopher A. Choquette-Choo, Mark R. Thomas, Muhammad Ahmad Kaleem, Stephan Rabanser, Congyu Fang, Somesh Jha, Nicolas Papernot, Xiao Wang:
Robust and Actively Secure Serverless Collaborative Learning. NeurIPS 2023 - [i22]Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas Papernot:
Is Federated Learning a Practical PET Yet? CoRR abs/2301.04017 (2023) - [i21]Franziska Boenisch, Christopher Mühl, Adam Dziedzic, Roy Rinberg, Nicolas Papernot:
Have it your way: Individualized Privacy Assignment for DP-SGD. CoRR abs/2303.17046 (2023) - [i20]Haonan Duan, Adam Dziedzic, Nicolas Papernot, Franziska Boenisch:
Flocks of Stochastic Parrots: Differentially Private Prompt Learning for Large Language Models. CoRR abs/2305.15594 (2023) - [i19]Jan Dubinski, Stanislaw Pawlak, Franziska Boenisch, Tomasz Trzcinski, Adam Dziedzic:
Bucks for Buckets (B4B): Active Defenses Against Stealing Encoders. CoRR abs/2310.08571 (2023) - [i18]Olive Franzese, Adam Dziedzic, Christopher A. Choquette-Choo, Mark R. Thomas, Muhammad Ahmad Kaleem, Stephan Rabanser, Congyu Fang, Somesh Jha, Nicolas Papernot, Xiao Wang:
Robust and Actively Secure Serverless Collaborative Learning. CoRR abs/2310.16678 (2023) - 2022
- [c14]Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, Nicolas Papernot:
Increasing the Cost of Model Extraction with Calibrated Proof of Work. ICLR 2022 - [c13]Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, Nicolas Papernot:
On the Difficulty of Defending Self-Supervised Learning against Model Extraction. ICML 2022: 5757-5776 - [c12]Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis Cattan, Franziska Boenisch, Nicolas Papernot:
Dataset Inference for Self-Supervised Models. NeurIPS 2022 - [i17]Adam Dziedzic, Muhammad Ahmad Kaleem, Yu Shen Lu, Nicolas Papernot:
Increasing the Cost of Model Extraction with Calibrated Proof of Work. CoRR abs/2201.09243 (2022) - [i16]Adam Dziedzic, Nikita Dhawan, Muhammad Ahmad Kaleem, Jonas Guan, Nicolas Papernot:
On the Difficulty of Defending Self-Supervised Learning against Model Extraction. CoRR abs/2205.07890 (2022) - [i15]Stephan Rabanser, Anvith Thudi, Kimia Hamidieh, Adam Dziedzic, Nicolas Papernot:
Selective Classification Via Neural Network Training Dynamics. CoRR abs/2205.13532 (2022) - [i14]Adam Dziedzic, Stephan Rabanser, Mohammad Yaghini, Armin Ale, Murat A. Erdogdu, Nicolas Papernot:
p-DkNN: Out-of-Distribution Detection Through Statistical Testing of Deep Representations. CoRR abs/2207.12545 (2022) - [i13]Adam Dziedzic, Haonan Duan, Muhammad Ahmad Kaleem, Nikita Dhawan, Jonas Guan, Yannis Cattan, Franziska Boenisch, Nicolas Papernot:
Dataset Inference for Self-Supervised Models. CoRR abs/2209.09024 (2022) - [i12]Adam Dziedzic, Christopher A. Choquette-Choo, Natalie Dullerud, Vinith Menon Suriyakumar, Ali Shahin Shamsabadi, Muhammad Ahmad Kaleem, Somesh Jha, Nicolas Papernot, Xiao Wang:
Private Multi-Winner Voting for Machine Learning. CoRR abs/2211.15410 (2022) - 2021
- [c11]Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh Jha, Nicolas Papernot, Xiao Wang:
CaPC Learning: Confidential and Private Collaborative Learning. ICLR 2021 - [i11]Christopher A. Choquette-Choo, Natalie Dullerud, Adam Dziedzic, Yunxiang Zhang, Somesh Jha, Nicolas Papernot, Xiao Wang:
CaPC Learning: Confidential and Private Collaborative Learning. CoRR abs/2102.05188 (2021) - [i10]Adelin Travers, Lorna Licollari, Guanghan Wang, Varun Chandrasekaran, Adam Dziedzic, David Lie, Nicolas Papernot:
On the Exploitability of Audio Machine Learning Pipelines to Surreptitious Adversarial Examples. CoRR abs/2108.02010 (2021) - [i9]Franziska Boenisch, Adam Dziedzic, Roei Schuster, Ali Shahin Shamsabadi, Ilia Shumailov, Nicolas Papernot:
When the Curious Abandon Honesty: Federated Learning Is Not Private. CoRR abs/2112.02918 (2021) - 2020
- [c10]Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, Dawn Song:
Pretrained Transformers Improve Out-of-Distribution Robustness. ACL 2020: 2744-2751 - [c9]Vanlin Sathya, Adam Dziedzic, Monisha Ghosh, Sanjay Krishnan:
Machine Learning based detection of multiple Wi-Fi BSSs for LTE-U CSAT. ICNC 2020: 596-601 - [i8]Adam Dziedzic, Sanjay Krishnan:
An Empirical Evaluation of Perturbation-based Defenses. CoRR abs/2002.03080 (2020) - [i7]Adam Dziedzic, Vanlin Sathya, Muhammad Iqbal Rochman, Monisha Ghosh, Sanjay Krishnan:
Machine Learning enabled Spectrum Sharing in Dense LTE-U/Wi-Fi Coexistence Scenarios. CoRR abs/2003.13652 (2020) - [i6]Dan Hendrycks, Xiaoyuan Liu, Eric Wallace, Adam Dziedzic, Rishabh Krishnan, Dawn Song:
Pretrained Transformers Improve Out-of-Distribution Robustness. CoRR abs/2004.06100 (2020)
2010 – 2019
- 2019
- [j1]Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin, John Paparrizos, Zechao Shang, Adam Dziedzic, Rui Liu:
Artificial Intelligence in Resource-Constrained and Shared Environments. ACM SIGOPS Oper. Syst. Rev. 53(1): 1-6 (2019) - [c8]Sanjay Krishnan, Adam Dziedzic, Aaron J. Elmore:
DeepLens: Towards a Visual Data Management System. CIDR 2019 - [c7]Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Band-limited Training and Inference for Convolutional Neural Networks. ICML 2019: 1745-1754 - [i5]Adam Dziedzic, John Paparrizos, Sanjay Krishnan, Aaron J. Elmore, Michael J. Franklin:
Band-limited Training and Inference for Convolutional Neural Networks. CoRR abs/1911.09287 (2019) - [i4]Vanlin Sathya, Adam Dziedzic, Monisha Ghosh, Sanjay Krishnan:
Machine Learning based detection of multiple Wi-Fi BSSs for LTE-U CSAT. CoRR abs/1911.09292 (2019) - 2018
- [c6]Adam Dziedzic, Jingjing Wang, Sudipto Das, Bolin Ding, Vivek R. Narasayya, Manoj Syamala:
Columnstore and B+ tree - Are Hybrid Physical Designs Important? SIGMOD Conference 2018: 177-190 - [i3]Sanjay Krishnan, Adam Dziedzic, Aaron J. Elmore:
DeepLens: Towards a Visual Data Management System. CoRR abs/1812.07607 (2018) - 2017
- [c5]Tim Mattson, Vijay Gadepally, Zuohao She, Adam Dziedzic, Jeff Parkhurst:
Demonstrating the BigDAWG Polystore System for Ocean Metagenomics Analysis. CIDR 2017 - [c4]Vijay Gadepally, Kyle O'Brien, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Jennie Rogers, Zuohao She, Michael Stonebraker:
BigDAWG version 0.1. HPEC 2017: 1-7 - [i2]Kyle O'Brien, Vijay Gadepally, Jennie Duggan, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Zuohao She, Michael Stonebraker:
BigDAWG Polystore Release and Demonstration. CoRR abs/1701.05799 (2017) - [i1]Vijay Gadepally, Kyle O'Brien, Adam Dziedzic, Aaron J. Elmore, Jeremy Kepner, Samuel Madden, Tim Mattson, Jennie Rogers, Zuohao She, Michael Stonebraker:
Version 0.1 of the BigDAWG Polystore System. CoRR abs/1707.00721 (2017) - 2016
- [c3]Adam Dziedzic, Aaron J. Elmore, Michael Stonebraker:
Data transformation and migration in polystores. HPEC 2016: 1-6 - [c2]John Meehan, Stan Zdonik, Shaobo Tian, Yulong Tian, Nesime Tatbul, Adam Dziedzic, Aaron J. Elmore:
Integrating real-time and batch processing in a polystore. HPEC 2016: 1-7 - [c1]Adam Dziedzic, Manos Karpathiotakis, Ioannis Alagiannis, Raja Appuswamy, Anastasia Ailamaki:
DBMS Data Loading: An Analysis on Modern Hardware. ADMS/IMDM@VLDB 2016: 95-117
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-01-02 18:13 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint