default search action
Vyacheslav Kungurtsev
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Youssef Diouane, Vyacheslav Kungurtsev, Francesco Rinaldi, Damiano Zeffiro:
Inexact direct-search methods for bilevel optimization problems. Comput. Optim. Appl. 88(2): 469-490 (2024) - [j25]Allahkaram Shafiei, Vyacheslav Kungurtsev, Jakub Marecek:
Trilevel and multilevel optimization using monotone operator theory. Math. Methods Oper. Res. 99(1): 77-114 (2024) - [j24]Antonio Bellon, Mareike Dressler, Vyacheslav Kungurtsev, Jakub Marecek, André Uschmajew:
Time-Varying Semidefinite Programming: Path Following a Burer-Monteiro Factorization. SIAM J. Optim. 34(1): 1-26 (2024) - [c18]Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, Yiran Chen:
Efficient Dataset Distillation via Minimax Diffusion. CVPR 2024: 15793-15803 - [c17]Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyacheslav Kungurtsev, Neil Zhenqiang Gong, Yiran Chen:
Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents. ECCV (78) 2024: 18-33 - [c16]Bapi Chatterjee, Vyacheslav Kungurtsev, Dan Alistarh:
Federated SGD with Local Asynchrony. ICDCS 2024: 857-868 - [i36]Erwann de Belloy de Saint-Lienard, Jakub Marecek, Vyacheslav Kungurtsev:
The Effects of Transmission-Rights Pricing on Multi-Stage Electricity Markets. CoRR abs/2401.15772 (2024) - [i35]Saeed Vahidian, Mingyu Wang, Jianyang Gu, Vyacheslav Kungurtsev, Wei Jiang, Yiran Chen:
Group Distributionally Robust Dataset Distillation with Risk Minimization. CoRR abs/2402.04676 (2024) - [i34]Vyacheslav Kungurtsev, Petr Rysavy, Fadwa Idlahcen, Pavel Rytír, Ales Wodecki:
Learning Dynamic Bayesian Networks from Data: Foundations, First Principles and Numerical Comparisons. CoRR abs/2406.17585 (2024) - [i33]Vyacheslav Kungurtsev, Apaar, Aarya Khandelwal, Parth Sandeep Rastogi, Bapi Chatterjee, Jakub Marecek:
Empirical Bayes for Dynamic Bayesian Networks Using Generalized Variational Inference. CoRR abs/2406.17831 (2024) - [i32]Vyacheslav Kungurtsev, Yuanfang Peng, Jianyang Gu, Saeed Vahidian, Anthony Quinn, Fadwa Idlahcen, Yiran Chen:
Dataset Distillation from First Principles: Integrating Core Information Extraction and Purposeful Learning. CoRR abs/2409.01410 (2024) - [i31]Matteo Bergamaschi, Andrea Cristofari, Vyacheslav Kungurtsev, Francesco Rinaldi:
Probabilistic Iterative Hard Thresholding for Sparse Learning. CoRR abs/2409.01413 (2024) - [i30]Mahdi Morafah, Vyacheslav Kungurtsev, Hojin Chang, Chen Chen, Bill Lin:
Towards Diverse Device Heterogeneous Federated Learning via Task Arithmetic Knowledge Integration. CoRR abs/2409.18461 (2024) - 2023
- [j23]Vyacheslav Kungurtsev, Jakub Marecek, Ramen Ghosh, Robert Shorten:
On the ergodic control of ensembles in the presence of non-linear filters. Autom. 152: 110946 (2023) - [j22]Vyacheslav Kungurtsev, Adam D. Cobb, Tara Javidi, Brian Jalaian:
Decentralized Bayesian learning with Metropolis-adjusted Hamiltonian Monte Carlo. Mach. Learn. 112(8): 2791-2819 (2023) - [j21]Vyacheslav Kungurtsev, V. Shikhman:
Regularized quasi-monotone method for stochastic optimization. Optim. Lett. 17(5): 1215-1228 (2023) - [j20]Vyacheslav Kungurtsev, Mahdi Morafah, Tara Javidi, Gesualdo Scutari:
Decentralized Asynchronous Nonconvex Stochastic Optimization on Directed Graphs. IEEE Trans. Control. Netw. Syst. 10(4): 1796-1804 (2023) - [j19]Diyuan Wu, Vyacheslav Kungurtsev, Marco Mondelli:
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence. Trans. Mach. Learn. Res. 2023 (2023) - [c15]Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah, Bill Lin:
Efficient Distribution Similarity Identification in Clustered Federated Learning via Principal Angles between Client Data Subspaces. AAAI 2023: 10043-10052 - [c14]Saeed Vahidian, Sreevatsank Kadaveru, Woonjoon Baek, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah, Bill Lin:
When Do Curricula Work in Federated Learning? ICCV 2023: 5061-5071 - [i29]Johannes Aspman, Vyacheslav Kungurtsev, Reza Roohi Seraji:
Riemannian Stochastic Approximation for Minimizing Tame Nonsmooth Objective Functions. CoRR abs/2302.00709 (2023) - [i28]Philip Intallura, Georgios Korpas, Sudeepto Chakraborty, Vyacheslav Kungurtsev, Jakub Marecek:
A Survey of Quantum Alternatives to Randomized Algorithms: Monte Carlo Integration and Beyond. CoRR abs/2303.04945 (2023) - [i27]Frank E. Curtis, Vyacheslav Kungurtsev, Daniel P. Robinson, Qi Wang:
A Stochastic-Gradient-based Interior-Point Algorithm for Solving Smooth Bound-Constrained Optimization Problems. CoRR abs/2304.14907 (2023) - [i26]Sagnik Chatterjee, Vyacheslav Kungurtsev:
Quantum Solutions to the Privacy vs. Utility Tradeoff. CoRR abs/2307.03118 (2023) - [i25]Jianyang Gu, Saeed Vahidian, Vyacheslav Kungurtsev, Haonan Wang, Wei Jiang, Yang You, Yiran Chen:
Efficient Dataset Distillation via Minimax Diffusion. CoRR abs/2311.15529 (2023) - [i24]Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyacheslav Kungurtsev, Neil Zhenqiang Gong, Yiran Chen:
Unlocking the Potential of Federated Learning: The Symphony of Dataset Distillation via Deep Generative Latents. CoRR abs/2312.01537 (2023) - [i23]Ales Wodecki, Pavel Rytír, Vyacheslav Kungurtsev, Jakub Marecek:
Scheduling a Multi-Product Pipeline: A Discretized MILP Formulation. CoRR abs/2312.11381 (2023) - 2022
- [j18]El Houcine Bergou, Youssef Diouane, Vladimir Kunc, Vyacheslav Kungurtsev, Clément W. Royer:
A Subsampling Line-Search Method with Second-Order Results. INFORMS J. Optim. 4(4): 403-425 (2022) - [j17]Alexander Shevchenko, Vyacheslav Kungurtsev, Marco Mondelli:
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks. J. Mach. Learn. Res. 23: 130:1-130:55 (2022) - [j16]El Houcine Bergou, Youssef Diouane, Vyacheslav Kungurtsev, Clément W. Royer:
A Stochastic Levenberg-Marquardt Method Using Random Models with Complexity Results. SIAM/ASA J. Uncertain. Quantification 10(1): 507-536 (2022) - [j15]Francisco Facchinei, Vyacheslav Kungurtsev, Lorenzo Lampariello, Gesualdo Scutari:
Diminishing stepsize methods for nonconvex composite problems via ghost penalties: from the general to the convex regular constrained case. Optim. Methods Softw. 37(4): 1242-1268 (2022) - [j14]Vyacheslav Kungurtsev:
Distributed stochastic nonsmooth nonconvex optimization. Oper. Res. Lett. 50(6): 627-631 (2022) - [c13]Dinesh Krishnamoorthy, Vyacheslav Kungurtsev:
A Sensitivity Assisted Alternating Directions Method of Multipliers for Distributed Optimization. CDC 2022: 295-300 - [i22]Bapi Chatterjee, Vyacheslav Kungurtsev, Dan Alistarh:
Scaling the Wild: Decentralizing Hogwild!-style Shared-memory SGD. CoRR abs/2203.06638 (2022) - [i21]Fabio V. Difonzo, Vyacheslav Kungurtsev, Jakub Marecek:
Stochastic Langevin Differential Inclusions with Applications to Machine Learning. CoRR abs/2206.11533 (2022) - [i20]Saeed Vahidian, Mahdi Morafah, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah, Bill Lin:
Efficient Distribution Similarity Identification in Clustered Federated Learning via Principal Angles Between Client Data Subspaces. CoRR abs/2209.10526 (2022) - [i19]Diyuan Wu, Vyacheslav Kungurtsev, Marco Mondelli:
Mean-field analysis for heavy ball methods: Dropout-stability, connectivity, and global convergence. CoRR abs/2210.06819 (2022) - [i18]Antonio Bellon, Mareike Dressler, Vyacheslav Kungurtsev, Jakub Marecek, André Uschmajew:
Time-Varying Semidefinite Programming: Path Following a Burer-Monteiro Factorization. CoRR abs/2210.08387 (2022) - [i17]Saeed Vahidian, Sreevatsank Kadaveru, Woonjoon Baek, Weijia Wang, Vyacheslav Kungurtsev, Chen Chen, Mubarak Shah, Bill Lin:
When Do Curricula Work in Federated Learning? CoRR abs/2212.12712 (2022) - 2021
- [j13]Vyacheslav Kungurtsev, Francesco Rinaldi:
A zeroth order method for stochastic weakly convex optimization. Comput. Optim. Appl. 80(3): 731-753 (2021) - [j12]Francisco Facchinei, Vyacheslav Kungurtsev, Lorenzo Lampariello, Gesualdo Scutari:
Ghost Penalties in Nonconvex Constrained Optimization: Diminishing Stepsizes and Iteration Complexity. Math. Oper. Res. 46(2): 595-627 (2021) - [j11]El Houcine Bergou, Youssef Diouane, Vyacheslav Kungurtsev:
Complexity iteration analysis for strongly convex multi-objective optimization using a Newton path-following procedure. Optim. Lett. 15(4): 1215-1227 (2021) - [j10]El Houcine Bergou, Youssef Diouane, Vyacheslav Kungurtsev, Clément W. Royer:
A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Least-Squares Problems. SIAM J. Sci. Comput. 43(5): S743-S766 (2021) - [j9]Loris Cannelli, Francisco Facchinei, Gesualdo Scutari, Vyacheslav Kungurtsev:
Asynchronous Optimization Over Graphs: Linear Convergence Under Error Bound Conditions. IEEE Trans. Autom. Control. 66(10): 4604-4619 (2021) - [c12]Vyacheslav Kungurtsev, Malcolm Egan, Bapi Chatterjee, Dan Alistarh:
Asynchronous Optimization Methods for Efficient Training of Deep Neural Networks with Guarantees. AAAI 2021: 8209-8216 - [c11]Giorgi Nadiradze, Ilia Markov, Bapi Chatterjee, Vyacheslav Kungurtsev, Dan Alistarh:
Elastic Consistency: A Practical Consistency Model for Distributed Stochastic Gradient Descent. AAAI 2021: 9037-9045 - [i16]Alexander Kolesov, Vyacheslav Kungurtsev:
Decentralized Langevin Dynamics over a Directed Graph. CoRR abs/2103.05444 (2021) - [i15]Allahkaram Shafiei, Vyacheslav Kungurtsev, Jakub Marecek:
Trilevel and Multilevel Optimization using Monotone Operator Theory. CoRR abs/2105.09407 (2021) - [i14]Vyacheslav Kungurtsev, Adam D. Cobb, Tara Javidi, Brian Jalaian:
Decentralized Bayesian Learning with Metropolis-Adjusted Hamiltonian Monte Carlo. CoRR abs/2107.07211 (2021) - [i13]Alexander Shevchenko, Vyacheslav Kungurtsev, Marco Mondelli:
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks. CoRR abs/2111.02278 (2021) - [i12]Alberto Schiabel, Vyacheslav Kungurtsev, Jakub Marecek:
Randomized Algorithms for Monotone Submodular Function Maximization on the Integer Lattice. CoRR abs/2111.10175 (2021) - 2020
- [j8]El Houcine Bergou, Youssef Diouane, Vyacheslav Kungurtsev:
Convergence and Complexity Analysis of a Levenberg-Marquardt Algorithm for Inverse Problems. J. Optim. Theory Appl. 185(3): 927-944 (2020) - [j7]Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Asynchronous parallel algorithms for nonconvex optimization. Math. Program. 184(1): 121-154 (2020) - [j6]Philip E. Gill, Vyacheslav Kungurtsev, Daniel P. Robinson:
A Shifted Primal-Dual Penalty-Barrier Method for Nonlinear Optimization. SIAM J. Optim. 30(2): 1067-1093 (2020) - [j5]Amir Daneshmand, Gesualdo Scutari, Vyacheslav Kungurtsev:
Second-Order Guarantees of Distributed Gradient Algorithms. SIAM J. Optim. 30(4): 3029-3068 (2020) - [c10]Vyacheslav Kungurtsev, Jakub Marecek:
A Two-Step Pre-Processing for Semidefinite Programming. CDC 2020: 384-389 - [c9]Ondrej Kuzelka, Vyacheslav Kungurtsev, Yuyi Wang:
Lifted Weight Learning of Markov Logic Networks (Revisited One More Time). PGM 2020: 269-280 - [i11]Vyacheslav Kungurtsev:
Stochastic Gradient Langevin Dynamics on a Distributed Network. CoRR abs/2001.00665 (2020) - [i10]Dan Alistarh, Bapi Chatterjee, Vyacheslav Kungurtsev:
Elastic Consistency: A General Consistency Model for Distributed Stochastic Gradient Descent. CoRR abs/2001.05918 (2020) - [i9]Mario Zanon, Vyacheslav Kungurtsev, Sébastien Gros:
Reinforcement Learning Based on Real-Time Iteration NMPC. CoRR abs/2005.05225 (2020) - [i8]Vyacheslav Kungurtsev, Bapi Chatterjee, Dan Alistarh:
Stochastic Gradient Langevin with Delayed Gradients. CoRR abs/2006.07362 (2020) - [i7]El Houcine Bergou, Youssef Diouane, Vyacheslav Kungurtsev, Clément W. Royer:
A Nonmonotone Matrix-Free Algorithm for Nonlinear Equality-Constrained Inverse Problems. CoRR abs/2006.16340 (2020)
2010 – 2019
- 2019
- [c8]Ondrej Kuzelka, Vyacheslav Kungurtsev:
Lifted Weight Learning of Markov Logic Networks Revisited. AISTATS 2019: 1753-1761 - [i6]Ondrej Kuzelka, Vyacheslav Kungurtsev:
Lifted Weight Learning of Markov Logic Networks Revisited. CoRR abs/1903.03099 (2019) - 2018
- [c7]Amir Daneshmand, Gesualdo Scutari, Vyacheslav Kungurtsev:
Second-order Guarantees of Gradient Algorithms over Networks. Allerton 2018: 359-365 - [i5]Vyacheslav Kungurtsev, Tomás Pevný:
Algorithms for solving optimization problems arising from deep neural net models: smooth problems. CoRR abs/1807.00172 (2018) - [i4]Vyacheslav Kungurtsev, Tomás Pevný:
Algorithms for solving optimization problems arising from deep neural net models: nonsmooth problems. CoRR abs/1807.00173 (2018) - [i3]Amir Daneshmand, Gesualdo Scutari, Vyacheslav Kungurtsev:
Second-order Guarantees of Distributed Gradient Algorithms. CoRR abs/1809.08694 (2018) - 2017
- [j4]Philip E. Gill, Vyacheslav Kungurtsev, Daniel P. Robinson:
A stabilized SQP method: superlinear convergence. Math. Program. 163(1-2): 369-410 (2017) - [j3]Vyacheslav Kungurtsev, Johannes Jäschke:
A Predictor-Corrector Path-Following Algorithm for Dual-Degenerate Parametric Optimization Problems. SIAM J. Optim. 27(1): 538-564 (2017) - [c6]Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Asynchronous parallel nonconvex large-scale optimization. ICASSP 2017: 4706-4710 - [c5]Malcolm Egan, Samir Medina Perlaza, Vyacheslav Kungurtsev:
Capacity sensitivity in additive non-Gaussian noise channels. ISIT 2017: 416-420 - [c4]Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Essentially cyclic asynchronous nonconvex large-scale optimization. SPAWC 2017: 1-5 - 2016
- [c3]Loris Cannelli, Gesualdo Scutari, Francisco Facchinei, Vyacheslav Kungurtsev:
Parallel asynchronous lock-free algorithms for nonconvex big-data optimization. ACSSC 2016: 1009-1013 - [i2]Loris Cannelli, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Asynchronous Parallel Algorithms for Nonconvex Big-Data Optimization: Model and Convergence. CoRR abs/1607.04818 (2016) - 2015
- [j2]Amir Daneshmand, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Hybrid Random/Deterministic Parallel Algorithms for Convex and Nonconvex Big Data Optimization. IEEE Trans. Signal Process. 63(15): 3914-3929 (2015) - 2014
- [j1]Vyacheslav Kungurtsev, Moritz Diehl:
Sequential quadratic programming methods for parametric nonlinear optimization. Comput. Optim. Appl. 59(3): 475-509 (2014) - [c2]Amir Daneshmand, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Flexible selective parallel algorithms for big data optimization. ACSSC 2014: 3-7 - [c1]Vyacheslav Kungurtsev, Attila Kozma, Moritz Diehl:
Linear convergence of distributed multiple shooting. ECC 2014: 2874-2879 - [i1]Amir Daneshmand, Francisco Facchinei, Vyacheslav Kungurtsev, Gesualdo Scutari:
Hybrid Random/Deterministic Parallel Algorithms for Nonconvex Big Data Optimization. CoRR abs/1407.4504 (2014) - 2013
- [b1]Vyacheslav Kungurtsev:
Second-derivative sequential quadratic programming methods for nonlinear optimization. University of California, San Diego, USA, 2013
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:36 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint