default search action
Hirofumi Shinohara
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j26]Xingyu Wang, Ruilin Zhang, Hirofumi Shinohara:
A Single-Inverter-Based True Random Number Generator with On-Chip Clock-Tuning-Based Entropy Calibration Circuit. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 107(1): 105-113 (2024) - [j25]Ruilin Zhang, Haochen Zhang, Xingyu Wang, Ziyang Ye, Kunyang Liu, Shinichi Nishizawa, Kiichi Niitsu, Hirofumi Shinohara:
De-Correlation and De-Bias Post-Processing Circuits for True Random Number Generator. IEEE Trans. Circuits Syst. I Regul. Pap. 71(11): 5187-5199 (2024) - [j24]Xingyu Wang, Ruilin Zhang, Kunyang Liu, Hirofumi Shinohara:
A 0.116 pJ/bit Latch-Based True Random Number Generator Featuring Static Inverter Selection and Noise Enhancement. IEEE Trans. Very Large Scale Integr. Syst. 32(3): 564-572 (2024) - [c34]Zhenzhe Chen, Takashi Sato, Hirofumi Shinohara:
SpongePUF: A Modeling Attack Resilient Strong PUF with Scalable Challenge Response Pair. HOST 2024: 244-253 - [c33]Zhenzhe Chen, Kunyang Liu, Hirofumi Shinohara, Takashi Sato:
CLAPPER: Clonable LFSR-based Asymmetric PUF-group with Peer-to-peer Equivalent Response. MWSCAS 2024: 1140-1144 - 2023
- [c32]Kunyang Liu, Yichen Tang, Shufan Xu, Ruilin Zhang, Hirofumi Shinohara:
A 100-Bit-Output Modeling Attack-Resistant SPN Strong PUF with Uniform and High-Randomness Response. CICC 2023: 1-2 - [c31]Ruilin Zhang, Haochen Zhang, Xingyu Wang, Ziyang Ye, Kunyang Liu, Hirofumi Shinohara:
Practical Markov Chain and Von Neumann based Post-processing Circuits for True Random Number Generators. MWSCAS 2023: 841-845 - 2022
- [j23]Ruilin Zhang, Xingyu Wang, Kunyang Liu, Hirofumi Shinohara:
A 0.186-pJ per Bit Latch-Based True Random Number Generator Featuring Mismatch Compensation and Random Noise Enhancement. IEEE J. Solid State Circuits 57(8): 2498-2508 (2022) - [c30]Kunyang Liu, Gen Li, Zihan Fu, Xuanzhen Wang, Hirofumi Shinohara:
A 2.17-pJ/b 5b-Response Attack-Resistant Strong PUF with Enhanced Statistical Performance. ESSCIRC 2022: 513-516 - [c29]Xingyu Wang, Ruilin Zhang, Yuxin Wang, Kunyang Liu, Xuanzhen Wang, Hirofumi Shinohara:
A 0.116pJ/bit Latch-Based True Random Number Generator with Static Inverter Selection and Noise Enhancement. VLSI-DAT 2022: 1-4 - 2021
- [j22]Kunyang Liu, Xinpeng Chen, Hongliang Pu, Hirofumi Shinohara:
A 0.5-V Hybrid SRAM Physically Unclonable Function Using Hot Carrier Injection Burn-In for Stability Reinforcement. IEEE J. Solid State Circuits 56(7): 2193-2204 (2021) - [c28]Hirofumi Shinohara, Massimo Alioto, Ingrid Verbauwhede:
Session 36 Overview: Hardware Security Digital Architectures and Systems Subcommittee. ISSCC 2021: 496-497 - [c27]Kunyang Liu, Zihan Fu, Gen Li, Hongliang Pu, Zhibo Guan, Xingyu Wang, Xinpeng Chen, Hirofumi Shinohara:
36.3 A Modeling Attack Resilient Strong PUF with Feedback-SPN Structure Having <0.73% Bit Error Rate Through In-Cell Hot-Carrier Injection Burn-In. ISSCC 2021: 502-504 - [c26]Ruilin Zhang, Xingyu Wang, Luying Wang, Xinpeng Chen, Fan Yang, Kunyang Liu, Hirofumi Shinohara:
A 0.186-pJ per Bit Latch-Based True Random Number Generator with Mismatch Compensation and Random Noise Enhancement. VLSI Circuits 2021: 1-2 - 2020
- [j21]Kunyang Liu, Yue Min, Xuan Yang, Hanfeng Sun, Hirofumi Shinohara:
A 373-F2 0.21%-Native-BER EE SRAM Physically Unclonable Function With 2-D Power-Gated Bit Cells and ${V}_{\text{SS}}$ Bias-Based Dark-Bit Detection. IEEE J. Solid State Circuits 55(6): 1719-1732 (2020) - [c25]Kunyang Liu, Hongliang Pu, Hirofumi Shinohara:
A 0.5-V 2.07-fJ/b 497-F2 EE/CMOS Hybrid SRAM Physically Unclonable Function with < 1E-7 Bit Error Rate Achieved through Hot Carrier Injection Burn-in. CICC 2020: 1-4 - [c24]Xingyu Wang, Hongjie Liu, Ruilin Zhang, Kunyang Liu, Hirofumi Shinohara:
An Inverter-Based True Random Number Generator with 4-bit Von-Neumann Post-Processing Circuit. MWSCAS 2020: 285-288
2010 – 2019
- 2019
- [c23]Jing Wang, Hirofumi Shinohara:
A CMOS 0.85-V 15.8-nW Current and Voltage Reference without Resistors. VLSI-DAT 2019: 1-4 - 2018
- [c22]Kunyang Liu, Yue Min, Xuan Yang, Hanfeng Sun, Hirofumi Shinohara:
A 373 F2 2D Power-Gated EE SRAM Physically Unclonable Function With Dark-Bit Detection Technique. A-SSCC 2018: 161-164 - [c21]Ruilin Zhang, Sijia Chen, Chao Wan, Hirofumi Shinohara:
High-throughput Von Neumann post-processing for random number generator. VLSI-DAT 2018: 1-4 - 2017
- [j20]Jing Wang, Li Ding, Qiang Li, Hirofumi Shinohara, Yasuaki Inoue:
Accurate Nanopower Supply-Insensitive CMOS Unit Vth Extractor and αVth Extractor with Continuous Variety. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100-A(5): 1145-1155 (2017) - [c20]Hirofumi Shinohara, Baikun Zheng, Yanhao Piao, Bo Liu, Shiyu Liu:
Analysis and reduction of SRAM PUF Bit Error Rate. VLSI-DAT 2017: 1-4 - 2016
- [j19]Xutao Li, Minjie Chen, Hirofumi Shinohara, Tsutomu Yoshihara:
Design of a Sensorless Controller Synthesized by Robust H∞ Control for Boost Converters. IEICE Trans. Commun. 99-B(2): 356-363 (2016) - [j18]Jing Wang, Qiang Li, Li Ding, Hirofumi Shinohara, Yasuaki Inoue:
A 3.5ppm/°C 0.85V Bandgap Reference Circuit without Resistors. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 99-A(7): 1430-1437 (2016) - 2014
- [j17]Hirofumi Shinohara:
Extremely Low Power Digital and Analog Circuits. IEICE Trans. Electron. 97-C(6): 469-475 (2014) - [c19]Koichiro Ishibashi, Nobuyuki Sugii, Kimiyoshi Usami, Hideharu Amano, Kazutoshi Kobayashi, Cong-Kha Pham, Hideki Makiyama, Yoshiki Yamamoto, Hirofumi Shinohara, Toshiaki Iwamatsu, Yasuo Yamaguchi, Hidekazu Oda, Takumi Hasegawa, Shinobu Okanishi, Hiroshi Yanagita, Shiro Kamohara, Masaru Kadoshima, Keiichi Maekawa, Tomohiro Yamashita, Duc-Hung Le, Takumu Yomogita, Masaru Kudo, Kuniaki Kitamori, Shuya Kondo, Yuuki Manzawa:
A Perpetuum Mobile 32bit CPU with 13.4pJ/cycle, 0.14µA sleep current using Reverse Body Bias Assisted 65nm SOTB CMOS technology. COOL Chips 2014: 1-3 - 2013
- [j16]Shinji Miyano, Shinichi Moriwaki, Yasue Yamamoto, Atsushi Kawasumi, Toshikazu Suzuki, Takayasu Sakurai, Hirofumi Shinohara:
Highly Energy-Efficient SRAM With Hierarchical Bit Line Charge-Sharing Method Using Non-Selected Bit Line Charges. IEEE J. Solid State Circuits 48(4): 924-931 (2013) - [j15]Hiroshi Fuketa, Ryo Takahashi, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Increase of Crosstalk Noise Due to Imbalanced Threshold Voltage Between nMOS and pMOS in Subthreshold Logic Circuits. IEEE J. Solid State Circuits 48(8): 1986-1994 (2013) - [j14]Hiroshi Fuketa, Koji Hirairi, Tadashi Yasufuku, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Minimizing Energy of Integer Unit by Higher Voltage Flip-Flop: VDDmin-Aware Dual Supply Voltage Technique. IEEE Trans. Very Large Scale Integr. Syst. 21(6): 1175-1179 (2013) - [c18]Hiroshi Fuketa, Ryo Takahashi, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Variation-aware subthreshold logic circuit design. ASICON 2013: 1-4 - [c17]Shusuke Yoshimoto, Shinji Miyano, Makoto Takamiya, Hirofumi Shinohara, Hiroshi Kawaguchi, Masahiko Yoshimoto:
A 40-nm 8T SRAM with selective source line control of read bitlines and address preset structure. CICC 2013: 1-4 - 2012
- [j13]Ryo Takahashi, Hidehiro Takata, Tadashi Yasufuku, Hiroshi Fuketa, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Large Within-Die Gate Delay Variations in Sub-Threshold Logic Circuits at Low Temperature. IEEE Trans. Circuits Syst. II Express Briefs 59-II(12): 918-921 (2012) - [c16]Hiroshi Fuketa, Ryo Takahashi, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Increase of crosstalk noise due to imbalanced threshold voltage between NMOS and PMOS in sub-threshold logic circuits. CICC 2012: 1-4 - [c15]Yasue Yamamoto, Atsushi Kawasumi, Shinichi Moriwaki, Toshikazu Suzuki, Shinji Miyano, Hirofumi Shinohara:
60% Cycle time acceleration, 55% energy reduction, 32Kbit SRAM by auto-selective boost (ASB) scheme for slow memory cells in random variations. ESSCIRC 2012: 317-320 - [c14]Tadashi Yasufuku, Koji Hirairi, Yu Pu, Yun Fei Zheng, Ryo Takahashi, Masato Sasaki, Hiroshi Fuketa, Atsushi Muramatsu, Masahiro Nomura, Hirofumi Shinohara, Makoto Takamiya, Takayasu Sakurai:
24% Power reduction by post-fabrication dual supply voltage control of 64 voltage domains in VDDmin limited ultra low voltage logic circuits. ISQED 2012: 586-591 - [c13]Koji Hirairi, Yasuyuki Okuma, Hiroshi Fuketa, Tadashi Yasufuku, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
13% Power reduction in 16b integer unit in 40nm CMOS by adaptive power supply voltage control with parity-based error prediction and detection (PEPD) and fully integrated digital LDO. ISSCC 2012: 486-488 - [c12]Shinichi Moriwaki, Yasuhiro Yamamoto, Atsushi Kawasumi, Toshikazu Suzuki, Shinji Miyano, Takayasu Sakurai, Hirofumi Shinohara:
A 13.8pJ/Access/Mbit SRAM with charge collector circuits for effective use of non-selected bit line charges. VLSIC 2012: 60-61 - 2011
- [j12]Yu Pu, Xin Zhang, Katsuyuki Ikeuchi, Atsushi Muramatsu, Atsushi Kawasumi, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
Post-Silicon Clock Deskew Employing Hot-Carrier Injection Trimming With On-Chip Skew Monitoring and Auto-Stressing Scheme for Sub/Near Threshold Digital Circuits. IEEE Trans. Circuits Syst. II Express Briefs 58-II(5): 294-298 (2011) - [c11]Hiroshi Fuketa, Satoshi Iida, Tadashi Yasufuku, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
A closed-form expression for estimating minimum operating voltage (VDDmin) of CMOS logic gates. DAC 2011: 984-989 - [c10]Atsushi Muramatsu, Tadashi Yasufuku, Masahiro Nomura, Makoto Takamiya, Hirofumi Shinohara, Takayasu Sakurai:
12% Power reduction by within-functional-block fine-grained adaptive dual supply voltage control in logic circuits with 42 voltage domains. ESSCIRC 2011: 191-194 - [c9]Hiroshi Fuketa, Koji Hirairi, Tadashi Yasufuku, Makoto Takamiya, Masahiro Nomura, Hirofumi Shinohara, Takayasu Sakurai:
12.7-times energy efficiency increase of 16-bit integer unit by power supply voltage (VDD) scaling from 1.2v to 310mv enabled by contention-less flip-flops (CLFF) and separated VDD between flip-flops and combinational logics. ISLPED 2011: 163-168 - 2010
- [j11]Masanori Kurimoto, Hiroaki Suzuki, Rei Akiyama, Tadao Yamanaka, Haruyuki Ohkuma, Hidehiro Takata, Hirofumi Shinohara:
Phase-adjustable error detection flip-flops with 2-stage hold-driven optimization, slack-based grouping scheme and slack distribution control for dynamic voltage scaling. ACM Trans. Design Autom. Electr. Syst. 15(2): 17:1-17:17 (2010) - [c8]Toshikazu Suzuki, Shinichi Moriwaki, Atsushi Kawasumi, Shinji Miyano, Hirofumi Shinohara:
0.5-V, 150-MHz, bulk-CMOS SRAM with suspended bit-line read scheme. ESSCIRC 2010: 354-357
2000 – 2009
- 2009
- [j10]Koji Nii, Yasumasa Tsukamoto, Makoto Yabuuchi, Yasuhiro Masuda, Susumu Imaoka, Keiichi Usui, Shigeki Ohbayashi, Hiroshi Makino, Hirofumi Shinohara:
Synchronous Ultra-High-Density 2RW Dual-Port 8T-SRAM With Circumvention of Simultaneous Common-Row-Access. IEEE J. Solid State Circuits 44(3): 977-986 (2009) - 2008
- [j9]Masako Fujii, Koji Nii, Hiroshi Makino, Shigeki Ohbayashi, Motoshige Igarashi, Takeshi Kawamura, Miho Yokota, Nobuhiro Tsuda, Tomoaki Yoshizawa, Toshikazu Tsutsui, Naohiko Takeshita, Naofumi Murata, Tomohiro Tanaka, Takanari Fujiwara, Kyoko Asahina, Masakazu Okada, Kazuo Tomita, Masahiko Takeuchi, Shigehisa Yamamoto, Hiromitsu Sugimoto, Hirofumi Shinohara:
A Large-Scale, Flip-Flop RAM Imitating a Logic LSI for Fast Development of Process Technology. IEICE Trans. Electron. 91-C(8): 1338-1347 (2008) - [j8]Hirofumi Shinohara, Koji Nii, Hidetoshi Onodera:
Analytical Model of Static Noise Margin in CMOS SRAM for Variation Consideration. IEICE Trans. Electron. 91-C(9): 1488-1500 (2008) - [j7]Shigeki Ohbayashi, Makoto Yabuuchi, Kazushi Kono, Yuji Oda, Susumu Imaoka, Keiichi Usui, Toshiaki Yonezu, Takeshi Iwamoto, Koji Nii, Yasumasa Tsukamoto, Masashi Arakawa, Takahiro Uchida, Masakazu Okada, Atsushi Ishii, Tsutomu Yoshihara, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65 nm Embedded SRAM With Wafer Level Burn-In Mode, Leak-Bit Redundancy and Cu E-Trim Fuse for Known Good Die. IEEE J. Solid State Circuits 43(1): 96-108 (2008) - [j6]Koji Nii, Makoto Yabuuchi, Yasumasa Tsukamoto, Shigeki Ohbayashi, Susumu Imaoka, Hiroshi Makino, Yoshinobu Yamagami, Satoshi Ishikura, Toshio Terano, Toshiyuki Oashi, Keiji Hashimoto, Akio Sebe, Gen Okazaki, Katsuji Satomi, Hironori Akamatsu, Hirofumi Shinohara:
A 45-nm Bulk CMOS Embedded SRAM With Improved Immunity Against Process and Temperature Variations. IEEE J. Solid State Circuits 43(1): 180-191 (2008) - [j5]Satoshi Ishikura, Marefusa Kurumada, Toshio Terano, Yoshinobu Yamagami, Naoki Kotani, Katsuji Satomi, Koji Nii, Makoto Yabuuchi, Yasumasa Tsukamoto, Shigeki Ohbayashi, Toshiyuki Oashi, Hiroshi Makino, Hirofumi Shinohara, Hironori Akamatsu:
A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues. IEEE J. Solid State Circuits 43(4): 938-945 (2008) - [c7]Masanori Kurimoto, Hiroaki Suzuki, Rei Akiyama, Tadao Yamanaka, Haruyuki Ohkuma, Hidehiro Takata, Hirofumi Shinohara:
Phase-adjustable error detection flip-flops with 2-stage hold driven optimization and slack based grouping scheme for dynamic voltage scaling. DAC 2008: 884-889 - [c6]Masako Fujii, Hiroaki Suzuki, Hiromi Notani, Hiroshi Makino, Hirofumi Shinohara:
On-chip leakage monitor circuit to scan optimal reverse bias voltage for adaptive body-bias circuit under gate induced drain leakage effect. ESSCIRC 2008: 258-261 - [c5]Hiroaki Suzuki, Masanori Kurimoto, Tadao Yamanaka, Hidehiro Takata, Hiroshi Makino, Hirofumi Shinohara:
Post-silicon programmed body-biasing platform suppressing device variability in 45 nm CMOS technology. ISLPED 2008: 15-20 - 2007
- [j4]Shigeki Ohbayashi, Makoto Yabuuchi, Koji Nii, Yasumasa Tsukamoto, Susumu Imaoka, Yuji Oda, Tsutomu Yoshihara, Motoshige Igarashi, Masahiko Takeuchi, Hiroshi Kawashima, Yasuo Yamaguchi, Kazuhiro Tsukamoto, Masahide Inuishi, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65-nm SoC Embedded 6T-SRAM Designed for Manufacturability With Read and Write Operation Stabilizing Circuits. IEEE J. Solid State Circuits 42(4): 820-829 (2007) - [c4]Makoto Yabuuchi, Koji Nii, Yasumasa Tsukamoto, Shigeki Ohbayashi, Susumu Imaoka, Hiroshi Makino, Yoshinobu Yamagami, Satoshi Ishikura, Toshio Terano, Toshiyuki Oashi, Keiji Hashimoto, Akio Sebe, Gen Okazaki, Katsuji Satomi, Hironori Akamatsu, Hirofumi Shinohara:
A 45nm Low-Standby-Power Embedded SRAM with Improved Immunity Against Process and Temperature Variations. ISSCC 2007: 326-606 - [c3]Shigeki Ohbayashi, Makoto Yabuuchi, Kazushi Kono, Yuji Oda, Susumu Imaoka, Keiichi Usui, Toshiaki Yonezu, Takeshi Iwamoto, Koji Nii, Yasumasa Tsukamoto, Masashi Arakawa, Takahiro Uchida, Masakazu Okada, Atsushi Ishii, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
A 65nm Embedded SRAM with Wafer-Level Burn-In Mode, Leak-Bit Redundancy and E-Trim Fuse for Known Good Die. ISSCC 2007: 488-617 - 2005
- [c2]Yasumasa Tsukamoto, Koji Nii, Susumu Imaoka, Yuji Oda, Shigeki Ohbayashi, Tomoaki Yoshizawa, Hiroshi Makino, Koichiro Ishibashi, Hirofumi Shinohara:
Worst-case analysis to obtain stable read/write DC margin of high density 6T-SRAM-array with local Vth variability. ICCAD 2005: 398-405
1990 – 1999
- 1996
- [j3]Hiroshi Makino, Yasunobu Nakase, Hiroaki Suzuki, Hiroyuki Morinaka, Hirofumi Shinohara, Koichiro Mashiko:
An 8.8-ns 54×54-bit multiplier with high speed redundant binary architecture. IEEE J. Solid State Circuits 31(6): 773-783 (1996) - [j2]Kiniio Ueda, Hiroaki Suzuki, Kakutaro Suda, Hirofumi Shinohara, Koichiro Mashiko:
A 64-bit carry look ahead adder using pass transistor BiCMOS gates. IEEE J. Solid State Circuits 31(6): 810-818 (1996) - 1995
- [j1]Yasunobu Nakase, Hiroaki Suzuki, Hiroshi Makino, Hirofumi Shinohara, Koichiro Mashiko:
A BiCMOS wired-OR logic. IEEE J. Solid State Circuits 30(6): 622-628 (1995) - 1993
- [c1]Hiroshi Makino, Yasunobu Nakase, Hirofumi Shinohara:
A 8.8-ns 54 54-Bit Multiplier Using New Redundant Binary Architecture. ICCD 1993: 202-205
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-15 19:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint