default search action
DGS@ICLR 2019: New Orleans, Louisiana, United States
- Deep Generative Models for Highly Structured Data, ICLR 2019 Workshop, New Orleans, Louisiana, United States, May 6, 2019. OpenReview.net 2019
Accepted Papers
- John Bradshaw, Matt J. Kusner, Brooks Paige, Marwin H. S. Segler, José Miguel Hernández-Lobato:
Generating Molecules via Chemical Reactions. - Vinay Uday Prabhu, Sanghyun Han, Dian Ang Yap, Mihail Douhaniaris, Preethi Seshadri:
A Seed-Augment-Train Framework for Universal Digit Classification. - Sam Wiseman:
Learning Deep Latent-variable MRFs with Amortized Bethe Free Energy Minimization. - Mohammadreza Soltani, Swayambhoo Jain, Abhinav V. Sambasivan:
Unsupervised Demixing of Structured Signals from Their Superposition Using GANs. - Zhehui Chen, Haoming Jiang, Yuyang Shi, Bo Dai, Tuo Zhao:
Learning to Defense by Learning to Attack. - Laurent Dinh, Jascha Sohl-Dickstein, Razvan Pascanu, Hugo Larochelle:
A RAD approach to deep mixture models. - Antonio Khalil Moretti, Zizhao Wang, Luhuan Wu, Itsik Pe'er:
Smoothing Nonlinear Variational Objectives with Sequential Monte Carlo. - Mohammad Babaeizadeh, Golnaz Ghiasi:
Adjustable Real-time Style Transfer. - Tom Sercu, Sebastian Gehrmann, Hendrik Strobelt, Payel Das, Inkit Padhi, Cícero Nogueira dos Santos, Kahini Wadhawan, Vijil Chenthamarakshan:
Interactive Visual Exploration of Latent Space (IVELS) for peptide auto-encoder model selection. - Alexey A. Gritsenko, Jasper Snoek, Tim Salimans:
On the relationship between Normalising Flows and Variational- and Denoising Autoencoders. - Ðorðe Miladinovic, Muhammad Waleed Gondal, Bernhard Schölkopf, Joachim M. Buhmann, Stefan Bauer:
Disentangled State Space Models: Unsupervised Learning of dynamics across Heterogeneous Environments. - Samaneh Azadi, Deepak Pathak, Sayna Ebrahimi, Trevor Darrell:
Compositional GAN (Extended Abstract): Learning Image-Conditional Binary Composition. - Shuyu Lin, Ronald Clark, Robert Birke, Niki Trigoni, Stephen J. Roberts:
WiSE-ALE: Wide Sample Estimator for Aggregate Latent Embedding. - Aditya Grover, Christopher Chute, Rui Shu, Zhangjie Cao, Stefano Ermon:
AlignFlow: Learning from multiple domains via normalizing flows. - Hirono Okamoto, Masahiro Suzuki, Itto Higuchi, Shohei Ohsawa, Yutaka Matsuo:
Dual Space Learning with variational Autoencoders. - Yujia Xie, Minshuo Chen, Haoming Jiang, Tuo Zhao, Hongyuan Zha:
On Scalable and Efficient Computation of Large Scale Optimal Transport. - Chun-Liang Li, Manzil Zaheer, Yang Zhang, Barnabás Póczos, Ruslan Salakhutdinov:
Point Cloud GAN. - Aditya Grover, Jiaming Song, Ashish Kapoor, Kenneth Tran, Alekh Agarwal, Eric Horvitz, Stefano Ermon:
Bias Correction of Learned Generative Models via Likelihood-free Importance Weighting. - Sharon Zhou, Mitchell L. Gordon, Ranjay Krishna, Austin Narcomey, Durim Morina, Michael S. Bernstein:
HYPE: Human-eYe Perceptual Evaluation of Generative Models. - John Ingraham, Vikas K. Garg, Regina Barzilay, Tommi S. Jaakkola:
Generative Models for Graph-Based Protein Design. - Faisal Mahmood, Wenhao Xu, Nicholas J. Durr, Jeremiah W. Johnson, Alan L. Yuille:
Structured Prediction using cGANs with Fusion Discriminator. - Gaurav Mittal, Shubham Agrawal, Anuva Agarwal, Sushant Mehta, Tanya Marwah:
Interactive Image Generation Using Scene Graphs. - Namrata Anand, Raphael Eguchi, Po-Ssu Huang:
Fully differentiable full-atom protein backbone generation. - Maximilian Ilse, Jakub M. Tomczak, Christos Louizos, Max Welling:
DIVA: Domain Invariant Variational Autoencoder. - Wayne Wu, Kaidi Cao, Cheng Li, Chen Qian, Chen Change Loy:
Disentangling Content and Style via Unsupervised Geometry Distillation. - Christopher Beckham, Sina Honari, Alex Lamb, Vikas Verma, Farnoosh Ghadiri, R. Devon Hjelm, Christopher J. Pal:
Adversarial Mixup Resynthesizers. - Dieterich Lawson, George Tucker, Bo Dai, Rajesh Ranganath:
Revisiting Auxiliary Latent Variables in Generative Models. - Da Tang, Dawen Liang, Tony Jebara, Nicholas Ruozzi:
Correlated Variational Auto-Encoders. - James Lucas, George Tucker, Roger B. Grosse, Mohammad Norouzi:
Understanding Posterior Collapse in Generative Latent Variable Models. - Khyathi Raghavi Chandu, Eric Nyberg, Alan W. Black:
Storyboarding of Recipes: Grounded Contextual Generation. - David Bau, Jun-Yan Zhu, Hendrik Strobelt, Bolei Zhou, Joshua B. Tenenbaum, William T. Freeman, Antonio Torralba:
Visualizing and Understanding GANs. - Gabriel Loaiza-Ganem, John P. Cunningham:
Deep Random Splines for Point Process Intensity Estimation. - Dustin Tran, Keyon Vafa, Kumar Krishna Agrawal, Laurent Dinh, Ben Poole:
Discrete Flows: Invertible Generative Models of Discrete Data. - Seyed Kamyar Seyed Ghasemipour, Shane Gu, Richard S. Zemel:
Understanding the Relation Between Maximum-Entropy Inverse Reinforcement Learning and Behaviour Cloning. - Pierre L. Dognin, Igor Melnyk, Youssef Mroueh, Jerret Ross, Tom Sercu:
Improved Adversarial Image Captioning. - Raphael Gontijo Lopes, David Ha, Douglas Eck, Jonathon Shlens:
A Learned Representation for Scalable Vector Graphics. - Zijun Zhang, Ruixiang Zhang, Zongpeng Li, Yoshua Bengio, Liam Paull:
Perceptual Generative Autoencoders. - Ali Razavi, Aäron van den Oord, Oriol Vinyals:
Generating Diverse High-Resolution Images with VQ-VAE. - Shuangfei Fan, Bert Huang:
Deep Generative Models for Generating Labeled Graphs. - Septimia Sârbu, Luigi Malagò:
Variational autoencoders trained with q-deformed lower bounds. - Sidak Pal Singh, Andreas Hug, Aymeric Dieuleveut, Martin Jaggi:
Context Mover's Distance & Barycenters: Optimal transport of contexts for building representations. - Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, Sylvain Gelly:
FVD: A new Metric for Video Generation.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.