default search action
Shiva Prasad Kasiviswanathan
Person information
- affiliation: Amazon Web Services, Palo Alto, CA, USA
- affiliation: Samsung Research America, Mountain View, CA, USA
- affiliation: GE Global Research Center, Camino Ramon, CA, USA
- affiliation: IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
- affiliation: Los Alamos National Laboratory, NM, USA
- affiliation (PhD): Pennsylvania State University, University Park, PA, USA
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c55]Iden Kalemaj, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:
Differentially Private Conditional Independence Testing. AISTATS 2024: 3700-3708 - [c54]Michaela Hardt, William Roy Orchard, Patrick Blöbaum, Elke Kirschbaum, Shiva Prasad Kasiviswanathan:
The PetShop Dataset - Finding Causes of Performance Issues across Microservices. CLeaR 2024: 957-978 - [i31]Junhyung Park, Patrick Blöbaum, Shiva Prasad Kasiviswanathan:
Benign Overfitting for Regression with Trained Two-Layer ReLU Networks. CoRR abs/2410.06191 (2024) - [i30]Putra Manggala, Atalanti-Anastasia Mastakouri, Elke Kirschbaum, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:
β-calibration of Language Model Confidence Scores for Generative QA. CoRR abs/2410.06615 (2024) - 2023
- [c53]Yu-Guan Hsieh, Shiva Prasad Kasiviswanathan, Branislav Kveton, Patrick Blöbaum:
Thompson Sampling with Diffusion Generative Prior. ICML 2023: 13434-13468 - [c52]Aleksandr Podkopaev, Patrick Blöbaum, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:
Sequential Kernelized Independence Testing. ICML 2023: 27957-27993 - [c51]Lie He, Shiva Prasad Kasiviswanathan:
Debiasing Conditional Stochastic Optimization. NeurIPS 2023 - [i29]Yu-Guan Hsieh, Shiva Prasad Kasiviswanathan, Branislav Kveton, Patrick Blöbaum:
Thompson Sampling with Diffusion Generative Prior. CoRR abs/2301.05182 (2023) - [i28]Patrick Chao, Patrick Blöbaum, Shiva Prasad Kasiviswanathan:
Interventional and Counterfactual Inference with Diffusion Models. CoRR abs/2302.00860 (2023) - [i27]Lie He, Shiva Prasad Kasiviswanathan:
Debiasing Conditional Stochastic Optimization. CoRR abs/2304.10613 (2023) - [i26]Iden Kalemaj, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:
Differentially Private Conditional Independence Testing. CoRR abs/2306.06721 (2023) - [i25]Michaela Hardt, William Roy Orchard, Patrick Blöbaum, Shiva Prasad Kasiviswanathan, Elke Kirschbaum:
The PetShop Dataset - Finding Causes of Performance Issues across Microservices. CoRR abs/2311.04806 (2023) - 2022
- [c50]Abhinav Aggarwal, Shiva Prasad Kasiviswanathan, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier:
Reconstructing Test Labels from Noisy Loss Functions. AISTATS 2022: 8570-8591 - [c49]Yonghan Jung, Shiva Prasad Kasiviswanathan, Jin Tian, Dominik Janzing, Patrick Blöbaum, Elias Bareinboim:
On Measuring Causal Contributions via do-interventions. ICML 2022: 10476-10501 - [c48]Yu-Guan Hsieh, Shiva Prasad Kasiviswanathan, Branislav Kveton:
Uplifting Bandits. NeurIPS 2022 - [c47]Jacob Imola, Shiva Prasad Kasiviswanathan, Stephen White, Abhinav Aggarwal, Nathanael Teissier:
Balancing utility and scalability in metric differential privacy. UAI 2022: 885-894 - [i24]Yu-Guan Hsieh, Shiva Prasad Kasiviswanathan, Branislav Kveton:
Uplifting Bandits. CoRR abs/2206.04091 (2022) - [i23]Aleksandr Podkopaev, Patrick Blöbaum, Shiva Prasad Kasiviswanathan, Aaditya Ramdas:
Sequential Kernelized Independence Testing. CoRR abs/2212.07383 (2022) - 2021
- [c46]Abhinav Aggarwal, Shiva Prasad Kasiviswanathan, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier:
Label Inference Attacks from Log-loss Scores. ICML 2021: 120-129 - [c45]Dmitrii Avdiukhin, Shiva Prasad Kasiviswanathan:
Federated Learning under Arbitrary Communication Patterns. ICML 2021: 425-435 - [c44]Raghavendra Addanki, Shiva Prasad Kasiviswanathan:
Collaborative Causal Discovery with Atomic Interventions. NeurIPS 2021: 12761-12773 - [c43]Shiva Prasad Kasiviswanathan:
SGD with low-dimensional gradients with applications to private and distributed learning. UAI 2021: 1905-1915 - [i22]Abhinav Aggarwal, Shiva Prasad Kasiviswanathan, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier:
Label Inference Attacks from Log-loss Scores. CoRR abs/2105.08266 (2021) - [i21]Raghavendra Addanki, Shiva Prasad Kasiviswanathan:
Collaborative Causal Discovery with Atomic Interventions. CoRR abs/2106.03028 (2021) - [i20]Abhinav Aggarwal, Shiva Prasad Kasiviswanathan, Zekun Xu, Oluwaseyi Feyisetan, Nathanael Teissier:
On Codomain Separability and Label Inference from (Noisy) Loss Functions. CoRR abs/2107.03022 (2021) - 2020
- [j11]Yu-Xiang Wang, Borja Balle, Shiva Prasad Kasiviswanathan:
Subsampled Rényi Differential Privacy and Analytical Moments Accountant. J. Priv. Confidentiality 10(2) (2020) - [c42]Shiyun Chen, Shiva Prasad Kasiviswanathan:
Contextual Online False Discovery Rate Control. AISTATS 2020: 952-961 - [c41]Raghavendra Addanki, Shiva Prasad Kasiviswanathan, Andrew McGregor, Cameron Musco:
Efficient Intervention Design for Causal Discovery with Latents. ICML 2020: 63-73 - [i19]Raghavendra Addanki, Shiva Prasad Kasiviswanathan, Andrew McGregor, Cameron Musco:
Efficient Intervention Design for Causal Discovery with Latents. CoRR abs/2005.11736 (2020)
2010 – 2019
- 2019
- [c40]Yu-Xiang Wang, Borja Balle, Shiva Prasad Kasiviswanathan:
Subsampled Renyi Differential Privacy and Analytical Moments Accountant. AISTATS 2019: 1226-1235 - [i18]Shiva Prasad Kasiviswanathan, Mark Rudelson:
Restricted Isometry Property under High Correlations. CoRR abs/1904.05510 (2019) - 2018
- [c39]Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, Toby Walsh:
Verifying Properties of Binarized Deep Neural Networks. AAAI 2018: 6615-6624 - [c38]Shiva Prasad Kasiviswanathan, Mark Rudelson:
Restricted Eigenvalue from Stable Rank with Applications to Sparse Linear Regression. COLT 2018: 1011-1041 - [c37]Tal Wagner, Sudipto Guha, Shiva Prasad Kasiviswanathan, Nina Mishra:
Semi-Supervised Learning on Data Streams via Temporal Label Propagation. ICML 2018: 5082-5091 - [c36]Shiva Prasad Kasiviswanathan, Nina Narodytska, Hongxia Jin:
Network Approximation using Tensor Sketching. IJCAI 2018: 2319-2325 - [i17]Yu-Xiang Wang, Borja Balle, Shiva Prasad Kasiviswanathan:
Subsampled Rényi Differential Privacy and Analytical Moments Accountant. CoRR abs/1808.00087 (2018) - 2017
- [c35]Nina Narodytska, Shiva Prasad Kasiviswanathan:
Simple Black-Box Adversarial Attacks on Deep Neural Networks. CVPR Workshops 2017: 1310-1318 - [c34]Shiva Prasad Kasiviswanathan, Kobbi Nissim, Hongxia Jin:
Private Incremental Regression. PODS 2017: 167-182 - [i16]Shiva Prasad Kasiviswanathan, Kobbi Nissim, Hongxia Jin:
Private Incremental Regression. CoRR abs/1701.01093 (2017) - [i15]Shiva Prasad Kasiviswanathan, Mark Rudelson:
Compressed Sparse Linear Regression. CoRR abs/1707.08092 (2017) - [i14]Nina Narodytska, Shiva Prasad Kasiviswanathan, Leonid Ryzhyk, Mooly Sagiv, Toby Walsh:
Verifying Properties of Binarized Deep Neural Networks. CoRR abs/1709.06662 (2017) - [i13]Shiva Prasad Kasiviswanathan, Nina Narodytska, Hongxia Jin:
Deep Neural Network Approximation using Tensor Sketching. CoRR abs/1710.07850 (2017) - 2016
- [c33]Rui Chen, Haoran Li, A. Kai Qin, Shiva Prasad Kasiviswanathan, Hongxia Jin:
Private spatial data aggregation in the local setting. ICDE 2016: 289-300 - [c32]Shinjae Yoo, Hao Huang, Shiva Prasad Kasiviswanathan:
Streaming spectral clustering. ICDE 2016: 637-648 - [c31]Shiva Prasad Kasiviswanathan, Hongxia Jin:
Efficient Private Empirical Risk Minimization for High-dimensional Learning. ICML 2016: 488-497 - [i12]Nina Narodytska, Shiva Prasad Kasiviswanathan:
Simple Black-Box Adversarial Perturbations for Deep Networks. CoRR abs/1612.06299 (2016) - 2015
- [j10]Hao Huang, Shiva Prasad Kasiviswanathan:
Streaming Anomaly Detection Using Randomized Matrix Sketching. Proc. VLDB Endow. 9(3): 192-203 (2015) - [c30]Shengping Zhang, Shiva Prasad Kasiviswanathan, Pong C. Yuen, Mehrtash Harandi:
Online Dictionary Learning on Symmetric Positive Definite Manifolds with Vision Applications. AAAI 2015: 3165-3173 - [c29]Shiva Prasad Kasiviswanathan, Mark Rudelson:
Spectral Norm of Random Kernel Matrices with Applications to Privacy. APPROX-RANDOM 2015: 898-914 - [c28]Hao Huang, Shinjae Yoo, Shiva Prasad Kasiviswanathan:
Unsupervised Feature Selection on Data Streams. CIKM 2015: 1031-1040 - [i11]Shiva Prasad Kasiviswanathan, Mark Rudelson:
Spectral Norm of Random Kernel Matrices with Applications to Privacy. CoRR abs/1504.05880 (2015) - 2014
- [j9]Martin Fürer, Shiva Prasad Kasiviswanathan:
Approximately Counting Embeddings into Random Graphs. Comb. Probab. Comput. 23(6): 1028-1056 (2014) - [j8]Shiva Prasad Kasiviswanathan, Adam D. Smith:
On the 'Semantics' of Differential Privacy: A Bayesian Formulation. J. Priv. Confidentiality 6(1) (2014) - [j7]Amos Beimel, Hai Brenner, Shiva Prasad Kasiviswanathan, Kobbi Nissim:
Bounds on the sample complexity for private learning and private data release. Mach. Learn. 94(3): 401-437 (2014) - 2013
- [j6]Shiva Prasad Kasiviswanathan, Gao Cong, Prem Melville, Richard D. Lawrence:
Novel document detection for massive data streams using distributed dictionary learning. IBM J. Res. Dev. 57(3/4): 9 (2013) - [j5]Martin Fürer, Serge Gaspers, Shiva Prasad Kasiviswanathan:
An exponential time 2-approximation algorithm for bandwidth. Theor. Comput. Sci. 511: 23-31 (2013) - [c27]Shiva Prasad Kasiviswanathan:
Fast online L1-dictionary learning algorithms for novel document detection. ICASSP 2013: 8585-8589 - [c26]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith:
The Power of Linear Reconstruction Attacks. SODA 2013: 1415-1433 - [c25]Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
Analyzing Graphs with Node Differential Privacy. TCC 2013: 457-476 - 2012
- [j4]Martin Fürer, Shiva Prasad Kasiviswanathan:
Spanners for geometric intersection graphs with applications. J. Comput. Geom. 3(1): 31-64 (2012) - [c24]Haim Avron, Satyen Kale, Shiva Prasad Kasiviswanathan, Vikas Sindhwani:
Efficient and Practical Stochastic Subgradient Descent for Nuclear Norm Regularization. ICML 2012 - [c23]Shiva Prasad Kasiviswanathan, Huahua Wang, Arindam Banerjee, Prem Melville:
Online L1-Dictionary Learning with Application to Novel Document Detection. NIPS 2012: 2267-2275 - [i10]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith:
The Power of Linear Reconstruction Attacks. CoRR abs/1210.2381 (2012) - 2011
- [j3]Shiva Prasad Kasiviswanathan, Bo Zhao, Sudarshan Vasudevan, Bhuvan Urgaonkar:
Bandwidth provisioning in infrastructure-based wireless networks employing directional antennas. Pervasive Mob. Comput. 7(1): 114-127 (2011) - [j2]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? SIAM J. Comput. 40(3): 793-826 (2011) - [c22]Shiva Prasad Kasiviswanathan, Prem Melville, Arindam Banerjee, Vikas Sindhwani:
Emerging topic detection using dictionary learning. CIKM 2011: 745-754 - [c21]Shiva Prasad Kasiviswanathan, Stephan J. Eidenbenz, Guanhua Yan:
Geography-based analysis of the Internet infrastructure. INFOCOM 2011: 131-135 - [c20]Feng Pan, Shiva Prasad Kasiviswanathan:
Efficient placement of directional antennas in infrastructure-based wireless networks. MILCOM 2011: 1796-1801 - [c19]Shiva Prasad Kasiviswanathan, Cristopher Moore, Louis Theran:
The Rigidity Transition in Random Graphs. SODA 2011: 1237-1252 - 2010
- [c18]Shiva Prasad Kasiviswanathan, Feng Pan:
Matrix Interdiction Problem. CPAIOR 2010: 219-231 - [c17]Shiva Prasad Kasiviswanathan, Bo Zhao, Sudarshan Vasudevan, Bhuvan Urgaonkar:
Bandwidth Provisioning in Infrastructure-Based Wireless Networks Employing Directional Antennas. ICDCN 2010: 295-306 - [c16]Sunil Thulasidasan, Shiva Prasad Kasiviswanathan, Stephan J. Eidenbenz, Philip Romero:
Explicit Spatial Scattering for Load Balancing in Conservatively Synchronized Parallel Discrete Event Simulations. PADS 2010: 150-157 - [c15]Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam D. Smith, Jonathan R. Ullman:
The price of privately releasing contingency tables and the spectra of random matrices with correlated rows. STOC 2010: 775-784 - [c14]Amos Beimel, Shiva Prasad Kasiviswanathan, Kobbi Nissim:
Bounds on the Sample Complexity for Private Learning and Private Data Release. TCC 2010: 437-454 - [i9]Shiva Prasad Kasiviswanathan, Cristopher Moore, Louis Theran:
The rigidity transition in random graphs. CoRR abs/1010.3605 (2010)
2000 – 2009
- 2009
- [c13]Sunil Thulasidasan, Shiva Prasad Kasiviswanathan, Stephan J. Eidenbenz, Emanuele Galli, Susan M. Mniszewski, Philip Romero:
Designing systems for large-scale, discrete-event simulations: Experiences with the FastTrans parallel microsimulator. HiPC 2009: 428-437 - [c12]Martin Fürer, Serge Gaspers, Shiva Prasad Kasiviswanathan:
An Exponential Time 2-Approximation Algorithm for Bandwidth. IWPEC 2009: 173-184 - [i8]Martin Fürer, Serge Gaspers, Shiva Prasad Kasiviswanathan:
An Exponential Time 2-Approximation Algorithm for Bandwidth. CoRR abs/0906.1953 (2009) - 2008
- [c11]Martin Fürer, Shiva Prasad Kasiviswanathan:
Approximately Counting Embeddings into Random Graphs. APPROX-RANDOM 2008: 416-429 - [c10]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? FOCS 2008: 531-540 - [c9]Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, Adam D. Smith:
Composition attacks and auxiliary information in data privacy. KDD 2008: 265-273 - [i7]Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, Adam D. Smith:
Composition Attacks and Auxiliary Information in Data Privacy. CoRR abs/0803.0032 (2008) - [i6]Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, Adam D. Smith:
What Can We Learn Privately? CoRR abs/0803.0924 (2008) - [i5]Shiva Prasad Kasiviswanathan, Adam D. Smith:
A Note on Differential Privacy: Defining Resistance to Arbitrary Side Information. CoRR abs/0803.3946 (2008) - [i4]Martin Fürer, Shiva Prasad Kasiviswanathan:
Approximately Counting Embeddings into Random Graphs. CoRR abs/0806.2287 (2008) - 2007
- [c8]Martin Fürer, Shiva Prasad Kasiviswanathan:
Algorithms for Counting 2-SatSolutions and Colorings with Applications. AAIM 2007: 47-57 - [c7]Martin Fürer, Shiva Prasad Kasiviswanathan:
Exact Max 2-Sat: Easier and Faster. SOFSEM (1) 2007: 272-283 - [c6]Piotr Berman, Jieun K. Jeong, Shiva Prasad Kasiviswanathan, Bhuvan Urgaonkar:
Packing to angles and sectors. SPAA 2007: 171-180 - [c5]Martin Fürer, Shiva Prasad Kasiviswanathan:
Spanners for Geometric Intersection Graphs. WADS 2007: 312-324 - [c4]Piotr Berman, Shiva Prasad Kasiviswanathan:
Faster Approximation of Distances in Graphs. WADS 2007: 541-552 - 2006
- [j1]Anders Hansson, Gabriel Istrate, Shiva Prasad Kasiviswanathan:
Combinatorics of TCP reordering. J. Comb. Optim. 12(1-2): 57-70 (2006) - [c3]Martin Fürer, Shiva Prasad Kasiviswanathan:
Approximate Distance Queries in Disk Graphs. WAOA 2006: 174-187 - [i3]Martin Fürer, Shiva Prasad Kasiviswanathan:
Spanners for Geometric Intersection Graphs. CoRR abs/cs/0605029 (2006) - [i2]Piotr Berman, Jieun K. Jeong, Shiva Prasad Kasiviswanathan, Bhuvan Urgaonkar:
Packing to angles and sectors. Electron. Colloquium Comput. Complex. TR06 (2006) - 2005
- [c2]Martin Fürer, Shiva Prasad Kasiviswanathan:
Approximately Counting Perfect Matchings in General Graphs. ALENEX/ANALCO 2005: 263-272 - [i1]Martin Fürer, Shiva Prasad Kasiviswanathan:
Algorithms for Counting 2-SAT Solutions and Colorings with Applications. Electron. Colloquium Comput. Complex. TR05 (2005) - 2004
- [c1]Martin Fürer, Shiva Prasad Kasiviswanathan:
An Almost Linear Time Approximation Algorithm for the Permanen of a Random (0-1) Matrix. FSTTCS 2004: 263-274
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-19 20:40 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint