default search action
Philip K. T. Mok
Person information
- affiliation: Hong Kong University of Science and Technology
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j68]Feng Chen, Yasu Lu, Philip K. T. Mok:
A Single-Controller-Four-Output Digital LDO With Priority-Time-Multiplexing Scheme and Clamping Loops in 65-nm CMOS. IEEE Trans. Circuits Syst. II Express Briefs 71(3): 1486-1490 (2024) - 2023
- [c77]Hon-Piu Lam, Wing-Hung Ki, Philip K. T. Mok:
4C 3-Level Hybrid Buck Converter for 12~48V-to-1V Point-of-Load Applications. CICC 2023: 1-2 - 2022
- [j67]Qin Kuai, Ho-Yin Leung, Qiping Wan, Philip K. T. Mok:
A High-Efficiency Dual-Polarity Thermoelectric Energy-Harvesting Interface Circuit With Cold Startup and Fast-Searching ZCD. IEEE J. Solid State Circuits 57(6): 1899-1912 (2022) - [j66]Di Luo, Yuan Gao, Philip K. T. Mok:
A GaN Driver for a Bi-Directional Buck/Boost Converter With Three-Level VGS Protection and Optimal-Point Tracking Dead-Time Control. IEEE Trans. Circuits Syst. I Regul. Pap. 69(5): 2212-2224 (2022) - [j65]Sijie Pan, Philip K. T. Mok:
A 25 MHz Fast Transient Adaptive-On/Off-Time Controlled Three-Level Buck Converter. IEEE Trans. Circuits Syst. I Regul. Pap. 69(6): 2601-2613 (2022) - [j64]Feng Chen, Yasu Lu, Philip K. T. Mok:
Transfer Function Analysis of the Power Supply Rejection Ratio of Low-Dropout Regulators and the Feed-Forward Ripple Cancellation Scheme. IEEE Trans. Circuits Syst. I Regul. Pap. 69(8): 3061-3073 (2022) - [j63]Xun Liu, Junmin Jiang, Cheng Huang, Philip K. T. Mok:
Design Techniques for High-Efficiency Envelope-Tracking Supply Modulator for 5th Generation Communication. IEEE Trans. Circuits Syst. II Express Briefs 69(6): 2586-2591 (2022) - [j62]Xun Liu, Junmin Jiang, Cheng Huang, Philip K. T. Mok:
Loop Analysis and Stability Considerations of Hybrid PA Supply Modulators. IEEE Trans. Circuits Syst. II Express Briefs 69(10): 4143-4147 (2022) - [c76]Xuliang Wang, Wing-Hung Ki, Philip K. T. Mok:
A 65-nm Clock-Domain-Crossing Controller for Digital LDO Regulator with 1.7-ns Response Time. APCCAS 2022: 284-288 - 2021
- [j61]Feng Chen, Yasu Lu, Philip K. T. Mok:
A Fast-Transient 500-mA Digitally Assisted Analog LDO With 30-μ V/mA Load Regulation and 0.0073-ps FoM in 65-nm CMOS. IEEE J. Solid State Circuits 56(2): 511-520 (2021) - [j60]Qin Kuai, Qiping Wan, Philip K. T. Mok:
A Dual-Frequency Thermal Energy Harvesting Interface With Real-Time-Calculation ZCD. IEEE J. Solid State Circuits 56(9): 2736-2747 (2021) - [j59]Junmin Jiang, Xun Liu, Wing-Hung Ki, Philip K. T. Mok, Yan Lu:
Circuit Techniques for High Efficiency Fully-Integrated Switched-Capacitor Converters. IEEE Trans. Circuits Syst. II Express Briefs 68(2): 556-561 (2021) - [j58]Kwun-Hok Chong, Yuan Gao, Philip K. T. Mok:
A Customized AC Hybrid LED Driver With Flicker Reduction for High Nominal Range Applications. IEEE Trans. Circuits Syst. II Express Briefs 68(5): 1635-1639 (2021) - 2020
- [j57]Yuan Gao, Lisong Li, Kwun-Hok Chong, Philip K. T. Mok:
A Hybrid LED Driver With Improved Efficiency. IEEE J. Solid State Circuits 55(8): 2129-2139 (2020) - [j56]Yasu Lu, Fan Yang, Feng Chen, Philip K. T. Mok:
A Distributed Power Delivery Grid Based on Analog-Assisted Digital LDOs With Cooperative Regulation and IR-Drop Reduction. IEEE Trans. Circuits Syst. I Regul. Pap. 67-I(8): 2859-2871 (2020) - [j55]Shimeng Wang, Philip K. T. Mok:
An 18-nA Ultra-Low-Current Resistor-Less Bandgap Reference for 2.8 V-4.5 V High Voltage Supply Li-Ion-Battery-Based LSIs. IEEE Trans. Circuits Syst. 67-II(11): 2382-2386 (2020) - [c75]Zhen Li, Zhiyuan Chen, Qiping Wan, Qin Kuai, Junrui Liang, Philip K. T. Mok, Xiaoyang Zeng:
An Energy Harvesting System with Reconfigurable Piezoelectric Energy Harvester Array for IoT Applications. ISCAS 2020: 1-5
2010 – 2019
- 2019
- [j54]Xun Liu, Heng Zhang, Philip K. T. Mok, Howard C. Luong:
A Multi-Loop-Controlled AC-Coupling Supply Modulator With a Mode-Switching CMOS PA in an EER System With Envelope Shaping. IEEE J. Solid State Circuits 54(6): 1553-1563 (2019) - [j53]Qiping Wan, Philip K. T. Mok:
A 14-nA, Highly Efficient Triple-Output Thermoelectric Energy Harvesting System Based on a Reconfigurable TEG Array. IEEE J. Solid State Circuits 54(6): 1720-1732 (2019) - [j52]Sijie Pan, Philip K. T. Mok:
A 10-MHz Hysteretic-Controlled Buck Converter With Single On/Off Reference Tracking Using Turning-Point Prediction for DVFS Application. IEEE Trans. Circuits Syst. I Regul. Pap. 66-I(11): 4502-4515 (2019) - [c74]Qin Kuai, Qiping Wan, Philip K. T. Mok:
A Dual-Frequency Dual-Input-Dual-Output Interface for Thermoelectric Energy Harvesting and Recycling With 82.9% Efficiency. ESSCIRC 2019: 137-140 - [c73]Yasu Lu, Feng Chen, Philip K. T. Mok:
A Single-Controller-Four-Output Analog-Assisted Digital LDO with Adaptive-Time-Multiplexing Control in 65-nm CMOS. ESSCIRC 2019: 289-292 - [c72]Feng Chen, Yasu Lu, Philip K. T. Mok:
Transfer Function Analysis of the Power Supply Rejection Ratio of Capacitor-Less LDOs. ISCAS 2019: 1-4 - [c71]Qin Kuai, Qiping Wan, Philip K. T. Mok:
An Auto-Polarity Thermoelectric Energy Harvesting Interface Based on a Boost/Buck-Boost Converter. ISCAS 2019: 1-4 - 2018
- [j51]Xun Liu, Cheng Huang, Philip K. T. Mok:
A High-Frequency Three-Level Buck Converter With Real-Time Calibration and Wide Output Range for Fast-DVS. IEEE J. Solid State Circuits 53(2): 582-595 (2018) - [j50]Lisong Li, Yuan Gao, Huaxing Jiang, Philip K. T. Mok, Kei May Lau:
An Auto-Zero-Voltage-Switching Quasi-Resonant LED Driver With GaN FETs and Fully Integrated LED Shunt Protectors. IEEE J. Solid State Circuits 53(3): 913-923 (2018) - [j49]Yuan Gao, Lisong Li, Philip K. T. Mok:
An AC Input Inductor-Less LED Driver for Efficient Lighting and Visible Light Communication. IEEE J. Solid State Circuits 53(8): 2343-2355 (2018) - [c70]Junmin Jiang, Yan Lu, Xun Liu, Wing-Hung Ki, Philip K. T. Mok, Seng-Pan U, Rui Paulo Martins:
A dual-output SC converter with dynamic power allocation for multicore application processors. ASP-DAC 2018: 285-286 - [c69]Qiping Wan, Philip K. T. Mok:
A 14 nA quiescent current inductorless dual-input-triple-output thermoelectric energy harvesting system based on a reconfigurable TEG array. CICC 2018: 1-4 - [c68]Yasu Lu, Fan Yang, Feng Chen, Philip K. T. Mok:
A 500mA analog-assisted digital-LDO-based on-chip distributed power delivery grid with cooperative regulation and IR-drop reduction in 65nm CMOS. ISSCC 2018: 310-312 - 2017
- [j48]Yuan Gao, Lisong Li, Philip K. T. Mok:
An AC Input Switching-Converter-Free LED Driver With Low-Frequency-Flicker Reduction. IEEE J. Solid State Circuits 52(5): 1424-1434 (2017) - [j47]Fan Yang, Philip K. T. Mok:
A Nanosecond-Transient Fine-Grained Digital LDO With Multi-Step Switching Scheme and Asynchronous Adaptive Pipeline Control. IEEE J. Solid State Circuits 52(9): 2463-2474 (2017) - [j46]Lin Cheng, Wing-Hung Ki, Fan Yang, Philip K. T. Mok, Xiaocheng Jing:
Predicting Subharmonic Oscillation of Voltage-Mode Switching Converters Using a Circuit-Oriented Geometrical Approach. IEEE Trans. Circuits Syst. I Regul. Pap. 64-I(3): 717-730 (2017) - [j45]Qiping Wan, Ying-Khai Teh, Yuan Gao, Philip K. T. Mok:
Analysis and Design of a Thermoelectric Energy Harvesting System With Reconfigurable Array of Thermoelectric Generators for IoT Applications. IEEE Trans. Circuits Syst. I Regul. Pap. 64-I(9): 2346-2358 (2017) - [c67]Xun Liu, Heng Zhang, Min Zhao, Xuan Chen, Philip K. T. Mok, Howard C. Luong:
2.4 A 2.4V 23.9dBm 35.7%-PAE -32.1dBc-ACLR LTE-20MHz envelope-shaping-and-tracking system with a multiloop-controlled AC-coupling supply modulator and a mode-switching PA. ISSCC 2017: 38-39 - [c66]Fan Yang, Philip K. T. Mok:
5.11 A 65nm inverter-based low-dropout regulator with rail-to-rail regulation and over -20dB PSR at 0.2V lowest supply voltage. ISSCC 2017: 106-107 - [c65]Yuan Gao, Lisong Li, Philip K. T. Mok:
22.8 An AC-input inductorless LED driver for visible-light-communication applications with 8Mb/s data-rate and 6.4% low-frequency flicker. ISSCC 2017: 384-385 - 2016
- [j44]Ying-Khai Teh, Philip K. T. Mok:
DTMOS-Based Pulse Transformer Boost Converter With Complementary Charge Pump for Multisource Energy Harvesting. IEEE Trans. Circuits Syst. II Express Briefs 63-II(5): 508-512 (2016) - [j43]Xun Liu, Philip K. T. Mok, Junmin Jiang, Wing-Hung Ki:
Analysis and Design Considerations of Integrated 3-Level Buck Converters. IEEE Trans. Circuits Syst. I Regul. Pap. 63-I(5): 671-682 (2016) - [c64]Fan Yang, Yasu Lu, Philip K. T. Mok:
A comparative analysis on binary and multiple-unary weighted power stage design for digital LDO. APCCAS 2016: 41-42 - [c63]Sijie Pan, Philip K. T. Mok:
A single on/off reference tracking buck converter using turning point prediction for DVFS application. APCCAS 2016: 95-98 - [c62]Xun Liu, Junmin Jiang, Philip K. T. Mok, Wing-Hung Ki:
Methods for measuring loop-gain function of high-frequency DC-DC converters. APCCAS 2016: 247-249 - [c61]Qiping Wan, Ying-Khai Teh, Philip K. T. Mok:
Analysis of a reconfigurable TEG array for high efficiency thermoelectric energy harvesting. APCCAS 2016: 662-665 - [c60]Yuan Gao, Lisong Li, Philip K. T. Mok:
An AC powered converter-free LED driver with low flicker. ASP-DAC 2016: 11-12 - [c59]Chen Zhang, Tianzhu Liang, Philip K. T. Mok, Weichuan Yu:
FPGA implementation of the coupled filtering method. BIBM 2016: 435-442 - [c58]Lisong Li, Yuan Gao, Philip K. T. Mok:
A more accurate steady state analysis of zero-voltage switching quasi-resonant converters. ISCAS 2016: 1606-1609 - [c57]Xun Liu, Cheng Huang, Philip K. T. Mok:
A 50MHz 5V 3W 90% efficiency 3-level buck converter with real-time calibration and wide output range for fast-DVS in 65nm CMOS. VLSI Circuits 2016: 1-2 - 2015
- [j42]Jungmoon Kim, Philip K. T. Mok, Chulwoo Kim:
A 0.15 V Input Energy Harvesting Charge Pump With Dynamic Body Biasing and Adaptive Dead-Time for Efficiency Improvement. IEEE J. Solid State Circuits 50(2): 414-425 (2015) - [j41]Cheng Huang, Philip K. T. Mok:
A Delay-Line-Based Voltage-to-Duty-Cycle Controller for High-Frequency PWM Switching Converters. IEEE Trans. Circuits Syst. II Express Briefs 62-II(8): 751-755 (2015) - [j40]Lisong Li, Yuan Gao, Philip K. T. Mok, I-Shan Michael Sun, Namkyu Park:
A 16-28-W 92.8%-Efficiency Monolithic Quasi-Resonant LED Driver With Constant-Duty-Ratio Frequency Regulator. IEEE Trans. Circuits Syst. II Express Briefs 62-II(12): 1199-1203 (2015) - [c56]Fan Yang, Philip K. T. Mok:
Fast-transient asynchronous digital LDO with load regulation enhancement by soft multi-step switching and adaptive timing techniques in 65-nm CMOS. CICC 2015: 1-4 - [c55]Ying-Khai Teh, Philip K. T. Mok:
Design consideration of recent advanced low-voltage CMOS boost converter for energy harvesting. ECCTD 2015: 1-4 - [c54]Fan Yang, Philip K. T. Mok:
A 0.6-1V input capacitor-less asynchronous digital LDO with fast transient response achieving 9.5b over 500mA loading range in 65-nm CMOS. ESSCIRC 2015: 180-183 - [c53]Xun Liu, Cheng Huang, Philip K. T. Mok:
Dynamic performance analysis of 3-level integrated buck converters. ISCAS 2015: 2093-2096 - [c52]Junmin Jiang, Yan Lu, Cheng Huang, Wing-Hung Ki, Philip K. T. Mok:
20.5 A 2-/3-phase fully integrated switched-capacitor DC-DC converter in bulk CMOS for energy-efficient digital circuits with 14% efficiency improvement. ISSCC 2015: 1-3 - [c51]Yuan Gao, Lisong Li, Philip K. T. Mok:
A 5.5W AC input converter-free LED driver with 82% low-frequency-flicker reduction, 88.2% efficiency and 0.92 power factor. VLSIC 2015: 286- - 2014
- [j39]Ying-Khai Teh, Philip K. T. Mok:
A Stacked Capacitor Multi-Microwatts Source Energy Harvesting Scheme With 86 mV Minimum Input Voltage and ${\pm}3$ V Bipolar Output Voltage. IEEE J. Emerg. Sel. Topics Circuits Syst. 4(3): 313-323 (2014) - [j38]Man Pun Chan, Philip K. T. Mok:
A Monolithic Digital Ripple-Based Adaptive-Off-Time DC-DC Converter With a Digital Inductor Current Sensor. IEEE J. Solid State Circuits 49(8): 1837-1847 (2014) - [j37]Ying-Khai Teh, Philip K. T. Mok:
Design of Transformer-Based Boost Converter for High Internal Resistance Energy Harvesting Sources With 21 mV Self-Startup Voltage and 74% Power Efficiency. IEEE J. Solid State Circuits 49(11): 2694-2704 (2014) - [c50]Ying-Khai Teh, Philip K. T. Mok:
A piezoelectric energy harvesting interface circuit using one-shot pulse transformer boost converter based on water bucket fountain strategy. ISCAS 2014: 1993-1996 - [c49]Fan Yang, Philip K. T. Mok:
Area-efficient capacitor-less LDR with enhanced transient response for SoC in 65-nm CMOS. ISCAS 2014: 2325-2328 - [c48]Jungmoon Kim, Philip K. T. Mok, Chulwoo Kim:
23.1 A 0.15V-input energy-harvesting charge pump with switching body biasing and adaptive dead-time for efficiency improvement. ISSCC 2014: 394-395 - [c47]Ying-Khai Teh, Philip K. T. Mok:
A bipolar output voltage pulse transformer boost converter with charge pump assisted shunt regulator for thermoelectric energy harvesting. MWSCAS 2014: 37-40 - [c46]Fan Yang, Philip K. T. Mok:
Switch-less adaptive feed-forward supply noise cancellation technique for capacitor-less LDR. MWSCAS 2014: 777-780 - 2013
- [j36]Xiaocheng Jing, Philip K. T. Mok:
A Fast Fixed-Frequency Adaptive-On-Time Boost Converter With Light Load Efficiency Enhancement and Predictable Noise Spectrum. IEEE J. Solid State Circuits 48(10): 2442-2456 (2013) - [j35]Cheng Huang, Philip K. T. Mok:
An 84.7% Efficiency 100-MHz Package Bondwire-Based Fully Integrated Buck Converter With Precise DCM Operation and Enhanced Light-Load Efficiency. IEEE J. Solid State Circuits 48(11): 2595-2607 (2013) - [j34]Cheng Huang, Philip K. T. Mok:
A 100 MHz 82.4% Efficiency Package-Bondwire Based Four-Phase Fully-Integrated Buck Converter With Flying Capacitor for Area Reduction. IEEE J. Solid State Circuits 48(12): 2977-2988 (2013) - [j33]Edward N. Y. Ho, Philip K. T. Mok:
Design of PWM Ramp Signal in Voltage-Mode CCM Random Switching Frequency Buck Converter for Conductive EMI Reduction. IEEE Trans. Circuits Syst. I Regul. Pap. 60-I(2): 505-515 (2013) - [j32]Man Pun Chan, Philip K. T. Mok:
On-Chip Digital Inductor Current Sensor for Monolithic Digitally Controlled DC-DC Converter. IEEE Trans. Circuits Syst. I Regul. Pap. 60-I(5): 1232-1240 (2013) - [j31]Xiaocheng Jing, Philip K. T. Mok:
Power Loss and Switching Noise Reduction Techniques for Single-Inductor Multiple-Output Regulator. IEEE Trans. Circuits Syst. I Regul. Pap. 60-I(10): 2788-2798 (2013) - [c45]Man Pun Chan, Philip K. T. Mok:
A monolithic digitally controlled ripple-based DC-DC converter with digital inductor current sensor. CICC 2013: 1-4 - [c44]Philip K. T. Mok:
Single-inductor-multiple-output DC-DC converter design. CICC 2013: 1-70 - [c43]Cheng Huang, Lin Cheng, Philip K. T. Mok, Wing-Hung Ki:
High-side NMOS power switch and bootstrap driver for high-frequency fully-integrated converters with enhanced efficiency. ISCAS 2013: 693-696 - [c42]Xiaohao Hu, Philip K. T. Mok:
Analysis and design of three-state controlled transition mode for a buck-boost converter with efficiency and stability enhancement. ISCAS 2013: 697-700 - [c41]Cheng Huang, Philip K. T. Mok:
An 82.4% efficiency package-bondwire-based four-phase fully integrated buck converter with flying capacitor for area reduction. ISSCC 2013: 362-363 - 2012
- [j30]Edward N. Y. Ho, Philip K. T. Mok:
Wide-Loading-Range Fully Integrated LDR With a Power-Supply Ripple Injection Filter. IEEE Trans. Circuits Syst. II Express Briefs 59-II(6): 356-360 (2012) - [c40]K. C. Kwong, Philip K. T. Mok, Mansun Chan:
Geometry based resistance model for phase change memory. ESSDERC 2012: 101-104 - [c39]Man Pun Chan, Philip K. T. Mok:
On-chip digital inductor current sensor for monolithic digitally controlled DC-DC Converters. ISCAS 2012: 962-965 - [c38]Xiaocheng Jing, Philip K. T. Mok, Cheng Huang, Fan Yang:
A 0.5V nanoWatt CMOS voltage reference with two high PSRR outputs. ISCAS 2012: 2837-2840 - [c37]Willy Sansen, Christian C. Enz, Boris Murmann, Philip K. T. Mok:
Low-power analog signal processing. ISSCC 2012: 518 - 2011
- [j29]Xiaocheng Jing, Philip K. T. Mok, Ming Chak Lee:
A Wide-Load-Range Constant-Charge-Auto-Hopping Control Single-Inductor-Dual-Output Boost Regulator With Minimized Cross-Regulation. IEEE J. Solid State Circuits 46(10): 2350-2362 (2011) - [j28]Man Pun Chan, Philip K. T. Mok:
Design and Implementation of Fully Integrated Digitally Controlled Current-Mode Buck Converter. IEEE Trans. Circuits Syst. I Regul. Pap. 58-I(8): 1980-1991 (2011) - [c36]Philip K. T. Mok:
High-efficient DC-DC converter design. CICC 2011: 1 - [c35]Edward N. Y. Ho, Philip K. T. Mok:
Design optimization of an output capacitor-less low dropout regulator with compensation capcitance reduction and slew-rate enhancement technique. ISCAS 2011: 53-56 - [c34]Ming Chak Lee, Xiaocheng Jing, Philip K. T. Mok:
A 14V-output adaptive-off-time boost converter with quasi-fixed-frequency in full loading range. ISCAS 2011: 233-236 - [c33]Xiaocheng Jing, Philip K. T. Mok:
Ultra-fast hysteretic single-inductor-dual-output boost regulator with predictable noise spectrum and minimized cross-regulation. ISCAS 2011: 297-300 - [c32]Cheng Huang, Philip K. T. Mok:
Cross-Regulation-Suppression control scheme for CCM Single-Inductor-Dual-Output buck converter with ordered-power-distributive control. ISCAS 2011: 1612-1615 - [c31]Xiaocheng Jing, Philip K. T. Mok, Ming Chak Lee:
Current-slope-controlled adaptive-on-time DC-DC converter with fixed frequency and fast transient response. ISCAS 2011: 1908-1911 - 2010
- [j27]Patrick Y. Wu, Sam Y. S. Tsui, Philip K. T. Mok:
Area- and Power-Efficient Monolithic Buck Converters With Pseudo-Type III Compensation. IEEE J. Solid State Circuits 45(8): 1446-1455 (2010) - [j26]Patrick Y. Wu, Philip K. T. Mok:
A Two-Phase Switching Hybrid Supply Modulator for RF Power Amplifiers With 9% Efficiency Improvement. IEEE J. Solid State Circuits 45(12): 2543-2556 (2010) - [j25]Edward N. Y. Ho, Philip K. T. Mok:
A Capacitor-Less CMOS Active Feedback Low-Dropout Regulator With Slew-Rate Enhancement for Portable On-Chip Application. IEEE Trans. Circuits Syst. II Express Briefs 57-II(2): 80-84 (2010) - [j24]Patrick Y. Wu, Philip K. T. Mok:
Comparative Studies of Common Fix-Frequency Controls for Reference Tracking and Enhancement by End-Point Prediction. IEEE Trans. Circuits Syst. I Regul. Pap. 57-I(11): 3023-3034 (2010) - [j23]Ka Nang Leung, Yuan Yen Mai, Philip K. T. Mok:
A Chip-Area Efficient Voltage Regulator for VLSI Systems. IEEE Trans. Very Large Scale Integr. Syst. 18(12): 1757-1762 (2010) - [c30]Man Pun Chan, Philip K. T. Mok:
A monolithic 2nd-order boundary controller for buck converter with fast transient response. APCCAS 2010: 468-471 - [c29]Edward N. Y. Ho, Philip K. T. Mok:
Ramp signal generation in Voltage mode CCM Random switching Frequency Buck converter for conductive EMI reduction. CICC 2010: 1-4 - [c28]Ying Wu, Philip K. T. Mok:
A two-phase switching hybrid supply modulator for polar transmitters with 9% efficiency improvement. ISSCC 2010: 196-197
2000 – 2009
- 2009
- [c27]Xiaocheng Jing, Philip K. T. Mok, Ming Chak Lee:
A wide-load-range single-inductor-dual-output boost regulator with minimized cross-regulation by constant-charge-auto-hopping (CCAH) control. CICC 2009: 299-302 - [c26]Ying Wu, Sam Y. S. Tsui, Philip K. T. Mok:
An area- and power-efficient monolithic Buck converter with fast transient response. CICC 2009: 307-310 - 2008
- [j22]Tsz Yin Man, Philip K. T. Mok, Mansun Chan:
A 0.9-V Input Discontinuous-Conduction-Mode Boost Converter With CMOS-Control Rectifier. IEEE J. Solid State Circuits 43(9): 2036-2046 (2008) - [j21]Tsz Yin Man, Ka Nang Leung, Chi Yat Leung, Philip K. T. Mok, Mansun Chan:
Development of Single-Transistor-Control LDO Based on Flipped Voltage Follower for SoC. IEEE Trans. Circuits Syst. I Regul. Pap. 55-I(5): 1392-1401 (2008) - [j20]Yuan Yen Mai, Philip K. T. Mok:
A Constant Frequency Output-Ripple-Voltage-Based Buck Converter Without Using Large ESR Capacitor. IEEE Trans. Circuits Syst. II Express Briefs 55-II(8): 748-752 (2008) - [c25]Tsz Yin Man, Philip K. T. Mok, Mansun Chan:
An Auto-Selectable-Frequency Pulse-Width Modulator for Buck Converters with Improved Light-Load Efficiency. ISSCC 2008: 440-441 - 2007
- [j19]Sai Kit Lau, Philip K. T. Mok, Ka Nang Leung:
A Low-Dropout Regulator for SoC With Q-Reduction. IEEE J. Solid State Circuits 42(3): 658-664 (2007) - [j18]Hoi Lee, Philip K. T. Mok:
An SC Voltage Doubler with Pseudo-Continuous Output Regulation Using a Three-Stage Switchable Opamp. IEEE J. Solid State Circuits 42(6): 1216-1229 (2007) - [j17]Patrick Y. Wu, Philip K. T. Mok:
A Monolithic Buck Converter With Near-Optimum Reference Tracking Response Using Adaptive-Output-Feedback. IEEE J. Solid State Circuits 42(11): 2441-2450 (2007) - [j16]Tsz Yin Man, Philip K. T. Mok, Mansun Chan:
A High Slew-Rate Push-Pull Output Amplifier for Low-Quiescent Current Low-Dropout Regulators With Transient-Response Improvement. IEEE Trans. Circuits Syst. II Express Briefs 54-II(9): 755-759 (2007) - [c24]Ying Wu, Philip K. T. Mok:
Comparative Studies of Common Control Schemes for Reference Tracking and Application of End-point Prediction. CICC 2007: 559-562 - 2006
- [j15]Man Siu, Philip K. T. Mok, Ka Nang Leung, Yat-Hei Lam, Wing-Hung Ki:
A voltage-mode PWM buck regulator with end-point prediction. IEEE Trans. Circuits Syst. II Express Briefs 53-II(4): 294-298 (2006) - [c23]Tsz Yin Man, Philip K. T. Mok, Mansun Chan:
A CMOS-Control Rectifier for DiscontinuousConduction Mode Switching DC-DC Converters. ISSCC 2006: 1408-1417 - 2005
- [j14]Hoi Lee, Philip K. T. Mok:
Switching noise and shoot-through current reduction techniques for switched-capacitor voltage doubler. IEEE J. Solid State Circuits 40(5): 1136-1146 (2005) - [j13]Chi Yat Leung, Philip K. T. Mok, Ka Nang Leung:
A 1-V integrated current-mode boost converter in standard 3.3/5-V CMOS technologies. IEEE J. Solid State Circuits 40(11): 2265-2274 (2005) - [j12]Chi Yat Leung, Philip K. T. Mok, Ka Nang Leung, Mansun Chan:
An integrated CMOS current-sensing circuit for low-Voltage current-mode buck regulator. IEEE Trans. Circuits Syst. II Express Briefs 52-II(7): 394-397 (2005) - [j11]Hoi Lee, Philip K. T. Mok, Ka Nang Leung:
Design of low-power analog drivers based on slew-rate enhancement circuits for CMOS low-dropout regulators. IEEE Trans. Circuits Syst. II Express Briefs 52-II(9): 563-567 (2005) - 2004
- [j10]Cheung Fai Lee, Philip K. T. Mok:
A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique. IEEE J. Solid State Circuits 39(1): 3-14 (2004) - [j9]Hoi Lee, Philip K. T. Mok:
Advances in active-feedback frequency compensation with power optimization and transient improvement. IEEE Trans. Circuits Syst. I Regul. Pap. 51-I(9): 1690-1696 (2004) - [c22]Philip K. T. Mok, Ka Nang Leung:
Design considerations of recent advanced low-voltage low-temperature-coefficient CMOS bandgap voltage reference. CICC 2004: 635-642 - [c21]Chi Yat Leung, Ka Nang Leung, Philip K. T. Mok:
Design of a 1.5-V high-order curvature-compensated CMOS bandgap reference. ISCAS (1) 2004: 48-52 - [c20]Ka Nang Leung, Philip K. T. Mok, Sai Kit Lau:
A low-voltage CMOS low-dropout regulator with enhanced loop response. ISCAS (1) 2004: 385-388 - [c19]Chi Yat Leung, Philip K. T. Mok, Ka Nang Leung:
A 1.2V buck converter with a novel on-chip low-voltage current-sensing scheme. ISCAS (5) 2004: 824-827 - 2003
- [j8]Dongsheng Ma, Wing-Hung Ki, Chi-Ying Tsui, Philip K. T. Mok:
Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode. IEEE J. Solid State Circuits 38(1): 89-100 (2003) - [j7]Ka Nang Leung, Philip K. T. Mok:
A CMOS voltage reference based on weighted ΔVGS for CMOS low-dropout linear regulators. IEEE J. Solid State Circuits 38(1): 146-150 (2003) - [j6]Hoi Lee, Philip K. T. Mok:
Active-feedback frequency-compensation technique for low-power multistage amplifiers. IEEE J. Solid State Circuits 38(3): 511-520 (2003) - [j5]Ka Nang Leung, Philip K. T. Mok, Chi Yat Leung:
A 2-V 23-μA 5.3-ppm/°C curvature-compensated CMOS bandgap voltage reference. IEEE J. Solid State Circuits 38(3): 561-564 (2003) - [j4]Ka Nang Leung, Philip K. T. Mok:
A capacitor-free CMOS low-dropout regulator with damping-factor-control frequency compensation. IEEE J. Solid State Circuits 38(10): 1691-1702 (2003) - [j3]Hoi Lee, Ka Nang Leung, Philip K. T. Mok:
A dual-path bandwidth extension amplifier topology with dual-loop parallel compensation. IEEE J. Solid State Circuits 38(10): 1739-1744 (2003) - [c18]Hoi Lee, Philip K. T. Mok:
Switching noise reduction techniques for switched-capacitor voltage doubler. CICC 2003: 693-696 - [c17]Yat-Hei Lam, Wing-Hung Ki, Chi-Ying Tsui, Philip K. T. Mok:
Single-inductor dual-input dual-output switching converter for integrated battery charging and power regulation. ISCAS (3) 2003: 447-450 - [c16]Xibo Zhang, Philip K. T. Mok, Mansun Chan, Ping K. Ko:
Large-signal and phase noise performance analysis of active inductor tunable oscillators. ISCAS (1) 2003: 705-708 - 2002
- [j2]Ka Nang Leung, Philip K. T. Mok:
A sub-1-V 15-ppm/°C CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J. Solid State Circuits 37(4): 526-530 (2002) - [c15]Hoi Lee, Philip K. T. Mok:
Active-feedback frequency compensation for low-power multi-stage amplifiers. CICC 2002: 325-328 - [c14]Ka Nang Leung, Philip K. T. Mok, Chi Yat Leung:
A 2-V 23-μA 5.3-ppm/°C 4th-order curvature-compensated CMOS bandgap reference. CICC 2002: 457-460 - [c13]Cheung Fai Lee, Philip K. T. Mok:
On-chip current sensing technique for CMOS monolithic switch-mode power converters. ISCAS (5) 2002: 265-268 - [c12]Ka Chun Kwok, Philip K. T. Mok:
Pole-zero tracking frequency compensation for low dropout regulator. ISCAS (4) 2002: 735-738 - 2001
- [c11]Dongsheng Ma, Wing-Hung Ki, Chi-Ying Tsui, Philip K. T. Mok:
A single-inductor dual-output integrated DC/DC boost converter for variable voltage scheduling. ASP-DAC 2001: 19-20 - [c10]Chun Lai Yiu, Philip K. T. Mok:
Design of polysilicon TFT operational amplifier for analog TFT AMLCD driver. ICECS 2001: 317-320 - [c9]Hoi Lee, Philip K. T. Mok:
A CMOS current-mirror amplifier with compact slew rate enhancement circuit for large capacitive load applications. ISCAS (1) 2001: 220-223 - [c8]Wei Chen, Wing-Hung Ki, Philip K. T. Mok, Mansun Chan:
Switched-capacitor power converters with integrated low dropout regulators. ISCAS (3) 2001: 293-296 - [c7]Dongsheng Ma, Wing-Hung Ki, Philip K. T. Mok, Chi-Ying Tsui:
Single-inductor multiple-output switching converters with bipolar outputs. ISCAS (3) 2001: 301-304 - 2000
- [j1]Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki, Johnny K. O. Sin:
Three-stage large capacitive load amplifier with damping-factor-control frequency compensation. IEEE J. Solid State Circuits 35(2): 221-230 (2000) - [c6]Hoi Lee, Philip K. T. Mok, Wing-Hung Ki:
A novel voltage-control scheme for low-voltage DC-DC converters with fast transient recovery. ISCAS 2000: 256-259 - [c5]Wilson W. S. Chan, Philip K. T. Mok, Alex T. K. Ng, Wing-Hung Ki, Johnny K. O. Sin:
IC controller for phase-controlled dimmable compact fluorescent lamps with closed-loop control. ISCAS 2000: 503-506 - [c4]Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki, Johnny K. O. Sin:
Analysis on an alternative structure of damping-factor-control frequency compensation. ISCAS 2000: 545-548
1990 – 1999
- 1999
- [c3]Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki:
Right-half-plane zero removal technique for low-voltage low-power nested Miller compensation CMOS amplifier. ICECS 1999: 599-602 - [c2]Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki:
A novel frequency compensation technique for low-voltage low-dropout regulator. ISCAS (5) 1999: 102-105 - [c1]Ka Nang Leung, Philip K. T. Mok, Wing-Hung Ki:
Optimum nested Miller compensation for low-voltage low-power CMOS amplifier design. ISCAS (2) 1999: 616-619
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-08-05 20:22 CEST by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint