default search action
William Schuler
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [c73]Christian Clark, William Schuler:
Categorial Grammar Induction with Stochastic Category Selection. LREC/COLING 2024: 2893-2900 - [c72]Byung-Doh Oh, Shisen Yue, William Schuler:
Frequency Explains the Inverse Correlation of Large Language Models' Size, Training Data Amount, and Surprisal's Fit to Reading Times. EACL (1) 2024: 2644-2663 - [c71]Byung-Doh Oh, William Schuler:
Leading Whitespaces of Language Models' Subword Vocabulary Pose a Confound for Calculating Word Probabilities. EMNLP 2024: 3464-3472 - [i14]Byung-Doh Oh, Shisen Yue, William Schuler:
Frequency Explains the Inverse Correlation of Large Language Models' Size, Training Data Amount, and Surprisal's Fit to Reading Times. CoRR abs/2402.02255 (2024) - [i13]Byung-Doh Oh, William Schuler:
Leading Whitespaces of Language Models' Subword Vocabulary Poses a Confound for Calculating Word Probabilities. CoRR abs/2406.10851 (2024) - [i12]Christian Clark, Byung-Doh Oh, William Schuler:
Linear Recency Bias During Training Improves Transformers' Fit to Reading Times. CoRR abs/2409.11250 (2024) - 2023
- [j7]Byung-Doh Oh, William Schuler:
Why Does Surprisal From Larger Transformer-Based Language Models Provide a Poorer Fit to Human Reading Times? Trans. Assoc. Comput. Linguistics 11: 336-350 (2023) - [c70]Christian Clark, William Schuler:
Categorial grammar induction from raw data. ACL (Findings) 2023: 2368-2379 - [c69]Byung-Doh Oh, William Schuler:
Token-wise Decomposition of Autoregressive Language Model Hidden States for Analyzing Model Predictions. ACL (1) 2023: 10105-10117 - [c68]Byung-Doh Oh, William Schuler:
Transformer-Based Language Model Surprisal Predicts Human Reading Times Best with About Two Billion Training Tokens. EMNLP (Findings) 2023: 1915-1921 - [c67]Pulkit Arya, Madeleine Bloomquist, Subhankar Chakraborty, Andrew Perrault, William Schuler, Eric Fosler-Lussier, Michael White:
Bootstrapping a Conversational Guide for Colonoscopy Prep. SIGDIAL 2023: 413-420 - [i11]Byung-Doh Oh, William Schuler:
Transformer-Based LM Surprisal Predicts Human Reading Times Best with About Two Billion Training Tokens. CoRR abs/2304.11389 (2023) - [i10]Byung-Doh Oh, William Schuler:
Token-wise Decomposition of Autoregressive Language Model Hidden States for Analyzing Model Predictions. CoRR abs/2305.10614 (2023) - 2022
- [j6]Byung-Doh Oh, Christian Clark, William Schuler:
Comparison of Structural Parsers and Neural Language Models as Surprisal Estimators. Frontiers Artif. Intell. 5: 777963 (2022) - [c66]Byung-Doh Oh, William Schuler:
Entropy- and Distance-Based Predictors From GPT-2 Attention Patterns Predict Reading Times Over and Above GPT-2 Surprisal. EMNLP 2022: 9324-9334 - [i9]Cory Shain, William Schuler:
A Deep Learning Approach to Analyzing Continuous-Time Systems. CoRR abs/2209.12128 (2022) - [i8]Byung-Doh Oh, William Schuler:
Entropy- and Distance-Based Predictors From GPT-2 Attention Patterns Predict Reading Times Over and Above GPT-2 Surprisal. CoRR abs/2212.11185 (2022) - [i7]Byung-Doh Oh, William Schuler:
Why Does Surprisal From Larger Transformer-Based Language Models Provide a Poorer Fit to Human Reading Times? CoRR abs/2212.12131 (2022) - 2021
- [j5]Lifeng Jin, Lane Schwartz, Finale Doshi-Velez, Timothy A. Miller, William Schuler:
Depth-Bounded Statistical PCFG Induction as a Model of Human Grammar Acquisition. Comput. Linguistics 47(1): 181-216 (2021) - [c65]Byung-Doh Oh, Christian Clark, William Schuler:
Surprisal Estimators for Human Reading Times Need Character Models. ACL/IJCNLP (1) 2021: 3746-3757 - [c64]Byung-Doh Oh, William Schuler:
Contributions of Propositional Content and Syntactic Category Information in Sentence Processing. CMLS 2021: 241-250 - [c63]Evan Jaffe, Byung-Doh Oh, William Schuler:
Coreference-aware Surprisal Predicts Brain Response. EMNLP (Findings) 2021: 3351-3356 - [c62]Lifeng Jin, Byung-Doh Oh, William Schuler:
Character-based PCFG Induction for Modeling the Syntactic Acquisition of Morphologically Rich Languages. EMNLP (Findings) 2021: 4367-4378 - 2020
- [c61]Evan Jaffe, Cory Shain, William Schuler:
Coreference information guides human expectations during natural reading. COLING 2020: 4587-4599 - [c60]Lifeng Jin, William Schuler:
Grounded PCFG Induction with Images. AACL/IJCNLP 2020: 396-408 - [c59]Lifeng Jin, William Schuler:
Memory-bounded Neural Incremental Parsing for Psycholinguistic Prediction. IWPT 2020 2020: 48-61 - [c58]Lifeng Jin, William Schuler:
The Importance of Category Labels in Grammar Induction with Child-directed Utterances. IWPT 2020 2020: 145-150 - [c57]Nathan Rasmussen, William Schuler:
A Corpus of Encyclopedia Articles with Logical Forms. LREC 2020: 1051-1060 - [i6]Lifeng Jin, William Schuler:
The Importance of Category Labels in Grammar Induction with Child-directed Utterances. CoRR abs/2006.11646 (2020)
2010 – 2019
- 2019
- [c56]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, Lane Schwartz, William Schuler:
Unsupervised Learning of PCFGs with Normalizing Flow. ACL (1) 2019: 2442-2452 - [c55]Lifeng Jin, William Schuler:
Variance of Average Surprisal: A Better Predictor for Quality of Grammar from Unsupervised PCFG Induction. ACL (1) 2019: 2453-2463 - 2018
- [j4]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Unsupervised Grammar Induction with Depth-bounded PCFG. Trans. Assoc. Comput. Linguistics 6: 211-224 (2018) - [c54]Evan Jaffe, Cory Shain, William Schuler:
Coreference and Focus in Reading Times. CMCL 2018: 1-9 - [c53]Cory Shain, William Schuler:
Deconvolutional time series regression: A technique for modeling temporally diffuse effects. EMNLP 2018: 2679-2689 - [c52]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Depth-bounding is effective: Improvements and Evaluation of Unsupervised PCFG Induction. EMNLP 2018: 2721-2731 - [c51]Manjuan Duan, William Schuler:
Test Sets for Chinese Nonlocal Dependency Parsing. LREC 2018 - [i5]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Unsupervised Grammar Induction with Depth-bounded PCFG. CoRR abs/1802.08545 (2018) - [i4]Lifeng Jin, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Depth-bounding is effective: Improvements and evaluation of unsupervised PCFG induction. CoRR abs/1809.03112 (2018) - 2017
- [c50]Marten van Schijndel, William Schuler:
Approximations of Predictive Entropy Correlate with Reading Times. CogSci 2017 - [e1]Ted Gibson, Tal Linzen, Asad B. Sayeed, Marten van Schijndel, William Schuler:
Proceedings of the 7th Workshop on Cognitive Modeling and Computational Linguistics, CMCL@EACL 2017, Valencia, Spain, April 3, 2017. Association for Computational Linguistics 2017, ISBN 978-1-945626-38-8 [contents] - 2016
- [c49]Marten van Schijndel, William Schuler:
Addressing surprisal deficiencies in reading time models. CL4LC@COLING 2016 2016: 32-37 - [c48]Cory Shain, Marten van Schijndel, Richard Futrell, Edward Gibson, William Schuler:
Memory access during incremental sentence processing causes reading time latency. CL4LC@COLING 2016 2016: 49-58 - [c47]Cory Shain, William Bryce, Lifeng Jin, Victoria Krakovna, Finale Doshi-Velez, Timothy A. Miller, William Schuler, Lane Schwartz:
Memory-Bounded Left-Corner Unsupervised Grammar Induction on Child-Directed Input. COLING 2016: 964-975 - [c46]Lifeng Jin, Manjuan Duan, William Schuler:
OCLSP at SemEval-2016 Task 9: Multilayered LSTM as a Neural Semantic Dependency Parser. SemEval@NAACL-HLT 2016: 1212-1217 - [c45]Manjuan Duan, Lifeng Jin, William Schuler:
OSU_CHGCG at SemEval-2016 Task 9 : Chinese Semantic Dependency Parsing with Generalized Categorial Grammar. SemEval@NAACL-HLT 2016: 1218-1224 - 2015
- [c44]Marten van Schijndel, Brian Murphy, William Schuler:
Evidence of syntactic working memory usage in MEG data. CMCL@NAACL-HLT 2015: 79-88 - [c43]Evan Jaffe, Michael White, William Schuler, Eric Fosler-Lussier, Alex Rosenfeld, Douglas Danforth:
Interpreting Questions with a Log-Linear Ranking Model in a Virtual Patient Dialogue System. BEA@NAACL-HLT 2015: 86-96 - [c42]Lifeng Jin, William Schuler:
A Comparison of Word Similarity Performance Using Explanatory and Non-explanatory Texts. HLT-NAACL 2015: 990-994 - [c41]Marten van Schijndel, William Schuler:
Hierarchic syntax improves reading time prediction. HLT-NAACL 2015: 1597-1605 - 2014
- [c40]William Schuler:
Sentence Processing in a Vectorial Model of Working Memory. CMCL@ACL 2014: 19-27 - [c39]Marten van Schijndel, William Schuler, Peter W. Culicover:
Frequency effects in the processing of unbounded dependencies. CogSci 2014 - [c38]William Schuler, Adam Wheeler:
Cognitive Compositional Semantics using Continuation Dependencies. *SEM@COLING 2014 - 2013
- [j3]Marten van Schijndel, Andrew Exley, William Schuler:
A Model of Language Processing as Hierarchic Sequential Prediction. Top. Cogn. Sci. 5(3): 522-540 (2013) - [c37]Marten van Schijndel, Luan Nguyen, William Schuler:
An Analysis of Memory-based Processing Costs using Incremental Deep Syntactic Dependency Parsing. CMCL 2013: 37-46 - [c36]Marten van Schijndel, William Schuler:
An Analysis of Frequency- and Memory-Based Processing Costs. HLT-NAACL 2013: 95-105 - 2012
- [c35]Marten van Schijndel, Andrew Exley, William Schuler:
Connectionist-Inspired Incremental PCFG Parsing. CMCL@NAACL-HLT 2012: 51-60 - [c34]Luan Nguyen, Marten van Schijndel, William Schuler:
Accurate Unbounded Dependency Recovery using Generalized Categorial Grammars. COLING 2012: 2125-2140 - 2011
- [c33]Lane Schwartz, Chris Callison-Burch, William Schuler, Stephen T. Wu:
Incremental Syntactic Language Models for Phrase-based Translation. ACL 2011: 620-631 - [c32]Dingcheng Li, Timothy A. Miller, William Schuler:
A Pronoun Anaphora Resolution System based on Factorial Hidden Markov Models. ACL 2011: 1169-1178 - [c31]William Schuler:
Effects of Filler-gap Dependencies Working Memory Requirements for Parsing. CogSci 2011 - [c30]Stephen T. Wu, William Schuler:
Structured Composition of Semantic Vectors. IWCS 2011 - [c29]William Schuler, Aravind K. Joshi:
Tree-Rewriting Models of Multi-Word Expressions. MWE@ACL 2011: 25-30 - 2010
- [j2]William Schuler, Samir AbdelRahman, Timothy A. Miller, Lane Schwartz:
Broad-Coverage Parsing Using Human-Like Memory Constraints. Comput. Linguistics 36(1): 1-30 (2010) - [c28]Stephen T. Wu, Asaf Bachrach, Carlos Cardenas, William Schuler:
Complexity Metrics in an Incremental Right-Corner Parser. ACL 2010: 1189-1198 - [c27]Timothy A. Miller, William Schuler:
HHMM Parsing with Limited Parallelism. CMCL@ACL 2010: 27-35 - [c26]William Schuler:
Incremental Parsing in Bounded Memory. TAG 2010: 1-8
2000 – 2009
- 2009
- [j1]William Schuler, Stephen T. Wu, Lane Schwartz:
A Framework for Fast Incremental Interpretation during Speech Decoding. Comput. Linguistics 35(3): 313-343 (2009) - [c25]Timothy A. Miller, Luan Nguyen, William Schuler:
Parsing Speech Repair without Specialized Grammar Symbols. ACL/IJCNLP (2) 2009: 277-280 - [c24]Lane Schwartz, Luan Nguyen, Andrew Exley, William Schuler:
Positive effects of redundant descriptions in an interactive semantic speech interface. IUI 2009: 217-226 - [c23]William Schuler:
Positive Results for Parsing with a Bounded Stack using a Model-Based Right-Corner Transform. HLT-NAACL 2009: 344-352 - 2008
- [c22]Timothy A. Miller, William Schuler:
A Unified Syntactic Model for Parsing Fluent and Disfluent Speech. ACL (2) 2008: 105-108 - [c21]Timothy A. Miller, William Schuler:
A Syntactic Time-Series Model for Parsing Fluent and Disfluent Speech. COLING 2008: 569-576 - [c20]William Schuler, Samir AbdelRahman, Timothy A. Miller, Lane Schwartz:
Toward a Psycholinguistically-Motivated Model of Language Processing. COLING 2008: 785-792 - [c19]Stephen T. Wu, Lane Schwartz, William Schuler:
Referential semantic language modeling for data-poor domains. ICASSP 2008: 5085-5088 - [c18]Stephen T. Wu, Lane Schwartz, William Schuler:
Exploiting referential context in spoken language interfaces for data-poor domains. IUI 2008: 285-292 - 2007
- [c17]Timothy A. Miller, Andrew Exley, William Schuler:
Elements of a spoken language programming interface for robots. HRI 2007: 231-237 - 2006
- [c16]William Schuler, Timothy A. Miller, Stephen T. Wu, Andrew Exley:
Dynamic evidence models in a DBN phone recognizer. INTERSPEECH 2006 - 2005
- [c15]Shana Watters, Brian McInnes, David McKoskey, Timothy A. Miller, Daniel Boley, Maria L. Gini, William Schuler, A. Polukeyeva, Jeanette K. Gundel, Sergey V. Pakhomov, Guergana Savova:
Using Volunteers to Annotate Biomedical Corpora for Anaphora Resolution. AAAI Spring Symposium: Knowledge Collection from Volunteer Contributors 2005: 117- - [c14]Shana Watters, Timothy A. Miller, Praveen Balachandran, William Schuler, Richard M. Voyles:
Exploiting a sensed environment to improve human-agent communication. AAMAS 2005: 44-50 - [c13]William Schuler, Timothy A. Miller:
Integrating denotational meaning into a DBN language model. INTERSPEECH 2005: 901-904 - 2003
- [c12]William Schuler:
Using Model-Theoretic Semantic Interpretation to Guide Statistical Parsing and Word Recognition in a Spoken Language Interface. ACL 2003: 529-536 - 2002
- [c11]Jan M. Allbeck, Karin Kipper, Charles Adams, William Schuler, Elena Zoubanova, Norman I. Badler, Martha Stone Palmer, Aravind K. Joshi:
ACUMEN: amplifying control and understanding of multiple entities. AAMAS 2002: 191-198 - [c10]William Schuler:
Interleaved Semantic Interpretation in Environment-based Parsing. COLING 2002 - [i3]William Schuler:
Interleaved semantic interpretation in environment-based parsing. CoRR cs.CL/0206026 (2002) - 2001
- [c9]William Schuler:
Computational Properties of Environment-based Disambiguation. ACL 2001: 466-473 - [i2]William Schuler:
Computational properties of environment-based disambiguation. CoRR cs.CL/0106011 (2001) - 2000
- [c8]William Schuler, David Chiang, Mark Dras:
Multi-Component TAG and Notions of Formal Power. ACL 2000: 448-455 - [c7]Rama Bindiganavale, William Schuler, Jan M. Allbeck, Norman I. Badler, Aravind K. Joshi, Martha Stone Palmer:
Dynamically altering agent behaviors using natural language instructions. Agents 2000: 293-300 - [c6]Liwei Zhao, Karin Kipper, William Schuler, Christian Vogler, Norman I. Badler, Martha Stone Palmer:
A Machine Translation System from English to American Sign Language. AMTA 2000: 54-67 - [c5]David Chiang, William Schuler, Mark Dras:
Some remarks on an extension of synchronous TAG. TAG+ 2000: 61-66 - [c4]Karin Kipper, Hoa Trang Dang, William Schuler, Martha Palmer:
Building a class-based verb lexicon using TAGs. TAG+ 2000: 147-154
1990 – 1999
- 1999
- [c3]William Schuler:
Preserving Semantic Dependencies in Synchronous Tree Adjoining Grammar. ACL 1999: 88-95 - 1998
- [c2]Giorgio Satta, William Schuler:
Restrictions on Tree Adjoining Languages. COLING-ACL 1998: 1176-1182 - [c1]William Schuler:
Exploiting semantic dependencies in parsing. TAG+ 1998: 155-158 - [i1]Giorgio Satta, William Schuler:
Restrictions on Tree Adjoining Languages. CoRR cs.CL/9810015 (1998)
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-15 19:32 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint