default search action
Mirko Polato
Person information
Refine list
refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2025
- [j12]Luca Bergamin, Mirko Polato, Fabio Aiolli:
Improving rule-based classifiers by Bayes point aggregation. Neurocomputing 613: 128699 (2025) - 2024
- [j11]Alessia Antelmi, Gennaro Cordasco, Mirko Polato, Vittorio Scarano, Carmine Spagnuolo, Dingqi Yang:
A Survey on Hypergraph Representation Learning. ACM Comput. Surv. 56(1): 24:1-24:38 (2024) - [c32]Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, Kijung Shin:
A Survey on Hypergraph Neural Networks: An In-Depth and Step-By-Step Guide. KDD 2024: 6534-6544 - [i10]Sunwoo Kim, Soo Yong Lee, Yue Gao, Alessia Antelmi, Mirko Polato, Kijung Shin:
A Survey on Hypergraph Neural Networks: An In-Depth and Step-By-Step Guide. CoRR abs/2404.01039 (2024) - 2023
- [c31]Gianluca Mittone, Nicolò Tonci, Robert Birke, Iacopo Colonnelli, Doriana Medic, Andrea Bartolini, Roberto Esposito, Emanuele Parisi, Francesco Beneventi, Mirko Polato, Massimo Torquati, Luca Benini, Marco Aldinucci:
Experimenting with Emerging RISC-V Systems for Decentralised Machine Learning. CF 2023: 73-83 - [c30]Roberto Esposito, Mirko Polato, Marco Aldinucci:
Boosting Methods for Federated Learning. SEBD 2023: 439-448 - [c29]Mirko Polato, Roberto Esposito, Walter Riviera, Zenglin Xu, Irwin King:
1st Workshop on Federated Learning Technologies. WWW (Companion Volume) 2023: 1150 - [i9]Gianluca Mittone, Nicolò Tonci, Robert Birke, Iacopo Colonnelli, Doriana Medic, Andrea Bartolini, Roberto Esposito, Emanuele Parisi, Francesco Beneventi, Mirko Polato, Massimo Torquati, Luca Benini, Marco Aldinucci:
Experimenting with Emerging ARM and RISC-V Systems for Decentralised Machine Learning. CoRR abs/2302.07946 (2023) - 2022
- [j10]Mirko Polato, Guglielmo Faggioli, Fabio Aiolli:
PRL: A game theoretic large margin method for interpretable feature learning. Neurocomputing 479: 106-120 (2022) - [j9]Fabio Aiolli, Mauro Conti, Stjepan Picek, Mirko Polato:
On the feasibility of crawling-based attacks against recommender systems. J. Comput. Secur. 30(4): 599-621 (2022) - [j8]Valentina Fietta, Francesca Zecchinato, Brigida Di Stasi, Mirko Polato, Merylin Monaro:
Dissociation Between Users' Explicit and Implicit Attitudes Toward Artificial Intelligence: An Experimental Study. IEEE Trans. Hum. Mach. Syst. 52(3): 481-489 (2022) - [c28]Mirko Polato, Fabio Aiolli, Luca Bergamin, Tommaso Carraro:
Bayes Point Rule Set Learning. ESANN 2022 - [c27]Tommaso Carraro, Mirko Polato, Luca Bergamin, Fabio Aiolli:
Conditioned Variational Autoencoder for Top-N Item Recommendation. ICANN (2) 2022: 785-796 - [c26]Luca Bergamin, Tommaso Carraro, Mirko Polato, Fabio Aiolli:
Novel Applications for VAE-based Anomaly Detection Systems. IJCNN 2022: 1-8 - [c25]Mirko Polato, Roberto Esposito, Marco Aldinucci:
Boosting the Federation: Cross-Silo Federated Learning without Gradient Descent. IJCNN 2022: 1-10 - [i8]Fabio Aiolli, Luca Bergamin, Tommaso Carraro, Mirko Polato:
Bayes Point Rule Set Learning. CoRR abs/2204.05251 (2022) - [i7]Luca Bergamin, Tommaso Carraro, Mirko Polato, Fabio Aiolli:
Novel Applications for VAE-based Anomaly Detection Systems. CoRR abs/2204.12577 (2022) - 2021
- [j7]Mirko Polato, Fabio Aiolli:
Propositional Kernels. Entropy 23(8): 1020 (2021) - [c24]Mirko Polato, Alberto Gallinaro, Fabio Aiolli:
Privacy-Preserving Kernel Computation For Vertically Partitioned Data. ESANN 2021 - [c23]Mirko Polato:
Federated Variational Autoencoder for Collaborative Filtering. IJCNN 2021: 1-8 - [c22]Mirko Polato, Denys Demchenko, Almat Kuanyshkereyev, Nicolò Navarin:
Efficient Multilingual Deep Learning Model for Keyword Categorization. SSCI 2021: 1-8 - 2020
- [j6]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
Learning deep kernels in the space of monotone conjunctive polynomials. Pattern Recognit. Lett. 140: 200-206 (2020) - [c21]Fabio Aiolli, Mauro Conti, Stjepan Picek, Mirko Polato:
Big Enough to Care Not Enough to Scare! Crawling to Attack Recommender Systems. ESORICS (2) 2020: 165-184 - [c20]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Recency Aware Collaborative Filtering for Next Basket Recommendation. UMAP 2020: 80-87 - [c19]Tommaso Carraro, Mirko Polato, Fabio Aiolli:
A Look Inside the Black-Box: Towards the Interpretability of Conditioned Variational Autoencoder for Collaborative Filtering. UMAP (Adjunct Publication) 2020: 233-236 - [i6]Mirko Polato, Tommaso Carraro, Fabio Aiolli:
Conditioned Variational Autoencoder for top-N item recommendation. CoRR abs/2004.11141 (2020)
2010 – 2019
- 2019
- [j5]Mirko Polato, Fabio Aiolli:
Boolean kernels for rule based interpretation of support vector machines. Neurocomputing 342: 113-124 (2019) - [c18]Mirko Polato, Fabio Aiolli:
Interpretable Preference Learning: A Game Theoretic Framework for Large Margin On-Line Feature and Rule Learning. AAAI 2019: 4723-4730 - [c17]Guglielmo Faggioli, Mirko Polato, Ivano Lauriola, Fabio Aiolli:
Evaluation of Tag Clusterings for User Profiling in Movie Recommendation. ICANN (Workshop) 2019: 456-468 - [c16]Mirko Polato, Guglielmo Faggioli, Ivano Lauriola, Fabio Aiolli:
Playing the Large Margin Preference Game. ICANN (2) 2019: 792-804 - [c15]Ivano Lauriola, Mirko Polato, Guglielmo Faggioli, Fabio Aiolli:
A Preference-Learning Framework for Modeling Relational Data. INNSBDDL 2019: 359-369 - [c14]Fabio Aiolli, Mauro Conti, Ankit Gangwal, Mirko Polato:
Mind your wallet's privacy: identifying Bitcoin wallet apps and user's actions through network traffic analysis. SAC 2019: 1484-1491 - [c13]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Tag-Based User Profiling: A Game Theoretic Approach. UMAP (Adjunct Publication) 2019: 267-271 - 2018
- [j4]Mirko Polato, Alessandro Sperduti, Andrea Burattin, Massimiliano de Leoni:
Time and activity sequence prediction of business process instances. Computing 100(9): 1005-1031 (2018) - [j3]Mirko Polato, Ivano Lauriola, Fabio Aiolli:
A Novel Boolean Kernels Family for Categorical Data. Entropy 20(6): 444 (2018) - [j2]Mirko Polato, Fabio Aiolli:
Boolean kernels for collaborative filtering in top-N item recommendation. Neurocomputing 286: 214-225 (2018) - [c12]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
The minimum effort maximum output principle applied to Multiple Kernel Learning. ESANN 2018 - [c11]Mirko Polato, Fabio Aiolli:
Boolean kernels for interpretable kernel machines. ESANN 2018 - [c10]Ivano Lauriola, Mirko Polato, Alberto Lavelli, Fabio Rinaldi, Fabio Aiolli:
Learning Preferences for Large Scale Multi-label Problems. ICANN (1) 2018: 546-555 - [c9]Mirko Polato, Fabio Aiolli:
A Game-Theoretic Framework for Interpretable Preference and Feature Learning. ICANN (1) 2018: 659-668 - [c8]Guglielmo Faggioli, Mirko Polato, Fabio Aiolli:
Efficient Similarity Based Methods For The Playlist Continuation Task. RecSys Challenge 2018: 15:1-15:6 - [i5]Mirko Polato, Fabio Aiolli:
Interpretable preference learning: a game theoretic framework for large margin on-line feature and rule learning. CoRR abs/1812.07895 (2018) - 2017
- [j1]Mirko Polato, Fabio Aiolli:
Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation. Neurocomputing 268: 17-26 (2017) - [c7]Ivano Lauriola, Mirko Polato, Fabio Aiolli:
Radius-Margin Ratio Optimization for Dot-Product Boolean Kernel Learning. ICANN (2) 2017: 183-191 - [c6]Mirko Polato, Ivano Lauriola, Fabio Aiolli:
Classification of Categorical Data in the Feature Space of Monotone DNFs. ICANN (2) 2017: 279-286 - [c5]Mirko Polato, Fabio Aiolli:
Disjunctive Boolean Kernels-based Collaborative Filtering for top-N Item Recommendation. IIR 2017: 97-100 - [c4]Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, Alessandro Sperduti:
LSTM networks for data-aware remaining time prediction of business process instances. SSCI 2017: 1-7 - [i4]Nicolò Navarin, Beatrice Vincenzi, Mirko Polato, Alessandro Sperduti:
LSTM Networks for Data-Aware Remaining Time Prediction of Business Process Instances. CoRR abs/1711.03822 (2017) - 2016
- [c3]Fabio Aiolli, Mirko Polato:
Kernel based collaborative filtering for very large scale top-N item recommendation. ESANN 2016 - [c2]Mirko Polato, Fabio Aiolli:
A preliminary study on a recommender system for the job recommendation challenge. RecSys Challenge 2016: 1:1-1:4 - [i3]Mirko Polato, Alessandro Sperduti, Andrea Burattin, Massimiliano de Leoni:
Time and Activity Sequence Prediction of Business Process Instances. CoRR abs/1602.07566 (2016) - [i2]Mirko Polato, Fabio Aiolli:
Exploiting sparsity to build efficient kernel based collaborative filtering for top-N item recommendation. CoRR abs/1612.05729 (2016) - [i1]Mirko Polato, Fabio Aiolli:
Disjunctive Boolean Kernels for Collaborative Filtering in Top-N Recommendation. CoRR abs/1612.07025 (2016) - 2014
- [c1]Mirko Polato, Alessandro Sperduti, Andrea Burattin, Massimiliano de Leoni:
Data-aware remaining time prediction of business process instances. IJCNN 2014: 816-823
Coauthor Index
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from , , and to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2024-11-07 20:33 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint