default search action
Machine Learning: Science and Technology, Volume 1
Volume 1, Number 1, February 2020
- Ergun Simsek:
Determining optical constants of 2D materials with neural networks from multi-angle reflectometry data. 01 - O. Anatole von Lilienfeld:
Introducing Machine Learning: Science and Technology. 10201 - Oliver T. Unke, Debasish Koner, Sarbani Patra, Silvan Käser, Markus Meuwly:
High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. 13001 - Sergei Manzhos:
Machine learning for the solution of the Schrödinger equation. 13002 - Oliver M. Gordon, Filipe L. Q. Junqueira, Philip J. Moriarty:
Embedding human heuristics in machine-learning-enabled probe microscopy. 15001 - Francisco Albarrán-Arriagada, Juan Carlos Retamal, Enrique Solano, Lucas Lamata:
Reinforcement learning for semi-autonomous approximate quantum eigensolver. 15002 - Genyue Liu, Mo Chen, Yi-Xiang Liu, David Layden, Paola Cappellaro:
Repetitive readout enhanced by machine learning. 15003 - Cas van der Oord, Geneviève Dusson, Gábor Csányi, Christoph Ortner:
Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials. 15004 - Marco Cavaglià, Sergio Gaudio, Travis Hansen, Kai Staats, Marek Szczepanczyk, Michele Zanolin:
Improving the background of gravitational-wave searches for core collapse supernovae: a machine learning approach. 15005 - Vignesh Gopakumar, D. Samaddar:
Image mapping the temporal evolution of edge characteristics in tokamaks using neural networks. 15006 - Adam J. Barker, H. Style, K. Luksch, S. Sunami, D. Garrick, F. Hill, Christopher J. Foot, Elliot Bentine:
Applying machine learning optimization methods to the production of a quantum gas. 15007 - G. Drera, Chahan M. Kropf, L. Sangaletti:
Deep neural network for x-ray photoelectron spectroscopy data analysis. 15008 - Chang Min Hyun, Kang Cheol Kim, Hyun Cheol Cho, Jae Kyu Choi, Jin Keun Seo:
Framelet pooling aided deep learning network: the method to process high dimensional medical data. 15009 - Cristiano Fanelli, Jary Pomponi:
DeepRICH: learning deeply Cherenkov detectors. 15010 - Jeffrey M. Ede, Richard Beanland:
Adaptive learning rate clipping stabilizes learning. 15011 - Yasemin Bozkurt Varolgunes, Tristan Bereau, Joseph F. Rudzinski:
Interpretable embeddings from molecular simulations using Gaussian mixture variational autoencoders. 15012
Volume 1, Number 2, June 2020
- Hongming Shan, Xun Jia, Pingkun Yan, Yunyao Li, Harald Paganetti, Ge Wang:
Synergizing medical imaging and radiotherapy with deep learning. 21001 - Oliver M. Gordon, Philip J. Moriarty:
Machine learning at the (sub)atomic scale: next generation scanning probe microscopy. 23001 - Sathya R. Chitturi, Philipp C. Verpoort, Alpha A. Lee, David J. Wales:
Perspective: new insights from loss function landscapes of neural networks. 23002 - Mohammad Rashidi, Jeremiah Croshaw, Kieran Mastel, Marcus Tamura, Hedieh Hosseinzadeh, Robert A. Wolkow:
Deep learning-guided surface characterization for autonomous hydrogen lithography. 25001 - Stefan N. Heinen, Max Schwilk, Guido Falk von Rudorff, O. Anatole von Lilienfeld:
Machine learning the computational cost of quantum chemistry. 25002 - Deepak Kamal, Anand Chandrasekaran, Rohit Batra, Rampi Ramprasad:
A charge density prediction model for hydrocarbons using deep neural networks. 25003 - Guillaume Lambard, Ekaterina Gracheva:
SMILES-X: autonomous molecular compounds characterization for small datasets without descriptors. 25004 - Sharon Zhou, Alexandra Luccioni, Gautier Cosne, Michael S. Bernstein, Yoshua Bengio:
Establishing an evaluation metric to quantify climate change image realism. 25005 - Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric P. Xing, Zachary W. Ulissi:
Methods for comparing uncertainty quantifications for material property predictions. 25006 - Davoud Hejazi, Shuangjun Liu, Amirreza Farnoosh, Sarah Ostadabbas, Swastik Kar:
Development of use-specific high-performance cyber-nanomaterial optical detectors by effective choice of machine learning algorithms. 25007 - Andrew E. Brereton, Stephen MacKinnon, Zhaleh Safikhani, Shawn Reeves, Sana Alwash, Vijay Shahani, Andreas Windemuth:
Predicting drug properties with parameter-free machine learning: pareto-optimal embedded modeling (POEM). 25008 - Julia Westermayr, Felix A. Faber, Anders S. Christensen, O. Anatole von Lilienfeld, Philipp Marquetand:
Neural networks and kernel ridge regression for excited states dynamics of CH2NH$_2^+$: From single-state to multi-state representations and multi-property machine learning models. 25009 - Yadong Wu, Hui Zhai:
Modified independent component analysis for extracting Eigen-Modes of a quantum system. 25010 - Jesper Løve Hinrich, Kristoffer H. Madsen, Morten Mørup:
The probabilistic tensor decomposition toolbox. 25011 - N. Benjamin Erichson, Krithika Manohar, Steven L. Brunton, J. Nathan Kutz:
Randomized CP tensor decomposition. 25012 - Gaurav Gupta, S. Saini:
DAVI: Deep learning-based tool for alignment and single nucleotide variant identification. 25013 - Alberto Iess, Elena Cuoco, Filip Morawski, Jade Powell:
Core-Collapse supernova gravitational-wave search and deep learning classification. 25014 - Ganesh Sivaraman, Nicholas E. Jackson, Benjamín Sánchez-Lengeling, Álvaro Vázquez-Mayagoitia, Alán Aspuru-Guzik, Venkatram Vishwanath, Juan J. de Pablo:
A machine learning workflow for molecular analysis: application to melting points. 25015 - Filip Morawski, Michal Bejger, Pawel Ciecielag:
Convolutional neural network classifier for the output of the time-domain $\mathcal{F}$-statistic all-sky search for continuous gravitational waves. 25016
Volume 1, Number 3, August 2020
- Onur Çaylak, O. Anatole von Lilienfeld, Björn Baumeier:
Wasserstein metric for improved quantum machine learning with adjacency matrix representations. 03 - Brian DeCost, Jason Hattrick-Simpers, Zachary Trautt, Aaron Gilad Kusne, Eva Campo, Martin Green:
Scientific AI in materials science: a path to a sustainable and scalable paradigm. 33001 - Lucas Lamata:
Quantum machine learning and quantum biomimetics: A perspective. 33002 - Frank Schindler, Adam S. Jermyn:
Algorithms for tensor network contraction ordering. 35001 - Andrew McCluskey, Joshaniel F. K. Cooper, Tom Arnold, Tim Snow:
A general approach to maximise information density in neutron reflectometry analysis. 35002 - Javier Alcazar, Vicente Leyton-Ortega, Alejandro Perdomo-Ortiz:
Classical versus quantum models in machine learning: insights from a finance application. 35003 - Tom H. E. Oakes, Adam Moss, Juan P. Garrahan:
A deep learning functional estimator of optimal dynamics for sampling large deviations. 35004 - Ari Frankel, Kousuke Tachida, Reese E. Jones:
Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model. 35005 - Sanjaya Lohani, Ryan T. Glasser:
Coherent optical communications enhanced by machine intelligence. 35006 - Sanjaya Lohani, Brian T. Kirby, Michael Brodsky, Onur Danaci, Ryan T. Glasser:
Machine learning assisted quantum state estimation. 35007 - Tai-Danae Bradley, E. Miles Stoudenmire, John Terilla:
Modeling sequences with quantum states: a look under the hood. 35008 - Frank Schäfer, Michal Kloc, Christoph Bruder, Niels Lörch:
A differentiable programming method for quantum control. 35009 - Tyler C. McCandless, Branko Kosovic, William Petzke:
Enhancing wildfire spread modelling by building a gridded fuel moisture content product with machine learning. 35010 - Pascal Pernot, Bing Huang, Andreas Savin:
Impact of non-normal error distributions on the benchmarking and ranking of quantum machine learning models. 35011 - A deep neural network to search for new long-lived particles decaying to jets. 35012
- Anton Vladyka, Tim Albrecht:
Unsupervised classification of single-molecule data with autoencoders and transfer learning. 35013 - Héctor J. Hortúa, Luigi Malagò, Riccardo Volpi:
Constraining the Reionization History using Bayesian Normalizing Flows. 35014 - Victor Venturi, Holden Parks, Zeeshan Ahmad, Venkatasubramanian Viswanathan:
Machine learning enabled discovery of application dependent design principles for two-dimensional materials. 35015
Volume 1, Number 4, November 2020
- M. P. Oxley, Junqi Yin, N. Borodinov, Suhas Somnath, Maxim A. Ziatdinov, Andrew R. Lupini, Stephen Jesse, Rama K. Vasudevan, Sergei V. Kalinin:
Deep learning of interface structures from simulated 4D STEM data: cation intermixing vs. roughening. 04 - Julia Westermayr, Philipp Marquetand:
Machine learning and excited-state molecular dynamics. 43001 - Chao Fang, Amin Barzeger, Helmut G. Katzgraber:
Machine learning in physics: the pitfalls of poisoned training sets. 45001 - Jaehoon Cha, Kyeong Soo Kim, Sanghyuk Lee:
Hierarchical Auxiliary Learning. 45002 - Jeffrey M. Ede:
Warwick electron microscopy datasets. 45003 - Hassan Abdallah, Brent Formosa, Asiri Liyanaarachchi, Maranda Saigh, Samantha Silvers, Suzan Arslanturk, Douglas J. Taatjes, Lars Larsson, Bhanu P. Jena, Domenico L. Gatti:
Res-CR-Net, a residual network with a novel architecture optimized for the semantic segmentation of microscopy images. 45004 - Max Hodapp, Alexander V. Shapeev:
In operando active learning of interatomic interaction during large-scale simulations. 45005 - Giles Chatham Strong:
On the impact of selected modern deep-learning techniques to the performance and celerity of classification models in an experimental high-energy physics use case. 45006 - Thomas Stielow, Robin Schmidt, Christian Peltz, Thomas Fennel, S. Scheel:
Fast reconstruction of single-shot wide-angle diffraction images through deep learning. 45007 - Stefano Mangini, Francesco Tacchino, Dario Gerace, Chiara Macchiavello, Daniele Bajoni:
Quantum computing model of an artificial neuron with continuously valued input data. 45008 - Isaac C. D. Lenton, Giovanni Volpe, Alexander B. Stilgoe, Timo A. Nieminen, Halina Rubinsztein-Dunlop:
Machine learning reveals complex behaviours in optically trapped particles. 45009 - Nicolae C. Iovanac, Brett M. Savoie:
Improving the generative performance of chemical autoencoders through transfer learning. 45010 - Jan M. Pawlowski, Julian M. Urban:
Reducing autocorrelation times in lattice simulations with generative adversarial networks. 45011 - Amit Mishra, Pranath Reddy, Rahul Nigam:
Baryon density extraction and isotropy analysis of cosmic microwave background using deep learning. 45012 - Chang Sun, Eurika Kaiser, Steven L. Brunton, J. Nathan Kutz:
Deep reinforcement learning for optical systems: A case study of mode-locked lasers. 45013 - Marc Stieffenhofer, Michael Wand, Tristan Bereau:
Adversarial reverse mapping of equilibrated condensed-phase molecular structures. 45014 - Charles N. Melton, Marcus Michael Noack, Taisuke Ohta, Thomas E. Beechem, Jeremy Robinson, Xiaotian Zhang, Aaron Bostwick, Chris Jozwiak, Roland J. Koch, Petrus H. Zwart, Alexander Hexemer, Eli Rotenberg:
K-means-driven Gaussian Process data collection for angle-resolved photoemission spectroscopy. 45015 - Shusen Liu, Rushil Anirudh, Jayaraman J. Thiagarajan, Peer-Timo Bremer:
Uncovering interpretable relationships in high-dimensional scientific data through function preserving projections. 45016 - Duc Phan Minh Truong, Erik Skau, Vladimir I. Valtchinov, Boian S. Alexandrov:
Determination of latent dimensionality in international trade flow. 45017 - Anders S. Christensen, O. Anatole von Lilienfeld:
On the role of gradients for machine learning of molecular energies and forces. 45018 - Woo-Seok Lee, Sergej Flach:
Deep learning of chaos classification. 45019 - Derek DeSantis, Phillip J. Wolfram, Katrina Bennett, Boian S. Alexandrov:
Coarse-grain cluster analysis of tensors with application to climate biome identification. 45020 - Benjamin A. Helfrecht, Rose K. Cersonsky, Guillaume Fraux, Michele Ceriotti:
Structure-property maps with Kernel principal covariates regression. 45021 - Jack Griffiths, Steven Kleinegesse, D. Saunders, R. Taylor, Antonin Vacheret:
Pulse shape discrimination and exploration of scintillation signals using convolutional neural networks. 45022 - Christina Gao, Joshua Isaacson, Claudius Krause:
i- flow: High-dimensional integration and sampling with normalizing flows. 45023 - Mario Krenn, Florian Häse, AkshatKumar Nigam, Pascal Friederich, Alán Aspuru-Guzik:
Self-referencing embedded strings (SELFIES): A 100% robust molecular string representation. 45024 - Alexandre Alves, Felipe F. Freitas:
Towards recognizing the light facet of the Higgs boson. 45025 - Guido Falk von Rudorff, Stefan N. Heinen, Marco Bragato, O. Anatole von Lilienfeld:
Thousands of reactants and transition states for competing E2 and S$_\mathrm{N}$2 reactions. 45026 - Hiroki Kawai, Yuya O. Nakagawa:
Predicting excited states from ground state wavefunction by supervised quantum machine learning. 45027 - Walter Winci, Lorenzo Buffoni, Hossein Sadeghi, Amir Khoshaman, Evgeny Andriyash, Mohammad H. Amin:
A path towards quantum advantage in training deep generative models with quantum annealers. 45028
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.