default search action
ICMLA 2005: Los Angeles, California, USA
- M. Arif Wani, Mariofanna G. Milanova, Lukasz A. Kurgan, Marek Z. Reformat, Khalid Hafeez:
Fourth International Conference on Machine Learning and Applications, ICMLA 2005, Los Angeles, California, USA, 15-17 December 2005. IEEE Computer Society 2005, ISBN 0-7695-2495-8
Invited Paper
- Stuart Harvey Rubin:
A system of systems (SoS) design amplifier.
Classification I
- Thomas Villmann, Frank-Michael Schleif, Barbara Hammer:
Fuzzy Labeled Soft Nearest Neighbor Classification with Relevance Learning. - Abdul Majid, Asifullah Khan, Anwar M. Mirza:
Intelligent combination of kernels information for improved classification. - Senjian An, Wanquan Liu, Svetha Venkatesh:
Fast cross-validation of kernel Fisher discriminant classifiers.
Classification II
- Daisuke Yamaguchi, GuoDong Li, Kozo Mizutani, Takahiro Akabane, Masatake Nagai, Masatoshi Kitaoka:
Decision rule extraction and reduction based on grey lattice classification. - Péter Schönhofen, András A. Benczúr:
Feature selection based on word-sentence relation. - Minoo Aminian:
Active learning for reducing bias and variance of a classifier using Jensen-Shannon divergence. - Ricardo Blanco-Vega, José Hernández-Orallo, M. José Ramírez-Quintana:
Knowledge acquisition through machine learning: minimising expert's effort. - Taghi M. Khoshgoftaar, Jason Van Hulse:
Identifying noise in an attribute of interest.
Applications I
- Mahsa Kamali Moghaddam, Reza Safabakhsh:
TASOM-based lip tracking using the color and geometry of the face. - Effrosini Kokiopoulou, Yousef Saad:
Face recognition using OPRA-faces. - Alina Lazar, Bradley Shellito:
Comparing machine learning classification schemes - a GIS approach. - Justin M. Beaver, Guy A. Schiavone, Joseph Berrios:
Predicting software suitability using a Bayesian belief network. - M. Arif Wani, Sumia Rashid:
Parallel algorithm for control chart pattern recognition.
Applications II
- Marcos M. Campos, Peter J. Stengard, Boriana L. Milenova:
Data-centric automated data mining. - Marcos M. Campos, Boriana L. Milenova:
Creation and deployment of data mining-based intrusion detection systems in Oracle Database l0g. - Christophe G. Giraud-Carrier:
The data mining advisor: meta-learning at the service of practitioners. - Taghi M. Khoshgoftaar, Shyam Varan Nath, Shi Zhong, Naeem Seliya:
Intrusion detection in wireless networks using clustering techniques with expert analysis.
Special Session: Applications of Machine Learning in Medicine and Biology I
- François Fleuret, Wulfram Gerstner:
A Bayesian kernel for the prediction of neuron properties from binary gene profiles. - Lit-Hsin Loo, Samuel Roberts, Leonid Hrebien, Moshe Kam:
New filter-based feature selection criteria for identifying differentially expressed genes. 10 - Huimin Geng, Xutao Deng, Hesham H. Ali:
A new clustering algorithm using message passing and its applications in analyzing microarray data. - Li Liao, Robel Y. Kahsay, Guang R. Gao:
Discriminating transmembrane proteins from signal peptides using SVM-Fisher approach. - Roger A. Craig, Li Liao:
Iterative weighting of phylogenetic profiles increases classification accuracy.
Special Session: Applications of Machine Learning in Medicine and Biology II
- Rodrigo A. Vivanco, Aleksander B. Demko, Nick J. Pizzi:
Scopira: a pattern recognition application framework for biomedical datasets. - Mila Kwiatkowska, Anthony S. Atkins, Najib T. Ayas, C. Frank Ryan:
Integrating knowledge-driven and data-driven approaches for the derivation of clinical prediction rules. - Rafal Rak, Lukasz A. Kurgan, Marek Z. Reformat:
Multi-label associative classification of medical documents from MEDLINE.
Special Session: Applications of Machine Learning in Medicine and Biology III
- Ying Liu:
Drug design by machine learning: ensemble learning for QSAR modeling. - Glenn Fung, Maleeha Qazi, Sriram Krishnan, Jinbo Bi, R. Bharat Rao, A. Katz:
Sparse classifiers for Automated HeartWall Motion Abnormality Detection. 194-200 - Júlio C. Nievola, Helyane Bronoski Borges:
Attribute selection methods comparison for classification of diffuse large B-cell lymphoma. - Adam E. Gaweda, Mehmet Kerem Müezzinoglu, George R. Aronoff, Alfred A. Jacobs, Jacek M. Zurada, Michael E. Brier:
Incorporating prior knowledge into Q-learning for drug delivery individualization.
Special Session: Applications of Machine Learning in Medicine and Biology IV
- Mark Schmidt, Ilya Levner, Russell Greiner, Albert Murtha, Aalo Bistritz:
Segmenting brain tumors using alignment-based features. - Valentina Zubek, David Verbel, Olivier Saidi:
Censored Time TreesTM for predicting time to PSA recurrence. - Hui Liu, Ash Kshirsagar, Craig Niederberger:
The application of machine learning techniques to the prediction of erectile dysfunction. - Alireza Tamaddoni-Nezhad, Raphael Chaleil, Antonis C. Kakas, Stephen H. Muggleton:
Abduction and induction for learning models of inhibition in metabolic networks. - Iead Rezek, Stephen J. Roberts, Ellini Siva, R. Conradt:
Depth of anaesthesia assessment with generative polyspectral models.
Learning
- Yasutoshi Yajima, Takashi Hoshiba:
Optimization approaches for semi-supervised learning. - Shinichi Hamano:
Equating interestingness of causal rules via graded response theory. - Filip Zelezný:
Efficient construction of relational features.
Clustering
- Rasika Amarasiri, Jason Ceddia, Damminda Alahakoon:
Exploratory data mining lead by text mining using a novel high dimensional clustering algorithm. - Gül Nildem Demir, A. Sima Etaner-Uyar, Sule Gündüz Ögüdücü:
A new graph-based evolutionary approach to sequence clustering. - Ding Zhou, Yang Song, Hongyuan Zha, Ya Zhang:
Towards discovering organizational structure from email corpus. - Ray R. Hashemi, Mahmood Bahar, Christopher Childers, Alexander A. Tyler:
Decoupling of clustering and classification steps in a cluster-based classification.
Text Processing
- Vishwa Vinay, Ingemar J. Cox, Kenneth R. Wood, Natasa Milic-Frayling:
A comparison of dimensionality reduction techniques for text retrieval. - Hemant Joshi, Coskun Bayrak:
Learning contextual behavior of text data. - Thammanoon Ditcharoen, Kanlaya Naruedomkul, Nick Cercone, Bundit Tipakorn:
TSTMT: step towards an accurate Thai sign translation. - Catarina Silva, Bernardete Ribeiro, Uros Lotric:
Speeding-up text categorization in a grid computing environment.
Evolutionary-Based Methods
- Ryouei Takahashi:
Solving the traveling salesman problem through genetic algorithms with changing crossover operators. - Shinji Eto, Kotaro Hirasawa, Jinglu Hu:
Switching for functional localization of genetic network programming. - Janaki Gopalan, Emin Erkan Korkmaz, Reda Alhajj, Ken Barker:
Effective data mining by integrating genetic algorithm into the data preprocessing phase. - Xin Li, Chi Zhou, Weimin Xiao, Peter C. Nelson:
Direct evolution of hierarchical solutions with self-emergent substructures. - Fernando Lozano, Vladimir Koltchinskii:
Self bounding genetic algorithms for machine learning.
Boosting
- Rosa Maria Valdovinos, José Salvador Sánchez:
Class-dependant resampling for medical applications. - Sang Hwa Lee, Hong Il Kim, Nam Ik Cho, Yu Han Jeong, Ki Suk Chung, Chung Sam Jun:
Automatic defect classification using boosting. - Hong Il Kim, Sang Hwa Lee, Nam Ik Cho:
An efficient multicategory classifier based on AdaBoosting. - Fernando Lozano, Pedro Rangel:
Algorithms for parallel boosting. - Pedro Rangel, Fernando Lozano, Elkin García:
Boosting of support vector machines with application to editing.
Associations Learning
- Mehdi Adda, Petko Valtchev, Rokia Missaoui, Chabane Djeraba:
On the discovery of semantically enhanced sequential patterns. - Xiaomeng Wang, Christian Borgelt, Rudolf Kruse:
Fuzzy frequent pattern discovering based on recursive elimination. - Mirko Böttcher, Martin Spott, Detlef D. Nauck:
Detecting temporally redundant association rules. - Aniket Mahanti, Reda Alhajj:
Visual interface for online watching of frequent itemset generation in Apriori and Eclat.
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.