default search action
FIRE 2020: Hyderabad, India - Working Notes
- Parth Mehta, Thomas Mandl, Prasenjit Majumder, Mandar Mitra:
Working Notes of FIRE 2020 - Forum for Information Retrieval Evaluation, Hyderabad, India, December 16-20, 2020. CEUR Workshop Proceedings 2826, CEUR-WS.org 2021 - Preface.
Artificial Intelligence for Legal Assistance (AILA)
- Paheli Bhattacharya, Parth Mehta, Kripabandhu Ghosh, Saptarshi Ghosh, Arindam Pal, Arnab Bhattacharya, Prasenjit Majumder:
Overview of the FIRE 2020 AILA Track: Artificial Intelligence for Legal Assistance. 1-11 - Tebo Leburu-Dingalo, Nkwebi Peace Motlogelwa, Edwin Thuma, Monkgogi Modongo:
UB at FIRE 2020 Precedent and Statute Retrieval. 12-17 - Liang Liu, Lexiao Liu, Zhongyuan Han:
Query Revaluation Method For Legal Information Retrieval. 18-21 - Soumayan Bandhu Majumder, Dipankar Das:
Rhetorical Role Labelling for Legal Judgements Using ROBERTA. 22-25 - Nitin Nikamanth Appiah Balaji, B. Bharathi, J. Bhuvana:
Legal Information Retrieval and Rhetorical Role Labelling for Legal Judgements. 26-30 - Kayalvizhi S, Thenmozhi D, Chandrabose Aravindan:
Best Matching Algorithm to Identify and Rank the Relevant Statutes. 31-34 - Jiaming Gao, Hui Ning, Zhongyuan Han, Leilei Kong, Haoliang Qi:
Legal text classification model based on text statistical features and deep semantic features. 35-41 - Intisar Almuslim, Diana Inkpen:
Document Level Embeddings for Identifying Similar Legal Cases and Laws. 42-48 - Zhiran Li, Leilei Kong:
Language Model-based Approaches for Legal Assistance. 49-53 - Giorgio Maria Di Nunzio:
A Study on Lemma vs Stem for Legal Information Retrieval Using R Tidyverse. 54-59 - Jhanvi Arora, Tanay Patankar, Alay Shah, Shubham Joshi:
Artificial Intelligence as Legal Research Assistant. 60-65 - Racchit Jain, Abhishek Agarwal, Yashvardhan Sharma:
Spectre@AILA-FIRE2020: Supervised Rhetorical Role Labeling for Legal Judgments using Transformers. 66-70 - Yujie Xu, Tang Li, Zhongyuan Han:
The Language Model for Legal Retrieval and Bert-based Model for Rhetorical Role Labeling for Legal Judgments. 71-75 - Tobias Fink, Gábor Recski, Allan Hanbury:
FIRE2020 AILA Track: Legal domain search with minimal domain knowledge. 76-81 - Menghan Wu, Zhengyu Wu, Xiangyu Wang, Zhongyuan Han:
Retrieval Model and Classification Model for AILA2020. 82-86
Hate Speech and Offensive Content Identification in Indo-European Languages (HASOC)
- Thomas Mandl, Sandip Modha, Gautam Kishore Shahi, Amit Kumar Jaiswal, Durgesh Nandini, Daksh Patel, Prasenjit Majumder, Johannes Schäfer:
Overview of the HASOC track at FIRE 2020: Hate Speech and Offensive Content Identification in Indo-European Languages. 87-111 - Bharathi Raja Chakravarthi, Anand Kumar M, John P. McCrae, B. Premjith, K. P. Soman, Thomas Mandl:
Overview of the track on HASOC-Offensive Language Identification-DravidianCodeMix. 112-120 - Xiaozhi Ou, Hongling Li:
YNU_OXZ at HASOC 2020: Multilingual Hate Speech and Offensive Content Identification based on XLM-RoBERTa. 121-127 - Sayar Ghosh Roy, Ujwal Narayan, Tathagata Raha, Zubair Abid, Vasudeva Varma:
Leveraging Multilingual Transformers for Hate Speech Detection. 128-138 - Ankit Kumar Mishra, Sunil Saumya, Abhinav Kumar:
IIIT_DWD@HASOC 2020: Identifying offensive content in Indo-European languages. 139-144 - Fazlourrahman Balouchzahi, H. L. Shashirekha:
LAs for HASOC - Learning Approaches for Hate Speech and Offensive Content Identification. 145-151 - Hiren Madhu, Shrey Satapara, Harsh Rathod:
Astralis @ HASOC 2020: Analysis On Identification Of Hate Speech In Indo-European Languages With Fine-Tuned Transformers. 152-160 - Roushan Raj, Shivangi Srivastava, Sunil Saumya:
NSIT & IIITDWD @ HASOC 2020: Deep learning model for hate-speech identification in Indo-European languages. 161-167 - Biswarup Ray, Avishek Garain:
JU at HASOC 2020: Deep Learning with RoBERTa and Random Forest for Hate Speech and Offensive Content Identification in Indo-European Languages. 168-174 - Tochukwu Ezike, Manikan Sivanesan:
Chrestotes@HASOC 2020: Bert Fine-tuning for the Identification of Hate Speech and Offensive Language in Indo-European Languages. 175-179 - Suman Dowlagar, Radhika Mamidi:
HASOCOne@FIRE-HASOC2020: Using BERT and Multilingual BERT models for Hate Speech Detection. 180-187 - Kalaivani Adaikkan, Durairaj Thenmozhi:
SSN_NLP_MLRG@HASOC-FIRE2020: Multilingual Hate Speech and Offensive Content Detection in Indo-European Languages using ALBERT. 188-194 - Siyao Zhou, Rui Fu, Jie Li:
Zeus at HASOC 2020: Hate speech detection based on ALBERT-DPCNN. 195-201 - Yingjia Zhao, Xin Tao:
ZYJ at HASOC 2020: ALBERT-Based Model for Hate Speech and Offensive Content Identification. 202-209 - Junyi Li, Tianzi Zhao:
Lee@HASOC2020: ALBERT-based Max Ensemble with Self-training for Identifying Hate Speech and Offensive Content in Indo-European Languages. 210-216 - Zichen Zhang, Yuhang Wu, Hao Wu:
YUN_DE at HASOC2020 subtask A: Multi-Model Ensemble Learning for Identifying Hate Speech and Offensive Language. 217-223 - Huiping Shi, Xiaobing Zhou:
Huiping Shi@HASOC 2020: Multi-Top k Self-Attention with K-Max pooling for discrimination between Hate profane and offensive posts. 224-231 - Bo Huang, Yang Bai:
Hub@HASOC 2020: Fine-tuning Pre-Trained Transformer Language Models for Hate Speech and Offensive Content Identification in Indo-European Languages. 232-240 - Sridhar Swaminathan, Hari Krishnan Ganesan, Radhakrishnan Pandiyarajan:
HRS-TECHIE@Dravidian-CodeMix and HASOC-FIRE2020: Sentiment Analysis and Hate Speech Identification using Machine Learning Deep Learning and Ensemble Models. 241-252 - M. D. Anusha, H. L. Shashirekha:
An Ensemble Model for Hate Speech and Offensive Content Identification in Indo-European Languages. 253-259 - Josiane Mothe, Pratik Parikh, Faneva Ramiandrisoa:
IRIT-PREVISION AT HASOC 2020: Fine-tuning BERT for Hate Speech and Offensive Content Identification. 260-265 - Abhinav Kumar, Sunil Saumya, Jyoti Prakash Singh:
NITP-AI-NLP@HASOC-FIRE2020: Fine Tuned BERT for the Hate Speech and Offensive Content Identification from Social Media. 266-273 - Varsha Reddy, Surendra Telidevara:
HateDetectors at HASOC 2020: Hate Speech Detection using Classical Machine learning and Transfer learning based approaches. 274-282 - Qinyu Que, Ruijie Sun, Shasha Xie:
Simon@HASOC 2020: Detecting Hate Speech and Offensive Content in German Language with BERT and Ensembles. 283-289 - Baidya Nath Saha, Apurbalal Senapati:
Hate Speech and Offensive Content Identification: LSTM Based Deep Learning Approach @ HASOC 2020. 290-297 - Salar Mohtaj, Vinicius Woloszyn, Sebastian Möller:
TUB at HASOC 2020: Character based LSTM for Hate Speech Detection in Indo-European Languages. 298-303 - Yashwanth Reddy B., Ratnavel Rajalakshmi:
DLRG@HASOC 2020: A Hybrid Approach for Hate and Offensive Content Identification in Multilingual Tweets. 304-310 - Li Xu, Jun Xeng, Shi Chen:
yasuo at HASOC2020: Fine-tune XML-RoBERTa for Hate Speech Identification. 311-318 - Kirti Kumari, Jyoti Prakash Singh:
AI_ML_NIT_Patna @HASOC 2020: BERT Models for Hate Speech Identification in Indo-European Languages. 319-324 - Pankaj Singh, Pushpak Bhattacharyya:
CFILT IIT Bombay at HASOC 2020: Joint multitask learning of multilingual hate speech and offensive content detection system. 325-330 - Segun Taofeek Aroyehun, Alexander F. Gelbukh:
NLP-CIC at HASOC 2020: Multilingual Offensive Language Detection using All-in-one Model. 331-335 - Siva Sai, Yashvardhan Sharma:
Siva@HASOC-Dravidian-CodeMix-FIRE-2020: Multilingual Offensive Speech Detection in Code-mixed and Romanized Text. 336-343 - Sara Renjit, Sumam Mary Idicula:
CUSAT_NLP@HASOC-Dravidian-CodeMix-FIRE2020: Identifying Offensive Language from Manglish Tweets. 344-350 - Varsha M. Pathak, Manish R. Joshi, Prasad Joshi, Monica Mundada, Tanmay Joshi:
KBCNMUJAL@HASOC-Dravidian-CodeMix-FIRE2020: Using Machine Learning for Detection of Hate Speech and Offensive Codemix Social Media text. 351-361 - Gaurav Arora:
Gauravarora@HASOC-Dravidian-CodeMix- FIRE2020: Pre-training ULMFiT on Synthetically Generated Code-Mixed Data for Hate Speech Detection. 362-369 - Nitin Nikamanth Appiah Balaji, B. Bharathi:
SSNCSE_NLP@HASOC-Dravidian-CodeMix-FIRE2020: Offensive Language Identification on Multilingual Code Mixing Text. 370-376 - Veena P. V, Praveena Ramanan, Remmiya Devi G:
CENMates@HASOC-Dravidian-CodeMix-FIRE2020: Offensive Language Identification on Code-mixed Social Media Comments. 377-383 - Abhinav Kumar, Sunil Saumya, Jyoti Prakash Singh:
NITP-AI-NLP@HASOC-Dravidian-CodeMix-FIRE2020: A Machine Learning Approach to Identify Offensive Languages from Dravidian Code-Mixed Text. 384-390 - Kunjie Dong, Yao Wang:
YUN@HASOC-Dravidian-CodeMix-FIRE2020: A Multi-component Sentiment Analysis Model for Offensive Language Identification. 391-396 - Yueying Zhu, Xiaobing Zhou:
Zyy1510@HASOC-Dravidian-CodeMix-FIRE2020: An Ensemble Model for Offensive Language Identification. 397-403 - Ajees A. P:
Ajees@HASOC-Dravidian-CodeMix-FIRE2020. 404-410 - Pankaj Singh, Pushpak Bhattacharyya:
CFILT IIT Bombay@HASOC-Dravidian-CodeMix FIRE 2020: Assisting ensemble of transformers with random transliteration. 411-416 - Tharindu Ranasinghe, Sarthak Gupte, Marcos Zampieri, Ifeoma Nwogu:
WLV-RIT at HASOC-Dravidian-CodeMix-FIRE2020: Offensive Language Identification in Code-switched YouTube Comments. 417-426 - Arup Baruah, Kaushik Amar Das, Ferdous Ahmed Barbhuiya, Kuntal Dey:
IIITG-ADBU@HASOC-Dravidian-CodeMix-FIRE2020: Offensive Content Detection in Code-Mixed Dravidian Text. 427-433
Fake News Detection in the Urdu Language (UrduFake)
- Maaz Amjad, Grigori Sidorov, Alisa Zhila, Alexander F. Gelbukh, Paolo Rosso:
Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2020. 434-446 - Nankai Lin, Sihui Fu, Shengyi Jiang:
Fake News Detection in the Urdu Language using CharCNN-RoBERTa. 447-451 - Abdullah Faiz Ur Rahman Khilji, Sahinur Rahman Laskar, Partha Pakray, Sivaji Bandyopadhyay:
Urdu Fake News Detection using Generalized Autoregressors. 452-457 - Abhinav Kumar, Sunil Saumya, Jyoti Prakash Singh:
NITP-AI-NLP@UrduFake-FIRE2020: Multi-layer Dense Neural Network for Fake News Detection in Urdu News Articles. 458-463 - Saichethan Miriyala Reddy, Chanchal Suman, Sriparna Saha, Pushpak Bhattacharyya:
A GRU-based Fake News Prediction System: Working Notes for UrduFake-FIRE 2020. 464-468 - Nitin Nikamanth Appiah Balaji, B. Bharathi:
SSNCSE_NLP@Fake news detection in the Urdu language (UrduFake) 2020. 469-473 - Fazlourrahman Balouchzahi, H. L. Shashirekha:
Learning Models for Urdu Fake News Detection. 474-479
Sentiment Analysis of Dravidian Languages in Code-Mixed Text
- Bharathi Raja Chakravarthi, Ruba Priyadharshini, Vigneshwaran Muralidaran, Shardul Suryawanshi, Navya Jose, Elizabeth Sherly, John P. McCrae:
Overview of the track on Sentiment Analysis for Dravidian Languages in Code-Mixed Text. 480-489 - Sainik Kumar Mahata, Dipankar Das, Sivaji Bandyopadhyay:
JUNLP@Dravidian-CodeMix-FIRE2020: Sentiment Classification of Code-Mixed Tweets using Bi-Directional RNN and Language Tags. 490-494 - Fazlourrahman Balouchzahi, H. L. Shashirekha:
MUCS@Dravidian-CodeMix-FIRE2020: SACO-SentimentsAnalysis for CodeMix Text. 495-502 - Yashvardhan Sharma, Asrita Venkata Mandalam:
Bits2020@Dravidian-CodeMix-FIRE2020: Sub-Word Level Sentiment Analysis of Dravidian Code Mixed Data. 503-509 - Suman Dowlagar, Radhika Mamidi:
CMSAOne@Dravidian-CodeMix-FIRE2020: A Meta Embedding and Transformer model for Code-Mixed Sentiment Analysis on Social Media Text. 510-516 - Huilin Sun, Jiaming Gao, Fang Sun:
HIT_SUN@Dravidian-CodeMix-FIRE2020: Sentiment Analysis on Multilingual Code-Mixing Text Base on BERT. 517-521 - Judith Jeyafreeda Andrew:
JudithJeyafreeda@Dravidian-CodeMix-FIRE2020: Sentiment Analysis of YouTube Comments for Dravidian Languages. 522-527 - Kalaivani Adaikkan, Durairaj Thenmozhi:
SSN_NLP_MLRG@Dravidian-CodeMix-FIRE2020: Sentiment Code-Mixed Text Classification in Tamil and Malayalam using ULMFiT. 528-534 - Supriya Chanda, Sukomal Pal:
IRLab@IITBHU@Dravidian-CodeMix-FIRE2020: Sentiment Analysis for Dravidian Languages in Code-Mixed Text. 535-540 - Nikita Kanwar, Megha Agarwal, Rajesh Kumar Mundotiya:
PITS@Dravidian-CodeMix-FIRE2020: Traditional Approach to Noisy Code-Mixed Sentiment Analysis. 541-547 - Ruijie Sun, Xiaobing Zhou:
SRJ @ Dravidian-CodeMix-FIRE2020: Automatic Classification and Identification Sentiment in Code-mixed Text. 548-553 - Nitin Nikamanth Appiah Balaji, B. Bharathi, Bhuvana J:
SSNCSE_NLP@Dravidian-CodeMix-FIRE2020: Sentiment Analysis for Dravidian Languages in Code-Mixed Text. 554-559 - Xiaozhi Ou, Hongling Li:
YNU@Dravidian-CodeMix-FIRE2020: XLM-RoBERTa for Multi-language Sentiment Analysis. 560-565 - Yandrapati Prakash Babu, Eswari Rajagopal, K. Nimmi:
CIA_NITT@Dravidian-CodeMix-FIRE2020: Malayalam-English Code Mixed Sentiment Analysis Using Sentence BERT And Sentiment Features. 566-573 - Bo Huang, Yang Bai:
LucasHub@Dravidian-CodeMix-FIRE2020: Sentiment Analysis on Multilingual Code Mixing Text with M-BERT and XLM-RoBERTa. 574-581 - Abhinav Kumar, Sunil Saumya, Jyoti Prakash Singh:
NITP-AI-NLP@Dravidian-CodeMix-FIRE2020: A Hybrid CNN and Bi-LSTM Network for Sentiment Analysis of Dravidian Code-Mixed Social Media Posts. 582-590 - Anbukkarasi S, Varadhaganapathy S:
SA_SVG@Dravidian-CodeMix-FIRE2020: Deep Learning Based Sentiment Analysis in Code-mixed Tamil-English Text. 591-596 - Anita Saroj, Sukomal Pal:
IRLab@IITV@Dravidian-CodeMix-FIRE2020: Sentiment Analysis on Multilingual Code Mixing Text Using BERT-BASE. 597-606 - José Ortiz-Bejar, Jesus Ortiz-Bejar, Jaime Cerdá Jacobo, Mario Graff, Eric Sadit Tellez:
UMSNH-INFOTEC@Dravidian-CodeMix-FIRE2020: An ensemble approach based on a multiple text representations. 607-614 - Deepesh Sharma:
TADS@Dravidian-CodeMix-FIRE2020: Sentiment Analysis on CodeMix Dravidian Language. 615-619 - Parameswari Krishnamurthy, Faith Varghese, Nagaraju Vuppala:
Parameswari_faith_nagaraju@Dravidian-CodeMix-FIRE: A machine-learning approach using n-grams in sentiment analysis for code-mixed texts: A case study in Tamil and Malayalam. 620-627 - Yueying Zhu, Kunjie Dong:
YUN111@Dravidian-CodeMix-FIRE2020: Sentiment Analysis of Dravidian Code Mixed Text. 628-634 - BalaSundaraRaman Lakshmanan, Sanjeeth Kumar Ravindranath:
Theedhum Nandrum@Dravidian-CodeMix-FIRE2020: A Sentiment Polarity Classifier for YouTube Comments with Code-switching between Tamil Malayalam and English. 635-641 - Shubhanker Banerjee, Arun Jayapal, Sajeetha Thavareesan:
NUIG-Shubhanker@Dravidian-CodeMix- FIRE2020: Sentiment Analysis of Code-Mixed Dravidian text using XLNet. 642-648
Authorship Identification of SOurce COde (AI-SOCO)
- Ali Fadel, Husam Musleh, Ibraheem Tuffaha, Mahmoud Al-Ayyoub, Yaser Jararweh, Elhadj Benkhelifa, Paolo Rosso:
Overview of the PAN@FIRE 2020 Task on the Authorship Identification of SOurce COde. 649-676 - Alexander Crosby, Harish Tayyar Madabushi:
UoB at AI-SOCO 2020: Approaches to Source Code Classification and the Surprising Power of n-grams. 677-693 - Yunpeng Yang, Leilei Kong, Zhongyua Han, Yong Han, Haoliang Qi:
N-gram-based Authorship Identification of Source Code. 694-698 - Mutaz Bni Younes, Nour Al-Khdour:
Team Alexa at Authorship Identification of SOurce Code (AI-SOCO). 699-704 - Yves Bestgen:
Boosting a kNN Classifier by improving Feature Extraction for Authorship Identification of Source Code. 705-712 - Zhongyuan Han, Tang Li, Xiangyu Wang, Yujie Xu, Menghan Wu, Zhiran Li, Zhengyu Wu, Yong Han:
Ranking-based and Classification-based Approaches for Code Author Identification. 713-716 - José Antonio García-Díaz, Rafael Valencia-García:
UMUTeam at AI-SOCO'2020: Source Code Authorship Identification based on Character N-Grams and Author's Traits. 717-726 - Asrita Venkata Mandalam, Abhishek:
Embedding-based Authorship Identification of Source Code. 727-731 - Chanchal Suman, Ayush Raj, Sriparna Saha, Pushpak Bhattacharyya:
Source Code Authorship Attribution using Stacked classifier. 732-737 - Panyawut Sriiesaranusorn, Supatsara Wattanakriengkrai, Teyon Son, Takeru Tanaka, Christopher Wiraatmaja, Takashi Ishio, Raula Gaikovina Kula:
Kode_Stylers: Author Identification through Naturalness of Code: An Ensemble Approach. 738-745 - Nitin Nikamanth Appiah Balaji, B. Bharathi:
SSNCSE_NLP@Authorship Identification of SOurce COde (AI-SOCO) 2020. 746-750
Cause-Effect Relation Extraction from Text (CEREX)
- Thenmozhi Durairaj, Arunima S., Amlan Sengupta, Avantika Balaji:
SSN_NLP@FIRE2020 : Automatic Extraction of Causal Relations Using Deep Learning and Machine Translation Approaches. 751-755 - Abdul Aziz, Afrin Sultana, Md. Akram Hossain, Nabila Ayman, Abu Nowshed Chy:
Feature Fusion with Hand-crafted and Transfer Learning Embeddings for Cause-Effect Relation Extraction. 756-764
Causality-driven Ad hoc Information Retrieval (CAIR)
- Chuan-An Lin, Yi Zhang:
Causality Detection for Causality-driven Adhoc Information Retrieval Task. 765-770 - Pankaj Dadure, Partha Pakray, Sivaji Bandyopadhyay:
Preliminary Investigation on Causality Information Retrieval. 771-779
Anaphora Resolution from Social Media Text in Indian Languages
- Sandhya Singh, Kevin Patel, Pushpak Bhattacharyya:
Attention based Anaphora Resolution for Code-Mixed Social Media Text for Hindi Language. 780-787
Retrieval from Conversational Dialogues (RCD)
- Abhishek Kaushik, Vishal Bhat Ramachandra, Gareth J. F. Jones:
DCU at the FIRE 2020 Retrieval from Conversational Dialogues (RCD) task. 788-805
Event Detection from News in Indian Languages (EDNIL)
- Bhargav Dave, Surupendu Gangopadhyay, Prasenjit Majumder, Pushpak Bhattacharya, Sudeshna Sarkar, Sobha Lalitha Devi:
Overview of the FIRE 2020 EDNIL Track: Event Detection from News in Indian Languages. 806-816 - Shubhanshu Mishra:
Non-neural Structured Prediction for Event Detection from News in Indian Languages. 817-822 - Ritesh Kumar, Bornini Lahiri, Atul Kr. Ojha, Akanksha Bansal:
ComMA@FIRE 2020: Exploring Multilingual Joint Training across different Classification Tasks. 823-828 - Fazlourrahman Balouchzahi, H. L. Shashirekha:
An Approach for Event Detection from News in Indian Languages using Linear SVC. 829-834 - Shubham Basak:
Event Detection from News in Indian Languages using Similarity Based Pattern Finding Approach. 835-837
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.