default search action
SDP@COLING 2022: Gyeongju, Korea
- Arman Cohan, Guy Feigenblat, Dayne Freitag, Tirthankar Ghosal, Drahomira Herrmannova, Petr Knoth, Kyle Lo, Philipp Mayr, Michal Shmueli-Scheuer, Anita de Waard, Lucy Lu Wang:
Proceedings of the Third Workshop on Scholarly Document Processing, SDP@COLING 2022, Gyeongju, Republic of Korea, October 12 - 17, 2022. Association for Computational Linguistics 2022 - Frontmatter.
- Arman Cohan, Guy Feigenblat, Dayne Freitag, Tirthankar Ghosal, Drahomira Herrmannova, Petr Knoth, Kyle Lo, Philipp Mayr, Michal Shmueli-Scheuer, Anita de Waard, Lucy Lu Wang:
Overview of the Third Workshop on Scholarly Document Processing. 1-6 - André Bittermann, Jonas Rieger:
Finding Scientific Topics in Continuously Growing Text Corpora. 7-18 - Zoran Medic, Jan Snajder:
Large-scale Evaluation of Transformer-based Article Encoders on the Task of Citation Recommendation. 19-31 - Puthineath Lay, Martin Lentschat, Cyril Labbé:
Investigating the detection of Tortured Phrases in Scientific Literature. 32-36 - Po-Wei Huang, Abhinav Ramesh Kashyap, Yanxia Qin, Yajing Yang, Min-Yen Kan:
Lightweight Contextual Logical Structure Recovery. 37-48 - Sonita Te, Amira Barhoumi, Martin Lentschat, Frédérique Bordignon, Cyril Labbé, François Portet:
Citation Context Classification: Critical vs Non-critical. 49-53 - Kaito Sugimoto, Akiko Aizawa:
Incorporating the Rhetoric of Scientific Language into Sentence Embeddings using Phrase-guided Distant Supervision and Metric Learning. 54-68 - Ioana Buhnila:
Identifying Medical Paraphrases in Scientific versus Popularization Texts in French for Laypeople Understanding. 69-79 - Mathias Parisot, Jakub Zavrel:
Multi-objective Representation Learning for Scientific Document Retrieval. 80-88 - Raef Kazi, Alessandra Amato, Shenghui Wang, Doina Bucur:
Visualisation Methods for Diachronic Semantic Shift. 89-94 - Kathryn Ricci, Haw-Shiuan Chang, Purujit Goyal, Andrew McCallum:
Unsupervised Partial Sentence Matching for Cited Text Identification. 95-104 - Autumn Toney, James Dunham:
Multi-label Classification of Scientific Research Documents Across Domains and Languages. 105-114 - Cai Yang, Stephen Wan:
Investigating Metric Diversity for Evaluating Long Document Summarisation. 115-125 - Yuan Zhuang, Ellen Riloff, Kiri L. Wagstaff, Raymond Francis, Matthew P. Golombek, Leslie K. Tamppari:
Exploiting Unary Relations with Stacked Learning for Relation Extraction. 126-137 - Nima Ebadi, Anthony Rios, Peyman Najafirad:
Mitigating Data Shift of Biomedical Research Articles for Information Retrieval and Semantic Indexing. 138-151 - Hiroki Yamauchi, Tomoyuki Kajiwara, Marie Katsurai, Ikki Ohmukai, Takashi Ninomiya:
A Japanese Masked Language Model for Academic Domain. 152-157 - Sergey Berezin, Tatiana Batura:
Named Entity Inclusion in Abstractive Text Summarization. 158-162 - Tohida Rehman, Debarshi Kumar Sanyal, Prasenjit Majumder, Samiran Chattopadhyay:
Named Entity Recognition Based Automatic Generation of Research Highlights. 163-169 - Akito Arita, Hiroaki Sugiyama, Kohji Dohsaka, Rikuto Tanaka, Hirotoshi Taira:
Citation Sentence Generation Leveraging the Content of Cited Papers. 170-174 - Lucy Lu Wang, Jay DeYoung, Byron C. Wallace:
Overview of MSLR2022: A Shared Task on Multi-document Summarization for Literature Reviews. 175-180 - Yulia Otmakhova, Thinh Hung Truong, Timothy Baldwin, Trevor Cohn, Karin Verspoor, Jey Han Lau:
LED down the rabbit hole: exploring the potential of global attention for biomedical multi-document summarisation. 181-187 - Benjamin Yu:
Evaluating Pre-Trained Language Models on Multi-Document Summarization for Literature Reviews. 188-192 - Ishmael Obonyo, Silvia Casola, Horacio Saggion:
Exploring the limits of a base BART for multi-document summarization in the medical domain. 193-198 - Rahul Tangsali, Aditya Jagdish Vyawahare, Aditya Vyankatesh Mandke, Onkar Rupesh Litake, Dipali Dattatray Kadam:
Abstractive Approaches To Multidocument Summarization Of Medical Literature Reviews. 199-203 - Kartik Shinde, Trinita Roy, Tirthankar Ghosal:
An Extractive-Abstractive Approach for Multi-document Summarization of Scientific Articles for Literature Review. 204-209 - Yury Kashnitsky, Drahomira Herrmannova, Anita de Waard, George Tsatsaronis, Catriona Fennell, Cyril Labbé:
Overview of the DAGPap22 Shared Task on Detecting Automatically Generated Scientific Papers. 210-213 - Domenic Rosati:
SynSciPass: detecting appropriate uses of scientific text generation. 214-222 - Anna Glazkova, Maksim Glazkov:
Detecting generated scientific papers using an ensemble of transformer models. 223-228 - Tornike Tsereteli, Yavuz Selim Kartal, Simone Paolo Ponzetto, Andrea Zielinski, Kai Eckert, Philipp Mayr:
Overview of the SV-Ident 2022 Shared Task on Survey Variable Identification in Social Science Publications. 229-246 - Alica Hövelmeyer, Yavuz Selim Kartal:
Varanalysis@SV-Ident 2022: Variable Detection and Disambiguation Based on Semantic Similarity. 247-252 - Óscar E. Mendoza, Wojciech Kusa, Alaa El-Ebshihy, Ronin Wu, David Pride, Petr Knoth, Drahomira Herrmannova, Florina Piroi, Gabriella Pasi, Allan Hanbury:
Benchmark for Research Theme Classification of Scholarly Documents. 253-262 - Arman Cohan, Guy Feigenblat, Tirthankar Ghosal, Michal Shmueli-Scheuer:
Overview of the First Shared Task on Multi Perspective Scientific Document Summarization (MuP). 263-267 - Abbas Akkasi:
Multi Perspective Scientific Document Summarization With Graph Attention Networks (GATS). 268-272 - Sajad Sotudeh, Nazli Goharian:
GUIR @ MuP 2022: Towards Generating Topic-aware Multi-perspective Summaries for Scientific Documents. 273-278 - Ashok Urlana, Nirmal Surange, Manish Shrivastava:
LTRC @MuP 2022: Multi-Perspective Scientific Document Summarization Using Pre-trained Generation Models. 279-284 - Sandeep Kumar, Guneet Singh Kohli, Kartik Shinde, Asif Ekbal:
Team AINLPML @ MuP in SDP 2021: Scientific Document Summarization by End-to-End Extractive and Abstractive Approach. 285-290
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.