default search action
7th W-NUT 2021: Online
- Wei Xu, Alan Ritter, Tim Baldwin, Afshin Rahimi:
Proceedings of the Seventh Workshop on Noisy User-generated Text, W-NUT 2021, Online, November 11, 2021. Association for Computational Linguistics 2021, ISBN 978-1-954085-90-9 - Tanvi Dadu, Kartikey Pant, Seema Nagar, Ferdous A. Barbhuiya, Kuntal Dey:
Text Simplification for Comprehension-based Question-Answering. 1-10 - Benjamin Olsen, Barbara Plank:
Finding the needle in a haystack: Extraction of Informative COVID-19 Danish Tweets. 11-19 - Mika Hämäläinen, Pattama Patpong, Khalid Alnajjar, Niko Partanen, Jack Rueter:
Detecting Depression in Thai Blog Posts: a Dataset and a Baseline. 20-25 - Yanfei Lei, Chunming Hu, Guanghui Ma, Richong Zhang:
Keyphrase Extraction with Incomplete Annotated Training Data. 26-34 - Minh Tran Phu, Minh Van Nguyen, Thien Huu Nguyen:
Fine-grained Temporal Relation Extraction with Ordered-Neuron LSTM and Graph Convolutional Networks. 35-45 - Duong Le, Thien Huu Nguyen:
Does It Happen? Multi-hop Path Structures for Event Factuality Prediction with Graph Transformer Networks. 46-55 - Won-Ik Cho, Soomin Kim:
Google-trickers, Yaminjeongeum, and Leetspeak: An Empirical Taxonomy for Intentionally Noisy User-Generated Text. 56-61 - Malte Feucht, Zhiliang Wu, Sophia Althammer, Volker Tresp:
Description-based Label Attention Classifier for Explainable ICD-9 Classification. 62-66 - Shohei Higashiyama, Masao Utiyama, Taro Watanabe, Eiichiro Sumita:
A Text Editing Approach to Joint Japanese Word Segmentation, POS Tagging, and Lexical Normalization. 67-80 - Sik Feng Cheong, Hai Leong Chieu, Jing Lim:
Intrinsic evaluation of language models for code-switching. 81-86 - Shuguang Chen, Gustavo Aguilar, Leonardo Neves, Thamar Solorio:
Can images help recognize entities? A study of the role of images for Multimodal NER. 87-96 - Joan Plepi, Lucie Flek:
Perceived and Intended Sarcasm Detection with Graph Attention Networks. 97-105 - Mengyi Gao, Canran Xu, Peng Shi:
Hierarchical Character Tagger for Short Text Spelling Error Correction. 106-113 - Heather C. Lent, Anders Søgaard:
Common Sense Bias in Semantic Role Labeling. 114-119 - Vivek Srivastava, Mayank Singh:
PoliWAM: An Exploration of a Large Scale Corpus of Political Discussions on WhatsApp Messenger. 120-130 - MohammadMahdi Aghajani, AliAkbar Badri, Hamid Beigy:
ParsTwiNER: A Corpus for Named Entity Recognition at Informal Persian. 131-136 - Johannes Bogensperger, Sven Schlarb, Allan Hanbury, Gábor Recski:
DreamDrug - A crowdsourced NER dataset for detecting drugs in darknet markets. 137-157 - Adithya Pratapa, Monojit Choudhury:
Comparing Grammatical Theories of Code-Mixing. 158-167 - Xue-Yong Fu, Cheng Chen, Md. Tahmid Rahman Laskar, Shashi Bhushan TN, Simon Corston-Oliver:
Improving Punctuation Restoration for Speech Transcripts via External Data. 168-174 - Yang Deng, Wenxuan Zhang, Wai Lam:
Learning to Rank Question Answer Pairs with Bilateral Contrastive Data Augmentation. 175-181 - Taichi Murayama, Shoko Wakamiya, Eiji Aramaki:
Mitigation of Diachronic Bias in Fake News Detection Dataset. 182-188 - José Carlos Rosales Núñez, Djamé Seddah, Guillaume Wisniewski:
Understanding the Impact of UGC Specificities on Translation Quality. 189-198 - José Carlos Rosales Núñez, Guillaume Wisniewski, Djamé Seddah:
Noisy UGC Translation at the Character Level: Revisiting Open-Vocabulary Capabilities and Robustness of Char-Based Models. 199-211 - Anna M. Kruspe, Matthias Häberle, Eike Jens Hoffmann, Samyo Rode-Hasinger, Karam Abdulahhad, Xiao Xiang Zhu:
Changes in Twitter geolocations: Insights and suggestions for future usage. 212-221 - Mostafa Mirshekari, Jing Gu, Aaron Sisto:
ConQuest: Contextual Question Paraphrasing through Answer-Aware Synthetic Question Generation. 222-229 - Simone Scaboro, Beatrice Portelli, Emmanuele Chersoni, Enrico Santus, Giuseppe Serra:
NADE: A Benchmark for Robust Adverse Drug Events Extraction in Face of Negations. 230-237 - Léo Jacqmin, Gabriel Marzinotto, Justyna Gromada, Ewelina Szczekocka, Robert Kolodynski, Géraldine Damnati:
SpanAlign: Efficient Sequence Tagging Annotation Projection into Translated Data applied to Cross-Lingual Opinion Mining. 238-248 - Evangelia Spiliopoulou, Tanay Kumar Saha, Joel R. Tetreault, Alejandro Jaimes:
A Novel Framework for Detecting Important Subevents from Crisis Events via Dynamic Semantic Graphs. 249-259 - Heereen Shim, Dietwig Lowet, Stijn Luca, Bart Vanrumste:
Synthetic Data Generation and Multi-Task Learning for Extracting Temporal Information from Health-Related Narrative Text. 260-273 - Jinfen Li, Lu Xiao:
Neural-based RST Parsing And Analysis In Persuasive Discourse. 274-283 - Elizabeth Soper, Stanley Fujimoto, Yen-Yun Yu:
BART for Post-Correction of OCR Newspaper Text. 284-290 - Teemu Vahtola, Mathias Creutz, Eetu Sjöblom, Sami Itkonen:
Coping with Noisy Training Data Labels in Paraphrase Detection. 291-296 - Shivendra Bhardwaj, Abbas Ghaddar, Ahmad Rashid, Khalil Bibi, Chengyang Li, Ali Ghodsi, Philippe Langlais, Mehdi Rezagholizadeh:
Knowledge Distillation with Noisy Labels for Natural Language Understanding. 297-303 - Thomas Hikaru Clark, Costanza Conforti, Fangyu Liu, Zaiqiao Meng, Ehsan Shareghi, Nigel Collier:
Integrating Transformers and Knowledge Graphs for Twitter Stance Detection. 304-312 - Sayan Ghosh, Dylan K. Baker, David Jurgens, Vinodkumar Prabhakaran:
Detecting Cross-Geographic Biases in Toxicity Modeling on Social Media. 313-328 - Amanda Bertsch, Steven Bethard:
Detection of Puffery on the English Wikipedia. 329-333 - Jekaterina Novikova:
Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text. 334-339 - Jakub Náplava, Martin Popel, Milan Straka, Jana Straková:
Understanding Model Robustness to User-generated Noisy Texts. 340-350 - Gabriel Oliveira dos Santos, Esther Luna Colombini, Sandra Avila:
CIDEr-R: Robust Consensus-based Image Description Evaluation. 351-360 - Sam Davidson, Jordan Hosier, Yu Zhou, Vijay K. Gurbani:
Improved Named Entity Recognition for Noisy Call Center Transcripts. 361-370 - Omid Kashefi, Rebecca Hwa:
Contrapositive Local Class Inference. 371-380 - Shubhanshu Mishra, Aria Haghighi:
Improved Multilingual Language Model Pretraining for Social Media Text via Translation Pair Prediction. 381-388 - Jian Yi David Lee, Hai Leong Chieu:
Co-training for Commit Classification. 389-395 - Abhinav Chinta, Jingyu Zhang, Alexandra DeLucia, Mark Dredze, Anna L. Buczak:
Study of Manifestation of Civil Unrest on Twitter. 396-409 - Sangah Lee, Hyopil Shin:
The Korean Morphologically Tight-Fitting Tokenizer for Noisy User-Generated Texts. 410-416 - Milan Straka, Jakub Náplava, Jana Straková:
Character Transformations for Non-Autoregressive GEC Tagging. 417-422 - Arij Riabi, Benoît Sagot, Djamé Seddah:
Can Character-based Language Models Improve Downstream Task Performances In Low-Resource And Noisy Language Scenarios? 423-436 - Aman Priyanshu, Aleti Vardhan, Sudarshan Sivakumar, Supriti Vijay, Nipuna Chhabra:
"Something Something Hota Hai!" An Explainable Approach towards Sentiment Analysis on Indian Code-Mixed Data. 437-444 - Yanzhu Guo, Virgile Rennard, Christos Xypolopoulos, Michalis Vazirgiannis:
BERTweetFR : Domain Adaptation of Pre-Trained Language Models for French Tweets. 445-450 - Yo Ehara:
To What Extent Does Lexical Normalization Help English-as-a-Second Language Learners to Read Noisy English Texts? 451-456 - Divesh R. Kubal, Apurva Nagvenkar:
Multilingual Sequence Labeling Approach to solve Lexical Normalization. 457-464 - Yves Scherrer, Nikola Ljubesic:
Sesame Street to Mount Sinai: BERT-constrained character-level Moses models for multilingual lexical normalization. 465-472 - Ana-Maria Bucur, Adrian Cosma, Liviu P. Dinu:
Sequence-to-Sequence Lexical Normalization with Multilingual Transformers. 473-482 - David Samuel, Milan Straka:
ÚFAL at MultiLexNorm 2021: Improving Multilingual Lexical Normalization by Fine-tuning ByT5. 483-492
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.