default search action
PRIME@MICCAI 2022: Singapore
- Islem Rekik, Ehsan Adeli, Sang Hyun Park, Celia Cintas:
Predictive Intelligence in Medicine - 5th International Workshop, PRIME 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings. Lecture Notes in Computer Science 13564, Springer 2022, ISBN 978-3-031-16918-2 - Zeynep Gürler, Islem Rekik:
Federated Time-Dependent GNN Learning from Brain Connectivity Data with Missing Timepoints. 1-12 - Magdalini Paschali, Qingyu Zhao, Ehsan Adeli, Kilian M. Pohl:
Bridging the Gap Between Deep Learning and Hypothesis-Driven Analysis via Permutation Testing. 13-23 - Mirwais Wardak, Sarah M. Hooper, Christiaan Schiepers, Wei Chen, Carina Mari Aparici, Guido A. Davidzon, Ophir Vermesh, Timothy F. Cloughesy, Sung-Cheng Huang, Sanjiv Sam Gambhir:
Multi-tracer PET Imaging Using Deep Learning: Applications in Patients with High-Grade Gliomas. 24-35 - Ayush Singla, Qingyu Zhao, Daniel K. Do, Yuyin Zhou, Kilian M. Pohl, Ehsan Adeli:
Multiple Instance Neuroimage Transformer. 36-48 - Reza Azad, Moein Heidari, Julien Cohen-Adad, Ehsan Adeli, Dorit Merhof:
Intervertebral Disc Labeling with Learning Shape Information, a Look once Approach. 49-59 - Lara Dular, Ziga Spiclin:
Mixup Augmentation Improves Age Prediction from T1-Weighted Brain MRI Scans. 60-70 - Gökay Sezen, Ilkay Öksüz:
Diagnosing Knee Injuries from MRI with Transformer Based Deep Learning. 71-78 - Anouar Kherchouche, Olfa Ben Ahmed, Carole Guillevin, Benoit Tremblais, Christine Fernandez-Maloigne, Rémy Guillevin:
MISS-Net: Multi-view Contrastive Transformer Network for MCI Stages Prediction Using Brain 18F-FDG PET Imaging. 79-90 - Reza Azad, Moein Heidari, Moein Shariatnia, Ehsan Khodapanah Aghdam, Sanaz Karimijafarbigloo, Ehsan Adeli, Dorit Merhof:
TransDeepLab: Convolution-Free Transformer-Based DeepLab v3+ for Medical Image Segmentation. 91-102 - Lars Schmarje, Stefan Reinhold, Timo Damm, Eric Orwoll, Claus C. Glüer, Reinhard Koch:
Opportunistic Hip Fracture Risk Prediction in Men from X-ray: Findings from the Osteoporosis in Men (MrOS) Study. 103-114 - Siwoo Nam, Myeongkyun Kang, Dong Kyu Won, Philip Chikontwe, Byeong-Joo Noh, Heounjeong Go, Sanghyun Park:
Weakly-Supervised TILs Segmentation Based on Point Annotations Using Transfer Learning with Point Detector and Projected-Boundary Regressor. 115-125 - Yassine Nasser, Mohammed El Hassouni, Rachid Jennane:
Discriminative Deep Neural Network for Predicting Knee OsteoArthritis in Early Stage. 126-136 - Moritz Binzer, Kerstin Hammernik, Daniel Rueckert, Veronika A. Zimmer:
Long-Term Cognitive Outcome Prediction in Stroke Patients Using Multi-task Learning on Imaging and Tabular Data. 137-148 - Selim Yürekli, Mehmet Arif Demirtas, Islem Rekik:
Quantifying the Predictive Uncertainty of Regression GNN Models Under Target Domain Shifts. 149-159 - Mehmet Yigit Balik, Arwa Rekik, Islem Rekik:
Investigating the Predictive Reproducibility of Federated Graph Neural Networks Using Medical Datasets. 160-171 - Roza G. Bayrak, Ilwoo Lyu, Catie Chang:
Learning Subject-Specific Functional Parcellations from Cortical Surface Measures. 172-180 - Zhiwen Wei, Sungjoon Park, Jaeil Kim:
A Triplet Contrast Learning of Global and Local Representations for Unannotated Medical Images. 181-190 - Furkan Pala, Islem Rekik:
Predicting Brain Multigraph Population from a Single Graph Template for Boosting One-Shot Classification. 191-202 - Imen Jegham, Islem Rekik:
Meta-RegGNN: Predicting Verbal and Full-Scale Intelligence Scores Using Graph Neural Networks and Meta-learning. 203-211
manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.