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Summary

In the field of robotics, teleoperation and grasping make sense and play a valuable

role, whether in terms of entertainment or practical application. It is meaningful for

robots to imitate human and finish some tasks such as grasping. With these abilities,

robots can really be developed to assist human in our daily life.

In order to enable robots to grasp a desired object through teleoperation, this the-

sis describes combined approaches of real time remote teleoperation and autonomous

grasping for human-robot cooperation. For providing a user-friendly system with sim-

ple operation commands to grasp di↵erent objects successfully, vision-based teleoper-

ation and autonomous grasping are combined. In the teleoperation process, motion

tracking is carried out by Kinect in real time to detect the positions of human shoul-

der, elbow and hand joints such that the robot can imitate human. Hand gestures are

detected by Kinect or AcceleGlove to control the robot hand gestures. Autonomous

grasping is then employed, which is e↵ective and generate more natural grasping ges-

tures. The autonomous grasping subsystems are robust and can grasp both known

and unknown objects. Two approaches of autonomous grasping are employed in this

thesis. In the first approach, hand gestures are recognized as the switch of teleopera-

tion and autonomy. At the end of teleoperation, the person closes his or her hand to

send a signal to the robot, then the system convert to autonomous grasping. After

that, the second subsystem begins for autonomous grasping for known objects, which
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contains table and object perception and grasp planning. In another approach, an

algorithm allows us to perform online adjustments to reach a pregrasp pose without

requiring premature object contact or regrasping strategies. We use three infra-red

(IR) sensors that mounted on the robot hand, and design an algorithm that controls

the robot hand to grasp objects using the information from the sensor readings and

the teleoperator.

To satisfy the requirement, high performance Meka robot is used. The robot has 26

DOFs in total, 7 DOFs for each arm, 5 DOFs for each hand and 2 DOFs for torso.

Experiment results show that it is e↵ective and user-friendly, and it has the capability

to complete the missions of grasping of known and unknown objects. For known ob-

jects, it can convert from teleoperation to autonomy smoothly with simple commands

from hand gestures of the user, and it can find the edge of objects and even track

mobile objects for unknown objects using IR algorithm. Both of the two strategies

enhance the success rates compared to pure teleoperation.
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Chapter 1

Introduction

The use of robots can be traced back to the end of the twentieth Century. With many

years’ trial and error and a large number of researchers’ contribution, many world

famous robots appear, such as ASIMO [3], PR2 [4] lightweight robot (LWR) [5] and

Robonaut [6]. Nowadays, robots fulfill some tasks and perform meaningful services,

from industrial manufacturing to healthcare, transportation, and exploration of the

deep space and sea. It is an increasing research topic due to robots’ useful applications

and challenging potential. Interacting and working with humans, the robots will

become a part of our lives.

1



1.1. RELATED RESEARCH AREAS

1.1 Related Research Areas

This thesis describes a method in which a robot imitates a human in performing the

task of grasping. The three fields related to the work done in this thesis are teleoper-

ation, autonomous grasping and human-robot interaction. This section describes the

related research areas.

1.1.1 Teleoperation

Teleoperation might be one of the first applications of robotics outside of industry

and military.

Teleoperation means operating a robot at a distance, where a human operator is in

control or human is in the loop [7]. A variety of interface components have been used

for teleoperation. For example, the phantom [8], which is a device used for controlling

end-e↵ectors, provides force feedback to the user. Other traditional devices such as

dataglove [9], exoskeletons [10], electromyographic muscular activity sensors [11] and

inertial sensors [12] which require intricate instruments or complex operations. The

most common devices used for teleoperation are the mouse and keyboard.

Vision-based teleoperation [13,14] have gained popularity in recent years as they are

more portable and do not require that the user wear any special equipment. However,

the limitation of vision-based method is that only partial information of human can

2



1.1. RELATED RESEARCH AREAS

be collected due to occlusion.

1.1.2 Autonomous Grasping

There are two main classes of object - known and unknown objects. A known object is

one identified by priori information whereas an unknown object does not. Particularly,

if both the shape and the appearance of the object are previously known, this object is

assumed as a known object. These shape and appearance are employed for relevant

grasping strategies through development [15] or supervised learning [16]. On the

contrary, unknown objects require more general methods due to the uncertainties in

the objects to generate suitable grasping points.

Although a variety of concepts and methods for grasping have been developed during

the last decades, grasping an unknown object still remains a challenging problem. For

known object where a full 3-D model can be obtained, various more robust approaches

can be used for grasping. For example, methods based on friction cones, or form-

closure and force-closure [17], or pre-stored primitives [18], etc. can be applied.

In reality, due to uncertainties of sensor limitations and unpredicted environment

conditions, it is di�cult to obtain a full 3-D model of an object through stereo camera

or other sensors such as a laser scanner. Therefore, it is necessary to extract grasp

points from partial information of an object.

3



1.1. RELATED RESEARCH AREAS

Some approaches have been explored to grasp unknown objects. An approach, de-

scribed in [19], of partial features predicts the grasp position of unknown objects

using 2D images. However, one grasp point is defined per object, which is not general

and may result in an unstable grasp. A system for grasping objects using unknown

geometry [20] was developed. This system requires a 360 degrees scan of an object

using a laser scanner on a rotating disc. This method is time-consuming and requires

that the object be placed on the rotary disc.

A framework of automatic grasping of unknown objects by a laser scanner and a

simulation environment is shown in [21]. Another method [22] combining online

silhouette and structured-light generates a 3D object model with a robust force closure

grasp. However, only several simple objects have been tested for both [21] and [22],

which cannot demonstrate that they are suitable for complicated and general objects.

A vision based approach was presented in [23]. Object information was obtained using

monocular and binocular visual cues and their integration. Curvature information [24]

was obtained from the silhouette of the object. The pose of the robot is then updated

and a suitable grasping configuration is achieved by maximizing the curvature value.

A strategy for grasping unknown objects based on co-planarity and color information

was developed in [25]. However, the environments in [25] are simple, which cannot

be applied to the real world.

4



1.1. RELATED RESEARCH AREAS

1.1.3 Human-robot Cooperation

Human-robot cooperation is useful for performing special tasks in dangerous, distant

or inaccessible environments in military missions such as clearing nuclear waste [26]

and defusing a bomb. They are also useful for applications such as serving elderly and

disabled people [27]. Such systems take advantage of the ability of both the human

and the robot. They reduce human workload, costs, fatigue-driven error and risk [28],

and augment human’s abilities. Hence, given the present state of robotics, it is one

of the fundamental methods for controlling robots.

In the applications stated above, there is synergy between robots and human. They

share a workspace and goals in terms of achieving the task. This close interaction

needs new theoretical models–there is need to improve a robots utility while evaluating

the risks and benefits of this robot for modern society.

There are many investigative studies on robot assistive technology for many applica-

tions. Specifically, robots are studied as tools to aid in daily tasks, act as guides and

becoming assistants with high communication behavior [29, 30].

The concept of human and robots sharing a common intent without complex commu-

nication was mentioned in [31]. The system consists of perception, recognition and

intention inference. The result of the study was positive although toys represented

robots.

5



1.2. RELATED WORK

Teleoperation with haptic feedback was developed to achieve a more natural and

e↵ective method for human-robot cooperation. This method of interaction allowed

for a more ecological interface [32,33]. Both the human operator and the robot share

control depending on the situation. This system is more intuitive for human operators

and has proven to be more e↵ective.

Another method of collaboration is to treat the human as a robot assistant while the

robot acts autonomously [34, 35]. The robot works autonomously until it encounters

a problem, where the robot will seek assistance from a person. Alternatively, the

robot performance could be improved through human suggestions.

Recently, Robonaut, an assistant humanoid robot designed by NASA [36], was sent

to outer space. Robonaut was teleoperated remotely with force feedback integrated.

1.2 Related Work

There are few approaches that combine teleoperation with autonomous grasping [37,

38]. Although there exist some combined approaches for other robot control, such as

local autonomous formation control [39], and event-based planning [40], they are not

for remote grasping.

Middle or long range sensors such as laser scanner [41] and stereo cameras [42] can de-

tect and localize objects fairly accurately, but they are not suitable for teleoperation.

6



1.2. RELATED WORK

Firstly, occlusion by the robot arm may occur during manipulation of the object.

Secondly, image acquisition and processing are generally not fast enough for online

reactive response in unstructured environments (e.g. when the object is moving).

Tactile sensors are employed as well in the following methods [43, 44], but they are

contact based sensing methods. For teleoperation, contacting objects is almost as

di�cult as grasping them. Besides, it lacks sensitivity and hence not suitable for

teleoperation.

Short range stereo cameras [45] mounted on the end-e↵ector were developed. However,

they have a narrow field of view and cannot be positioned at short distances to the

object. Otherwise, there may be no good grasp points. In addition, the camera is

being used for grippers, and might fail for humanoid hand due to the larger width,

which might cause occlusion of the object.

Optical infrared sensors have also been employed for final grasp adjustments. Al-

though they have less information compared to cameras or lasers, but they are less

sensitive to environmental changes and require less computation. The method in [46]

detects the orientation of an object surface using the IR sensors that fit inside the

fingers. Continuous Shared Control [47] combines brain signal and IR sensors to grasp

object. However, [46] can only adjust the fingers, and [47] can only be used for one

dimension of the end-e↵ector. [48] equips IR sensors on a gripper to adjust the griper

for a normal force to the object boundary. However, the objects are supposed to be

in the gripper before applying the method and it uses logic approach which is discrete

7



1.3. MOTIVATION AND OBJECTIVE

control.

1.3 Motivation and Objective

Current autonomous robots cannot meet real life expectations because of their limited

abilities for manipulation and interaction with humans. These robots could fulfill

some simple tasks, but the process may be time-consuming. Moreover, robots cannot

handle changes well without user intervention. With teleoperation, robots can receive

human’s commands in real time under human’s assistance to execute tasks. However,

teleoperation also has limitations. For example, simple teleoperation systems may

not be able to collect su�cient information from a person resulting in robots ignoring

some important tasks. On the other hand, teleopoeration systems that acquire more

data require intricate instruments or complex operations. In addition, even if the

systems can obtain full user information, it is hard to use in the real world without

a trained person to operate the robots.

In order to overcome these challenges, we develop two combined approaches, which

provide user-friendly operation. The first approach contains two subsystems for grasp-

ing known objects (see Fig. 1.1).

The teleoperation subsystem enables the end-e↵ectors to be brought close to the

desired object. In this system, the information from the Kinect sensor is continuously

detected from the human joints and sent to the robot control system. As the bridge of

8



1.3. MOTIVATION AND OBJECTIVE
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WKH�REMHFW

Figure 1.1: Overview of the proposed system structure

the two subsystems, hand gestures play a fundamental role in the switching. When

the person closes his hand, a signal is sent to the robot to switch to autonomous

grasping. The autonomous grasping subsystem contains table and object perception

and grasp planning.

Another approach is final grasping correction for teleoperation using three IR sen-

sors. It is e↵ective, light, robust, small size and cheap which are desired qualities for

assisting grasping in teleoperation. We chose the minimum number of sensors that

yields the most useful information, thus reducing the size of the structure and sim-

plifying the algorithm. Three sensors are mounted on the robot hand for localizing

a nearby object and providing error signals that drive the hand in three dimensions

based on a potential energy algorithm. The global minimum potential energy could

be calculated in order to look for a grasp point, as well as teleoperation also a↵ects

9



1.3. MOTIVATION AND OBJECTIVE

the trajectory of the hand; therefore, the combined result enables the end-e↵ector to

follow teleoperation and track the object at the same time.

In this work, Meka robot [2] is chosen, whose manipulators are 7 DOF arms, end-

e↵ectors are 5 DOF hands, and body is a 2 DOF torso.

Main features of the proposed telemanipulation system:

1, cooperative grasping. It combines the advantages of having human initiative, and

the accuracy and robustness of the robotic system.

2, need a little object knowledge. The proposed IR strategy is to grasp objects with

limited perception data. The three IR used in the current approach only gives one

dimension data.

3, online adjustment. It allows online grasp adjustments to estimate a suitable grasp

point of unknown objects without requiring premature object contact or regrasping

strategies.

4, robust grasping. The system is robust when grasping a wide range of objects and

even tracks mobile objects.

5, portable interface component. It employs the low cost Microsoft Kinect as an

interface instead of other higher end equipment for human motion capture.
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1.4. DISSERTATION OUTLINE

1.4 Dissertation Outline

The structure of this thesis is as follows.

Firstly, Chapter 2 gives an overview of the teleoperation and autonomous grasping

systems and provides a detailed description of the experimental methods, including

di↵erent teleoperation techniques

In particular, it consists of three subsections. Subsection one describes teleoperation

in this system using Kinect sensor. Both the second and third subsections looks

into autonomous grasping, describing di↵erent approaches for grasping known and

unknown objects respectively.

In Chapter 3, the results of the experiments are discussed. A comparison of the

two di↵erent methods - teleoperation grasping and the combined method grasping, is

done. The results demonstrate that the combined method is more e↵ective and has

a higher success rate.

Next, Chapter 4 discusses the experimental results and demonstrates the contribution

of this thesis.

Finally, Chapter 5 concludes with a section discussing the future work for better

human-robot cooperation.
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Chapter 2

Telemanipulation System

To obtain the benefits of human dexterity and robot accuracy, the telemanipulation

systems consist of human teleoperation and robot autonomous grasping. Direct po-

sition control is carried out for teleoperation. The data detected from human joint

positions are transformed to the shoulder and elbow joint angles after inverse kine-

matics. For the first apporach, the gestures of hands are also detected continuously.

Once one of the hands of the human is closed, the control is switched to autonomous

grasping immediately. The robot then detects the nearest object to the tool frame on

the table in front of the robot and generates a suitable grasp for the object. Alter-

natively, another approach of autonomous grasping that adjusting final grasp using

short range Infra-Red porximity sensors is also presented. In this IR approach, sen-

sors can search for the edge of an object. Teleoperation and IR signal have combined

contribution to the robot grasping.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

2.1 Human-teleoperated Pre-grasp Position

The proposed teleoperation system consists of a person, a MEKA robot and two

Kinect sensors. The main purpose of this subsystem is to enable the end-e↵ector to

be brought to a good position close to an object for autonomous grasping. In this

system, the person is at a local place while the robot is at a remote place interacting

with the environment. The process includes three steps:

(1) human arm tracking;

(2) human hand detection;

(3) robot control.

+XPDQ .LQHFW &RPSXWHU &RQWUROOHU 0HND�URERW

&DPHUDV

6FUHHQ

9LVLRQ�)HHGEDFN

9LVLRQ�)HHGEDFN

Figure 2.1: Overview of the proposed teleoperation structure

2.1.1 Human Arm Tracking

Motion tracking is a process for generating human skeleton information which contains

position data of human joints (see Fig.2.2). It is carried out using Kinect which has a

color image CMOS sensor and depth sensor including an infrared laser projector and

a monochrome CMOS sensor as shown in Fig.2.3.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

Figure 2.2: Skeleton. The right figure shows the view from Kinect, and the left figure
the human skeleton extracted from the sensor data.

Figure 2.3: Kinect

As shown in Fig.2.4, Human joint detection mainly contains three processes, user

generation, pose detection, and skeleton generation. In the process of user generation,

human in the view of depth camera are detected using 3D raw data from sensors. In

this process, the main functionalities includes: (1) Detecting the current number of

users; (2) Calculating the center location of users’ mass; (3) Tracking a new user. Pose

detection enables the system to check if the user is in the specific position. Calibration

will start after specific positions are detected. In this work, we choose T-shape pose

as this specific pose. Skeleton generation calibrates the human skeleton, gets the joint

14



2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

6NHOHWRQ
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)DLOXUH

*HW 6NHOHWRQ�
'DWD

7UDFNLQJ�
6NHOHWRQ

2WKHU�
$SSOLFDWLRQ

&DOLEUDWLRQ

Figure 2.4: Flow chart of detecting joint data

data continuously using tracking algorithm, and enables the application to transfer the

data to other applications [49]. In these processes, data of human joints is generated

using Open Natural Interaction (OpenNI) which communicates vision/audio sensors

and NITE, a motion tracking middleware.

The Kinect sensor could recognize 15 joints using the middleware of NITE, including

head, neck, torso, left shoulder, left elbow, left hand, right shoulder, right elbow, right

hand, left hip, left knee, left foot, right hip, right knee, right foot. For every joint,

the data contains the position of the human joints, the orientations, and confidences.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

In this project, the joints of the arms are employed for robot manipulators.

2.1.2 Human Hand Detection

(a) Point cloud of closed hand (b) Point cloud of open hand

Figure 2.5: Point cloud of hand

By hand detection process, hand point clouds and hands’ states can be provided [50].

We assume the palm faces to the camera. The first step is to detect the hand’s

position by the skeletal information getting from the above human tracking. The

next step is to estimate the distance of a point of raw data and the hand position.

If the distance is less than a threshold, the point will be deemed as one element of

point cloud of the hand and split from the whole point cloud of the human. Lastly,

two states of the gestures (closed and open) are identified. The centroid of the hand

point cloud is calculated before computing normalized 3 ⇥ 3 covariance matrix ⇣ of

the set of hand points in 3 dimensions. The eigenvalues of the covariance matrix

reflects the distribution of the points in the main directions. In other words, the

eigenvalues represent the three dimensions of the hand point cloud which contains

the main information of the geometry of the point cloud. Therefore the 2 highest

eigenvalues eig1(⇣) and eig2(⇣) are used for detecting the hand state.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

eig2(⇣)/eig1(⇣) = c (2.1)

where, if the ratio c is less than a threshold, the point cloud is considered as a long

shaped object, and vice versa. Based on the experiment, c is chosen to be 0.4.

Left Hand

Rgiht Hand detect points 
near the wrist

position

segment the 
hand cluster 
from the arm

Distinguish 
whether the hand 
is closed or open

Figure 2.6: Flow chart of detecting hands

Figure 2.7: Hand detection. The right figure shows the hand detection result from
the left figure.

Acceleglove (AnthroTronix, Inc.) is employed as another method of hand detection to

compare with using Kinect. Acceleglove could detect the finger and hand information

to be used for some applications such as controlling robots, video games, and simu-

lators [51]. In this experiment, the Acceleglove enable human and robot to interact

with each others.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

First of all, the data of the fingers and palm are detected through 6 accelerometers.

Every accelerometer outputs x, y and z signals. If the glove is horizontal, z axis

is along gravity vector, as well as x and y axis parallel to a horizontal plane (see

Fig. 2.8). When x axis is rotated or there is an acceleration in the y direction, the

value of y axis would be changed. Analogously, when y axis is rotated or there is an

acceleration in the x direction, the value of x axis would be changed.

Figure 2.8: acceleglove output signal convention (top view, right hand) [1]

After detecting the data from sensors, the gestures could be trained recognized using

the raw signals. In the process, four gestures, start, stop, closed and open, are recorded

for each hand in a library. Besides, around 20 group data are recorded for every

gesture, because more instances trained for one gesture could enhance the recognition

confidence. A probability filter is employed to recognize the gestures; therefore, only

if the probability is more than the threshold can the gesture be recognized.

At last, the gesture information are transferred to the robot using TCP/IP, because

Acceleglove is used under Windows, while Robot uses ROS under Linux in this ex-

periment.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

2.1.3 Robot Control

In this experiment, MEKA robot is used for executing the tasks assigned by the

person.

Figure 2.9: MEKA robot [2]
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Figure 2.10: MEKA robotics arm joints: (a)the posture shown 0 joint angles, arrows
show positive rotation and torque directions; (b) Z axis is the axis of joint rotation [2]

Direct position control is used for the arm motion tracking. The MEKA robot (see

Fig.2.9) is a humanoid robot with 7 DOFs for each arm. Its coordinate sets can
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Figure 2.11: Coordinate sets of a person

Table 2.1: Modified Denavit-Hartenberg representation of the right arm of MEKA

Link a(m) ↵ d(m) ✓

1 0 90o 0.18465 �90o

2 0 90o 0 90o

3 0.03175 90o 0.27857 90o

4 -0.00502 90o 0 0

be seen from Fig.2.10. Two methods are usually provided for transforming human

joint data to a robot. One is transforming orientations of the main human joints to

the relative robot joints. Another one is to calculate the robot’s joints from the end-

e↵ectors of human hands. As di↵erent individuals have di↵erent arm sizes, the second

method may cause end-e↵ectors out of range. Hence, the first method is employed in

this experiment. The data detected from human joint positions are transformed to

the robot shoulder and elbow joint angles. �
i

is the the orientation of joint J
i

of the

robot arm. As seen from Fig.2.11, the right arm angles are determined as follows.
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

A(x1,y1,z1)

B(x2,y2,z2)
C

01

'X

'Y
'Z

X

Y
Z

Camera frame

Figure 2.12: Shoulder-elbow on {X 0
, Y

0
, Z

0} frame

In 2.12, frame {X 0
, Y

0
, Z

0} is parallel to the camera frame with (x1, y1, z1) as the

origin. On the Y � Z plane (see 2.13), we can get,

�0 = atan2(z1 � z2, y1 � y2) (2.2)

As can be seen from 2.14, AC is the projection of AB on X

0�Y

0 plane. AC1 and AC2

are projections of AC on z axis and y axis respectively. AD1 and AD2 are projections

of AC1 and AC2 on AC. Thus,

~

AC = ~

AD1 + ~

AD2 (2.3)

then,
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Figure 2.13: Shoulder-elbow on Y �Z

plane
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Figure 2.14: Shoulder-elbow on Y

0�Z

0

plane

AC = (z2 � z1) cos(⇡/2� �1) + (y2 � y1) cos(�0) (2.4)

�1 = atan2((x2 � x1),�AC)

= atan2((x2 � x1), ((z1 � z2) cos(⇡/2� �1) + (y1 � y2) cos(�0))) (2.5)

From 2.15, frame {X 00
, Y

00
, Z

00} is parallel to the camera frame with (x2, y2, z2) as the

origin, and BF is projection of BE on X

00�Z

00 plane. �2 can be computed as follow,

F = Rotz(�0)
0
1RRotz(�1), (2.6)

P = F

�1
V32, (2.7)

�2 = atan2(�P

x

,�P

z

), (2.8)

where V

ij

is the vector points from frame i to frame j, P = [P
x

, P

y

, P

z

] , and
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Figure 2.16: The whole arm on
{X, Y, Z} frame

Rotz(⇤) =

0

BBBB@

cos(⇤) �sin(⇤) 0

sin(⇤) cos(⇤) 0

0 0 1

1

CCCCA
(2.9)

We only consider the angles of the joints, so that the frame transformation from joint

0 to joint 1 can be represented by,

0
1R =

0

BBBB@

0 �1 0

0 0 �1

�1 0 0

1

CCCCA
(2.10)

As shown in From 2.16,

�2 = acos(V12V23) (2.11)
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2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

In order to achieve smooth motion for robot, mean filter is employed to reduce noise

of the robot joint data. The positions calculated after the above algorithm at time t1,

t2, t3, ..., ti, ti+1, ti+2, ..., ti+k

, ..., are denoted by q(t1), q(t2), q(t3), ..., q(ti), q(ti+1),

q(t
i+2), ..., q(ti+k

), ..., where q(t
i

) is a vector of the 4 joints’ angles.

q(t
i

) = [�1, �2, �3, �4]
T

i

(2.12)

Then, the positions transfer to the robot at t
i+k

are:

qd(t
t+k

) =

P
k

j=1 q(ti+j

)

k

(2.13)

Figure 2.17: MEKA robotics hand joint names and directions: the posture shown 0
joint angles, arrows show positive rotation and torque directions [2]

Robot hands are mainly for grasping objects after the arm has reached the desired

position. As seen from Fig.2.17, each hand has 5 DOFs, including 3 fingers driven by

3 tendon(J2, J3, J4) and a 2-DOF thumb driven by a tendon(J1) and directly driven

by a motor(J0) [2]. The encoders measure the tendon position instead of every joint

24



2.1. HUMAN-TELEOPERATED PRE-GRASP POSITION

position. Under the circumstances, the true finger pose could neither be measured

nor uniquely determined. Thus, there are only two gestures of the hands (closed and

open) in this thesis.

2.1.4 Feedback System

(a) cameras mounted on the robot head (b) cameras mounted on the robot hands

(c) vision feedback from the camera of the

robot head

(d) vision feedback from the camera of the

robot hand

Figure 2.18: Feedback system

Visual feedback of the robot environment is employed during teleoperation, which

displays the robot environment to the user. As shown in Fig.2.18, in the feedback

system, three cameras at the robot environment obtain the views from the robot head
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2.2. GESTURE BASED GRASP ACTIVATION

and hands, and a monitor at local displays the three views. One of the three cameras

is mounted on the head of Meka robot as robot’s eyes, and the rest(Point Grey) are

equipped on the end-e↵ectors besides the thumbs. The feedback images are shown in

Fig.2.18 (c) and (d).

2.2 Gesture Based Grasp Activation

The teleoperation behaviors attempt to move the manipulators such that the hand is

near an object and send a signal to start autonomous grasping. The grasping behavior

will search for the nearest object besides the robot hand using another Kinect, and

consequently generate a suitable position and orientation to grasp it.

2.2.1 Table And Objects Perception

Before generating grasping strategies, the robot has to get the information of the

objects. In this experiment, all graspable objects are assumed on a table. Therefore,

the table should be detected, then the objects can be separated and be identified.

All data are point cloud generated from a Kinect sensor mounted on a table. Envi-

ronment perception contains two main components:

• table detection: it could segment the table, and extract the clusters above the table

and remove the useless information.
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2.2. GESTURE BASED GRASP ACTIVATION

• object detection: recognize what are the clusters above the table.

Three assumptions in environment perception process:

• all the graspable objects are on a table which is the dominant plane in the robot

environment.

• the distance between two objects is more than 3 cm.

• alternatively, the objects for grasping are upright on the table.

A table is detected by finding the dominant plane in the point cloud using RANSAC

(Random Sample Consensus) [52], which is an algorithm for robust fitting of models

in the presence of many data outliers [53]. A table can be detected no matter what

color it is. We assume:

• a plane can be estimated by n points which are not in a line, where n = 3.

• the number of the pixels detected from sensor in total is M .

• p is the probability of a randomly selected points which are in a refined model.

• p

fail

is the probability of a randomly selected points which are in an unrefined

model.

• k is the number of iteration.

Then, the algorithm:

• selects n points at random and estimates the plane

• finds how many points(l) of M fit the model (plane) with a given tolerance.

• if l is big enough, the model is considered as a fit model.

• repeat above processes k times if not success.
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2.2. GESTURE BASED GRASP ACTIVATION

Consequently,

p

fail

= (1� p

n)k (2.14)

then take the logarithm of both sides,

k =
log(p

fail

)

log(1� p

n)
(2.15)

After segmenting the table, the objects which are placed on the table can be recog-

nized. The objects are separated as clusters, which are the points corresponding to

an individual object. If a cluster matches a mesh (see Fig. 2.19) from a database

which contains a large number of common objects, this point cloud will be given a

unique ID and it is considered as a known object. All unknown objects which can-

not match any model in the database are filtered for reducing noises and avoiding

grasping an uncommon object. In addition, every object’s position with reference to

camera frame is stored according to their ID.

ICP (Iterated Closest Point) is employed for aligning two free-form shapes of a cluster

and a mesh [54]. 4 dimensions of an object are fixed, since the positions of the object

can be detected from the sensor and it is upright on the table as the assumptions;

therefore 2D ICP are used to identify the object. There are two sets of points, and

the elements of model mesh and a cluster are {m
i

}Nm

i=1 and {c
i

}Nc

i=1 respectively. The

aim is to solve the transformation matrix T , which can best match the mesh and the

cluster. In this experiment, the registration is 2D under Euclidean transformation.

28



2.2. GESTURE BASED GRASP ACTIVATION

The 3 parameters are rotation ✓ and translation (p
x

, p

y

). There are several steps in

the algorithm,

(1) start from initial transformation

(2) for every point on {c
i

}Nc

i=1, find the closest point on {m
i

}Nm

i=1.

(3) find best transformation for this correspondance.

(4) update the transformation.

(5) iterate step (2)-(4) using the parameters of ✓, p
x

and p

y

.

Then, the transformation function is

T2D(a) =

0

BBBB@

cos✓ sin✓ p

x

�sin✓ cos✓ p

y

0 0 1

1

CCCCA
(2.16)

where a is a vector of [✓, p
x

, p

y

].

The error function is

e

2 =
1

N

c

N

cX

i=1

||match

m

(x
i

)� T2D(a) ⇤ xi

|| (2.17)

where, x
i

is the position of a point in {c
i

}Nc

i=1 which is in R2, match

m

(x
i

) is the closest

point from {m
i

}Nm

i=1 to x

i

with Euclidean distance.
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2.2. GESTURE BASED GRASP ACTIVATION

To search for the best transformation matrix, we can find vector a that minimize the

error.

Figure 2.19: Table and object detection. The left image shows a table, a can and
MEKA robot from Kinect RGB sensor. The right image shows the detection of the
table and the can and robot model from RVIZ (A 3d visualization environment for
robots using ROS) simulation.

2.2.2 Deciding How to Grasp

After getting the object information, the object positions are converted from cam-

era frame to robot base frame and the nearest object from the end-e↵ector can be

detected.

The calibration of the camera frame and the robot base frame is designed before

the experiment. Four non-coplanar points are chosen, then their positions can be

collected in both the camera frame and the robot base frame using a known object.

In the camera frame, the centroid position of the object point cloud is considered

as the position of the object. In addition, when the end-e↵ector grasps the object

manually, the centroid point position of the object with respect to robot tool frame
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2.2. GESTURE BASED GRASP ACTIVATION

could be calculated using a grasping software, Graspit!, which will be explained in

the next paragraph. Hence, the object position with respect to the robot base frame

can be computed though the frame relationship of the robot. Lastly, the transform

matrix of the camera frame and the robot base frame C

R

T can be calculated as follows:

C

R

T = [RP1
R

P2
R

P3
R

P4][
C

P1
C

P2
C

P3
C

P4]
�1 (2.18)

where R and C denote the robot base frame and the camera frame respectively, and

P

i

= [x
i

, y

i

, z

i

, 1]T (i 2 {1, 2, 3, 4}).

Figure 2.20: Tool frame [2]

Then it is necessary to generate a grasp pose for the hand. To do this, the called soft-

ware Graspit! [55] is employed to compute the position and orientation relationship

between a hand and an object. However, in order to grasp with natural manipulation
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2.2. GESTURE BASED GRASP ACTIVATION

motion, only the position of the tool frame is used from Graspit!, while the orien-

tation is generated through the object position with respect to the robot shoulder.

Specifically, the x axis of the tool frame (see Fig. 2.20) is vertical to the table and

the z axis of the tool frame is from the shoulder to the object that is projected onto

the table plane. For di↵erent classes of object, there are di↵erent grasp poses which

are stored in the database in advance. For example, a can grasped from the side is

preferred, while a short object such as a bowl should be grasped from above (see, Fig.

2.21).

(a) Grasping a Coco-Cola can

from side

(b) Grasping a bowl from above

(c) Grasping a bowl from above

Figure 2.21: Graspit! simulation
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After the grasp pose is generated, inverse kinematic is used for the end-e↵ector reach-

ing the pre-grasp position. For the purpose of maximizing the grasping area, the

torso would bend and rotate around to reach the desired position if the object is not

reachable at the current state. First of all, inverse kinematic solver can be generated

by OpenRAVE using Meka robot’s kinematics. OpenRAVE is a software for testing,

developing, and deploying motion planning algorithms for real-world robots and their

applications [56]. Because Meka arm has 7DOF with a redundant joint, a free angle

is desirable, and J2 is selected as the free angle for Meka robot. The free angle is a

variable and must be changed for the solver to compute a inverse kinematics solution.

After that, it is necessary to check the joint limits, iterate the free angle to search

the solutions, and choose the closest one to the current joint state from the available

solutions. Lastly, the highest level procedure enable the inverse kinematics solutions

be calculated with respect to the base frame of the robot by providing necessary robot

data such as torso angles [2].

In addition, minimum jerk trajectory [12] is used between the pre-grasp and the grasp

poses such that the end-e↵ector moves smoothly and does not hit the object. For

every joint, the minimum jerk trajectory from angle ✓

i

to angle ✓

f

over T seconds is:

✓(t) = ✓

i

+ (✓
f

� ✓

i

)(10(
t

T

)3 � 15(
t

T

)4 + 6(
t

T

)5) (2.19)

The gesture based grasp activation has some specific contributions related to the ex-

isting approaches. Motion planning is not required during autonomous grasping. The

human operator is supposed to bring the end-e↵ector close enough to the object, so
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2.3. IR-BASED GRASP ASSISTANCE

that the remaining trajectory is very short, hence a collision between the manipulator

and environment is quite unlikely.

Figure 2.22: Jerk trajectory

2.3 IR-based Grasp Assistance

This section presents that teleoperation is assisted by three infrared sensors which are

mounted on the hand. The first capability is that the hand can autonomously move

to a suitable pre-grasp position if at least one of the three sensors detects the object.

The second functionality of the system is robust. Even though it is a mobile object,

the end-e↵ector also could track it. Thirdly, it could avoid collision, for the reason

that it will keep a distance to any object. With the more sensors detect the object,

the distance would be larger. At last, additional algorithm for orientation can adjust

the hand according to the object surface, so that it can avoid the failure caused by

the collision of the robot fingers and polygon objects.

This algorithm is based on our previous work of teleoperation. KINECT is employed
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as the sensor to collect human joint position data, then the robot could mimic human

after kinematics. At the same time, the human hand gesture could be recognized as

open or closed, which could provide the signal for the robot to open or close hand.

2.3.1 Hardware–infrared Sensors with Robot Hand

The algorithm utilizes data from the infrared sensors to construct a potential field,

which is used to control the end-e↵ector of the robot. The design is driven by a series

of constraints, including size, sensor response and field of view.

Infrared Proximity Sensors (Short Range - Sharp GP2D120XJ00F) are employed

in this experiment. After calibration, the range of every IR sensor is [4cm, 12cm].

Optical proximity sensors are e�cient, robust, and less sensitive to light, which suit

our application of online grasp adjustments from a pre-grasp point. In addition, IR

sensors have much lower computational expense due to its simplicity compared with 3

dimensional sensors. Low computational complexity is crucial for real time feedback

in our system.

In order to improve the stability of grasping, the object should be wrapped in the

curve of the palm and have enough contact area with the palm in the z direction,

so that the sensors are mounted above the palm with a triangle. To achieve the

e↵ect with the least sensors, three sensors are arranged as Fig. 2.23 for adjusting the

hand on x, y and z directions. Sensor 1 and 3 are arranged in this configuration to

find, respectively, the y and z direction edges of the object with respect to the sensor
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Figure 2.23: Hardware of IR sensors: The red points are the centers of sensor, and
two edges of objects are supposed to be on the sensor 1 and sensor 3 centers as the
blue rectangular.

frame. If the sensors are too close to each other, sensor 2 may be shift out of the

edges which may lead to lose signal. In contrast, if the distances among sensors are

too large, the whole size of the structure would be large and it cannot track small

objects. Thus, the ideal distance is 4 � 5cm. Based on the sensor configuration, we

assume the objects to be grasped are not too small.

2.3.2 Final Grasping Algorithm

Given a series of observations from the sensors, the goal is to search for the edges of

the object.

When the hand is close to an object, the signal from the IR sensors will be used to
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construct a potential field, U
IR

. The hand would move to a desired pre-grasp location

corresponding to the minimum of potential functions for the x, y, and z directions,

which are defined respectively as follows:

U

IRx

=
1

2
[(r1 � a1)

2 + (r2 � a2)
2 + (r3 � a3)

2] (2.20)

U

IRy

=
1

2
(r1 � a1)

2 (2.21)

U

IRz

=
1

2
(r3 � a3)

2 (2.22)

where,

l1 and l2 are the minimum and maximum ranges for the sensor respectively,

r

i

2 [l1, l2], ri are the distances detected from sensor i,

a

i

are the desired r

i

values of pre-grasp position.

If all of the three sensors cannot detect any object, U
IR

is zero; therefore, the execution

of the assisted pre-grasp motion depends on the initial placement. On the contrary,

if any one of the sensors detects an object, U
IR

has values.

y-direction

In the y direction (see (2.23)), if sensor 1 detects the object, the hand moves towards

the negative y direction, and vise versa. According to the experiment experience, a1

should be close but less than l2. This enables the hand to move in the positive y

direction slowly to avoid vibrations caused by changing direction too frequently when

37



2.3. IR-BASED GRASP ASSISTANCE

sensor 1 detects the edge of the object. Thus, we have

8
>>>><

>>>>:

r1 < a1, move to negative y direction

r1 = a1, stable in y direction

r1 > a1. move to positive y direction

(2.23)

z-direction

The motion in the z direction is similar with that of the y direction.

8
>>>><

>>>>:

r3 < a3, move to positive z direction

r3 = a3, stable in z direction

r3 > a3. move to negative z direction

(2.24)

x-direction

In the x direction (see (2.26)), it should meet the following requirements:

If more than one sensor detects the object, it may cause r1 + r2 + r3 become small.

What is more, it means the hand may move on the y or z direction, which is elaborated

through analyzing U

IRy

. In this case, the hand keeps a distance from the object to

avoid hitting the object.
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If sensor 1 and sensor 3 cannot detect the object, as well as sensor 2 can, the hand

moves to be close to the object and keep a shorter distance to the object compared

to the previous case.

The values of a
i

should satisfy the condition:

a1 + a2 + a3 = d+ 2l2 (2.25)

where d is the ideal distance from the sensor to the object for grasping. Therefore,

when sensor 1 and sensor 3 are out of the edge of the object(r1 = r3 = l2), r2 will

become d to keep stable, which means the robot can close hand directly to grasp the

object.

8
>>>><

>>>>:

r1 + r2 + r3 < a1 + a2 + a3, move to positive x direction

r1 + r2 + r3 = a1 + a2 + a3, stable in x direction

r1 + r2 + r3 > a1 + a2 + a3. move to negative x direction

(2.26)

From (2.20), it is clear that all sensors contribute to the x direction and have no

di↵erence between each other in the form. Thus, in some particular cases, such as

grasping slim objects, the hand will move close to the object no matter which sensor

detects the object while the rest of the two sensor readings are l2. This enables the

robot to robustly grasp a wide range of objects.
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Next, we design virtual forces that drive the desired hand position. The virtual forces

are derived from potential energy as follows:

F

x

= �rU

IRx

= �[(r1 � a1) + (r2 � a2) + (r3 � a3)] (2.27)

F

y

= �rU

IRy

= �(r1 � a1) (2.28)

F

z

= �rU

IRz

= �(r3 � a3) (2.29)

This virtual force vector is fed to a virtual mass-damper system to derive the desired

hand position.

F = mẍ+ kẋ (2.30)

where mẍ is the component of inertial force and kẋ is the component of spring force,

the following equations can be derived,

ẍ = �c

x

ẋ+ F

x

(2.31)

ÿ = �c

y

ẏ � F

y

(2.32)

z̈ = �c

z

ż + F

z

(2.33)

where, c
x

> 0, c
y

> 0 and c

z

> 0 are the parameters to tune the damping. ⇠

IR

x

,

⇠

IR

y

, and ⇠

IR

z

are the desired hand position to reduce the potential energy. Because

positive force drives the hand to negative direction in y axis, the component of F
y

is negative in (2.32), and it is inverse in x and z directions (see 2.31 and 2.33). The
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IR algorithm outputs are the positions and velocities of tool frame in x, y and z

directions.

Figure 2.24: Conrol block diagram. FK and IK denote forward & inverse kinematics
maps respectively.

If one or more sensors detect an object, the system will be converted from entirely

teleoperation to the proposed combined system. The combined system is illustrated

in Fig. 2.24.

In the system, in order to match the data from IR algorithm, teleoperation output

is the end-e↵ector position with fixed orientation. The positions of the end-e↵ector

are obtained by calculating the forward kinematics. The positions at time points

t1, t2, t3, ..., are denoted by �⇠

tel

(t1),�⇠

tel

(t2),�⇠

tel

(t3), ..., where �⇠

tel

(t
i

) is the po-

sition changed during teleoperation. The final position is given by:

⇠(t
i

) = �

IR

⇠

IR

+ �

tel

�⇠

tel

(t
i

) + ⇠(t
i�1) (2.34)

where,
�

IR

+ �

tel

= 1, (2.35)

and ⇠

IR

the position from IR algorithm, ⇠ the position combining teleoperation and

IR algorithm, �
tel

> 0 and �

IR

> 0 are the parameters for tuning the proportion of

teleoperation and IR algorithm in the system.
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2.3.3 Adjustment For Orientation

To grasp a polygon robustly, we develop an algorithm based on potential energy

for adjusting robot hand orientation. Thus, the robot can tune the orientation of

the hand autonomously using this algorithm before performing the adjustment of

positions. It is assumed that all of the three sensors detect the same flat surface. To

simplify the algorithm, only roll and yaw of the hand are considered. We define:

U

IR↵

=
1

2
[(r3 � r2)

2] (2.36)

U

IR�

=
1

2
[(r1 � r2)

2] (2.37)

where, the subscripts ↵ and � denote the roll and yaw of the hand respectively.

The adjustment strategy for the roll orientation is that if the value of sensor 3 is

less than that of sensor 2, the hand should rotate to negative roll orientation to

decrease the di↵erence of the values of sensor 3 and sensor 2, and vice versa. This is

summarized as follows:

8
>>>><

>>>>:

r3 < r2, rotate to negative roll orientation

r3 = r2, stable in roll orientation

r3 > r2. rotate to positive roll orientation

(2.38)

The adjustment strategy for the yaw orientation is similar to that roll orientation,

but involves sensors 1 and 2 instead. It is summarized as follows:

8
>>>><

>>>>:

r1 < r2, rotate to positive yaw orientation

r1 = r2, stable in yaw orientation

r1 > r2. rotate to negative yaw orientation

(2.39)

To realize the above-mentioned strategy, the virtual forces are generated:

42



2.3. IR-BASED GRASP ASSISTANCE

F

↵

= �rU

IR↵

= �(r3 � r2) (2.40)

F

�

= �rU

IR�

= �(r1 � r2) (2.41)

The angles of roll and yaw can be computed using:

↵̈ = �c

↵

↵̇ + F

↵

(2.42)

�̈ = �c

�

�̇ � F

�

(2.43)

where, c
↵

> 0 and c

�

> 0 and c

z

> 0 are the parameters to tune the damping.
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Chapter 3

Experiment Results and Discussion

In the experiments described here, the performance of gesture based grasp activation

and IR-based grasp assistance is evaluated. The experiments are implemented using

Robot Operating System (ROS).

3.1 Robot Setting

Before starting experiments, the robot is set up. The parameters of Meka robot arms

and hands are set as Table 3.1 and Table 3.2.

The manipulator uses joint angle control with gravity compensation, while the hand

employs both joint angle control with gravity compensation and torque control with

gravity compensation.

For joint angle control with gravity compensation, the dynamic equation is:
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3.1. ROBOT SETTING

Table 3.1: Parameters of the arms of MEKA robot

Parameters
Arm joints

Shoulder Elbow

J0 J1 J2 J3

Mobility range (Robot
right arm) [deg]

-47 to 197 -77 to 77 0 to 144 -80 to 125

Force resolution 3 mNm

Slew Rate [deg/s] 0-30

Joint controller sti↵-
ness

0.75

Joint controller mode Position Control

Angular resolution 0.022 degree

Payload (each arm) 0 to 2.4 Kg

M(q)q̈ + C(q, q̇)q̇ +G(q) = ⌧ (3.1)

where, q is a vector of joint variables, ⌧ the control torque vector, M(q) the inertia

matrix, C(q, q̇)q̇ the Coriolis and centrifugal force vector, and G the gravitational

force vector.

The controller is given by:

⌧ = K(q � q

d

) +D(q̇ � q̇

d

) + I

Z
(q � q

d

)dt+G (3.2)
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3.1. ROBOT SETTING

Table 3.2: Parameters of the hands of MEKA robot

Parameters
Hands

Thumb Forefinger Middle
Finger

Ring
Finger

J0,J1 J2 J3 J4

DOF 2 1 1 1

Mobility range [deg] 0 to 300,
0 to 300

0 to 300 1 0 to 300

where K, D and I are diagonal constant matrices, and q

d

is the desired position.

For joint torque control with gravity compensation, the controller is:

⌧ = ⌧

d

+G (3.3)

where ⌧

d

is the desired torque for grasping object.

In order to avoid crushing the hands or objects during grasping but to pick up objects

robustly after grasping, the final grasp should employ torque control with gravity for

the hands. The strategy for grasping by hands is:

• In the joint angle control with gravity compensation mode, enable the hand to be

in a preshaped pose.
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3.2. TELEOPERATION RESULTS

• After the hand preshape, change J1-J4 (fingers) to joint torque control with gravity

compensation mode and a torque=120mNm to close the fingers, while J0 (thumb)

posture is kept constant as in the previous mode.

• To open the hand, switch all joints back to position control, and set J0-J5 to 0

degrees.

3.2 Teleoperation Results

In this experiment, the robot can grasp objects by imitating human using entirely

teleoperation. The teleoperation e↵ects are demonstrated through lag analyzation.

 

Figure 3.1: Teleoperation with virtual robot
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3.2. TELEOPERATION RESULTS

For the purpose of testing safety, the simulation (see Fig. 3.1) is performed first. The

experiment provides a RVIZ (ROS visualization)3D geometrical model of MEKA

robot and thus generates arbitrary view point. After verifying that the robot model

could imitate the human, we implement the application on the real robot.

Figure 3.2: Teleoperation with real robot. The first image shows the robot mimics
the person to move the arms. The second image shows pre-grasp. The third image
shows the robot mimics the person to grasp an object.

The robot can follow the user’s motion to achieve some applications such as grasping.

The teleoperation results based on the real robot to pick up a ball are illustrated

in Fig. 3.2. The robot arm can follow the user’s arm motion to reach a pre-grasp
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3.2. TELEOPERATION RESULTS

position. Then, if the user close the hand, the robot can close the hand to grasp the

object directly.
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Figure 3.3: Degree of joints during a motion

As can be seen from Fig. 3.3, in this experiment, Kinect collects the data of 3 joints for

the right arm during a simple motion. The figure shows the delay of the system. The

red line, blue line, and green line represent the data collected from Kinect, joint angles

sent to the robot and the current robot joint angles respectively. For convenience,

the joint positions collected from Kinect are converted to robot joint angles in this
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figure. The frequency of the system to collect data and set data to robot is 30 times

per second. The delay between data collected from Kinect to data sent to the robot

is mainly caused by the mean filter. The mean filter collected 5 sets data to calculate

one average set of data, which is approximately 0.133s delay. With the mean filter,

the data is smoother than the raw data from Kinect. Alternatively, the delay between

data sent to the robot to data read from the robot is caused by two factors. One

factor is the system frequency which is about 0.033s. Another factor is caused by

the robot system. The delay is influenced by the velocities of the user and the robot.

The slower the arm move, the smaller the delay is, while the smaller velocity of the

manipulator is, the larger the delay is.

3.3 Experimental Results of Gesture-based Grasp

Activation

3.3.1 Autonomous Grasping Results

Similar to teleoperation experiments, autonomous grasping is also simulated on RVIZ

first then be performed on the real robot. As seen from Fig. 3.4, the blue box wraps

the desired object that will be grasped. The red and green arrows besides the blue

box are the x and y axis of the right tool frame (see Fig. 2.20) for grasping a can,

which roughly illustrates that the grasp points are correct.
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Figure 3.4: Simulation on RVIZ. It shows the detection of the table, the can, and the
robot model. The blue cube indicates the selected object.

In addition, Fig. 3.5 shows that the robot that grasps a can. The robot can grasp

a known object that matches the database on a flat surface. The object can be

randomly put on the plat surface, as long as it is in the range for robot to grasp. If

the object is a little far to grasp, the robot would bend the torso to fetch the object,

which can extend the graspable area. However, if there are a lot of objects on the

table, the person has to choose the object manually and set the command for choosing

in advance. In the combined system, the intended object is the one that is closest to

the robot wrist frame when the user sends a close command, which will be elaborated

in the section of the combined method results.

3.3.2 Combined Method Results

Developed methods of combining teleoperation and autonomy through the signal of

the human hand were confirmed in the experiment. Fig. 3.6 shows the experimental
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Figure 3.5: Autonomous grasping. The first image shows pre-grasp. The second
image shows the robot hand wraps an object. The third image shows the robot lifts
the object.

results in grasping a can. The robot can imitate the person to move the arm and

then autonomously pick up the can.

As illustrated in Fig. 3.7, the results using full teleoperation and using the gesture

based grasp activation are compared. The figures show the position of the left tool

frame, from rasing up the arm from the initial position, grasping an object, to lifting

the object up. In the fully teleoperated mode, the top picture of Fig. 3.7 illustrates
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Figure 3.6: Grasping object using the combined method. The first image shows
the teleoperation. The second image shows the switching from the teleoperation to
autonomous grasping. The third image shows autonomous grasping.

that the end-e↵ector is not stable during grasping, because the person has to adjust

the end-e↵ector to reach an appropriate position. It is not easy to reach the position

precisely and it depends on the skills of the person. On the contrary, by using the

combined method, the trajectories of the motion are much smoother during the whole

procedure, including the switching point from teleoperation to autonomous grasping.

It turns to autonomous grasping at 5.04s, then picks up the object. The total time

is 14.56s, which is almost half of the time compared with using full teleoperation. As

illustrated in figure, y has large variation during grasping phase, because the end-

e↵ector is first moved to a safe pre-grasp position to avoid possible collision with
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(a) Full teleoperation

(b) Gesture-based

Figure 3.7: The position of the tool frame during grasping

tabletop. Obviously, with the aid of autonomous grasping, human need not train the

skills to grasp the object. It makes the whole process be much easier operated by the

user. Thus, the system is much more e↵ective.

54



3.3. EXPERIMENTAL RESULTS OF GESTURE-BASED GRASP ACTIVATION

Figure 3.8: Grasp postures. The left image shows grasping a can. The right image
shows grasping a tape.

Table 3.3: Grasping success rates

XXXXXXXXXXXXMethod
Object

can plastic bottle tape

Full Teleoperation 4/10 3/10 9/10

Human-aided 10/10 10/10 10/10

We do some experiments to compare the two methods. In the experiments, three

objects which have di↵erent shapes (can, plastic bottle and tape) are studied. Table

3.3 demonstrates that the success rates of the combined method are higher than

that of full teleoperation. The failures of full teleoperation mainly include two types

across the various tests. The first type is the grasp poses, which are determined

by the limitation of teleoperation. Since it is not easy to collect full data of the

person without using additional teleoperation components, only four robot joints can
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be controlled. Therefore, the robot can only grasp the object from above instead of

from the side. In particular, a natural pose for grasping a tape is from above, while a

natural pose for grasping a long cylinder is from the side. That is also the reason that

the success rates of grasping the can are much lower than the rates of grasping tapes.

Another source of failure for full teleoperation is human skills. Even for grasping the

tape, the failure cannot be avoided because of the human skills, and the skill level

is di↵erent from one person to another. Especially, in this experiment, higher skills

are required because of the lack of force feedback. In contrast, using the combined

method even without training for the person, the robot can use the redundant DOFs

of the manipulators and grasp the object accurately by adapting the grasp to di↵erent

shapes of the object using the structure based grasp activation method.

3.4 Experimental Results of IR-based Grasp As-

sistance

In this proces, the ability of the IR algorithm is evaluated using graspable area detec-

tion, graspable object detection, and tracking object ability test. In addition, some

experiments are performed combining teleoperation.
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Figure 3.9: Teleoperation with and without the proposed IR Algorithm. The blue
cylinder represents a soda can, and the points the pre-grasp positions.

3.4.1 Comparison of Full Teleoperation with Full Assistance

Fig. 3.9 shows 15 samples of the grasp positions of teleoperation, with and with-

out the proposed IR algorithm in the robot base frame. For convenience, the center

of sensor 3 represents the grasp positions. To illustrate the advantages of the al-

gorithm with IR sensors, teleoperation data from KINECT, which is used for both

with and without IR algorithm, is recorded and played back. The recorded data

are randomly selected in the conditions that the IR sensors could detect the object.

In this experiment, 5 out of 15 points are successful for fully teleoperated grasping,

while 15 points are successful for fully assisted grasping. The variances of position

are (3.0898⇥10�4
m

2
, 1.7⇥10�3

m

2
, 3.4870⇥10�4

m

2) and (1.8371⇥10�4
m

2
, 1.2504⇥
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10�4
m

2
, 1.1074⇥10�4

m

2) for without and with IR algorithm respectively in the form

of (variance(x),variance(y),variance(z)). The results show that the novel algorithm

could attract the end-e↵ector to be close to an object for a robust grasp after it

detects the object.

3.4.2 Ratio of Teleoperation to Assistance

The ratio of teleoperation to autonomy

r =
�

tel

�

IR

(3.4)

is an important factor a↵ecting the ease of use of the system. We conduct an experi-

ment that investigates the e↵ect of this ratio and estimates an optimal value.

Figure 3.10: 2D vision feedback

Five healthy right-handed subjects, comprising 3 males and 2 females (subject 3

and subject 4), participated in this experiment. All subjects are naive to robot

teleoperation, and two subjects are naive to robotics in general. The experimental
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task is to teleoperate the robot arm to grasp an object, namely a beverage can.

The object position is fixed, and the initial positions of the robot and the subject

are similar for every trial. Before data collection, each subject is given a session to

familiarize himself/herself with the system, by performing 10 full-teleoperation and

10 full-autonomy trials. Also, they are instructed on how to use the IR-based control,

in that the robot hand, on detection of the object, will move to a suitable grasp

autonomously, but they can continue to move his/her hand to position the robot

hand. When the sensors detect the object, audio feedback, in the form of a ‘beep’, is

sounded to the subject. As long as the output of sensor 2 is less than 5cm, and those

of sensors 1 and 3 larger than 10cm, the robot hand closes automatically. The subject

can also raise his/her left hand as a ‘manual override’ command for closing the robot

hand. Visual feedback is obtained from a monitor showing a video streamed from a

monocular camera mounted on the robot head. Both the object and the robot hand

can be seen clearly from this view (see Fig. 3.10). In the experiment, the value of

the ratio r is varied from the set ⌦
r

= {0, 0.5, 1, 2,1}, where r = 1 refers to the

full-teleoperation mode with �

IR

= 0. Each subject performs a total of 50 trials over

10 sessions, i.e., each session contains 5 trials. The order of r from chosen from ⌦
r

is

randomized, and subjects are not aware of the r values.

IR sensors can improve the grasp ability during teleoperation. Table 3.4 shows the

success rates, which we denote by s

r

, with di↵erent values of r. Without IR sen-

sors, the uncertainty of teleoperation, which is the main cause of low success rate

with r = +1, cannot be ignored. It is di�cult for the subject to localize the robot
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Table 3.4: Grasping success rates with di↵erent ratio of teleoperation and IR algo-
rithm

r 0 0.5 1 2 + 1

subject 1 9/10 10/10 10/10 9/10 7/10

subject 2 8/10 10/10 10/10 7/10 3/10

subject 3 8/10 9/10 9/10 9/10 2/10

subject 4 7/10 9/10 9/10 9/10 3/10

subject 5 8/10 8/10 8/10 9/10 6/10

hand accurately due to the lack of depth information in 2D visual feedback. In addi-

tion, di↵erent dimensions between human and robot arms pose di�culty for accurate

grasping. On the contrary, with IR sensors, the user only needs to roughly drive the

robot hand close to the object, then the robot can search for the object autonomously.

Although human error cannot be eliminated, the success rate with IR-based grasp

assistance can be significantly improved.

We quantify the e↵ectiveness of teleoperation by two measures: e↵ort in grasp place-

ments, and error recovery ability. We define e↵ort in grasping placement as

e = s · t (3.5)

where,

t is the total duration starting from the time an object is detected to the time the

hand arrives at the pre-grasp points,
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s is the distance of travel of the end-e↵ector during t,

e is the e↵ort in grasping placement, which reflects the time and end-e↵ector move-

ment during positioning.

The samples for Fig. 3.11 are these of successful grasping of Table 3.4. From the

general trend of the 5 subjects, with larger r, the e↵ort is larger. If the influence of

IR algorithm is too small, like r = +1, the person has to manually teleoperate the

end-e↵ector to the desired position with great e↵ort, since it is very hard to drive

the end-e↵ector to the intended position with teleoperation delay and only 2D visual

feedback. In that case, the end-e↵ector will likely travel over a longer distance and

duration, i.e. greater e↵ort.

On the other hand, the error recovery ability refers to the ease of which the robot hand

trajectory can be altered to the intended one after the sensors detect a wrong object.

In our experiment, we quantify it as the distance of the real position of end-e↵ector

with the proposed IR algorithm from the ideal position with full teleoperation. High

error recovery ability allows ease of manual override when the robot tracks a wrong

object. In our experiment, the user teleoperates the robot hand to move close to an

object before moving away. The error of end-e↵ector from the final position to the

desired position of teleoperation, denoted by e

f

, can be seen from Fig. 3.12. It is

obvious that with larger influence of teleoperation, the recovery ability is larger.

Fig. 3.13 shows an example of the user driving the robot hand to approach and

then move away from an object. For ease of comparison, teleoperation is simulated
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Figure 3.11: E↵ort in grasp placement for di↵erent ratios of teleoperation to assis-
tance. Mean values and standard deviations are shown.

by recorded data as seen from Fig. A.1(b), and the rest(Fig. 3.13(a-e)) uses this

teleoperation data. Fig. A.1(c) to Fig. A.3(c) illustrate the di↵erent e↵ects using

di↵erent ratios from r = 0 to r = +1. Generally, the system is entirely teleoperative

until the sensors detect an object. With less teleoperation, it is able to track the

object more accurately as shown in 3.13(a-c). However, more teleoperation enables
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Figure 3.12: Error in final position(e
f

) for di↵erent ratios of teleop to assistance.
Mean values and standard deviations are shown.

users to change the trajectories more easily according to their will, as shown in Fig.

3.13(d-e).

In order to get an optimal parameter of r, all of the above conditions including success

rates, e↵ort in grasping placement and error in final position should be considered.

The criterion function for r is defined as
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(a) r = 0 (b) r = 0.1

(c) r = 0.3 (d) r = 0.5

(e) r = 1 (f) r = +1

Figure 3.13: The position of IR sensors with respect to robot base frame during the
person moves close to an object then moves away
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� =

8
><

>:

f(�), � = e

f

f(�)/s
r

. � = e

(3.6)

where,

f(⇤) is a normalization algorithm for an subject,

s

r

is success rate in Table. 3.4.
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Figure 3.14: The combined e↵orts of grasp placement and error recovery ability. Mean
values and standard deviations are shown.

Because e in (3.5) is based on the condition of successful grasps, the case � = e in

(3.6) should take into account the e↵ect of the success rate s

r

. Note that � is the

e↵ect of the 5 users. Small � suggests that e↵ort in grasp placement or error in final

position is less, and the success rate is higher. Hence, from Fig. 3.14, the optimal

choice for r is around r = 1, which gives the least combined e↵ort and final error with

a small standard deviation. It allows the robot hand to move away from the wrong
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object as commanded by the user, but generate a stable grasp automatically in the

absence of user intervention.

3.4.3 Graspable Areas

The graspable area for the IR algorithm is experimentally verified for sample objects,

including objects with circular and rectangular cross sections. In the experiment, the

sensor initial positions are fixed, and the objects are put on every sample point of a

map in di↵erent trails. If the sensors could detect the object and the hand could grasp

the object successfully, the position of the object would be marked. This experiment

is in the x�y plane without z axis, and the sample distances of x and y directions are

both 1cm in the map. In Fig. 3.15, end cross ”⇥” represents the center of the surface

facing the IR sensors. If the distance from object to sensors is more than around

12cm, the hand could not grasp the object. At the same time, the object cannot be

too close to the hand so as to avoid collision. The range of sensors are [4cm, 12cm],

and the distance of the sensor to the hollow of the palm is 3 � 4.5cm; therefore, the

available range in x direction should be around 8.5�9cm for rectangular object. The

width of the object (cube) surface facing to the IR sensors is 6cm, and the distance

between sensor 1 and sensor 2 is 4cm; therefore, the available range in y direction

should be around 10cm for rectangular object. Hence, with some tolerance of sensor

noises and errors, the graspable area is very close to expectation. It is similar for

other shape objects such as circular object (see Fig. 3.15(b)).
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(a) Graspable area map of a sample object with

rectangular cross-section.
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Figure 3.15: Graspable area maps verified experimentally. The shaded rectangle and
circle are sample objects. End ”⇥” represents the position of the center of the surface
of the object facing the IR sensors.

3.4.4 Graspable Objects

The proposed method enables a robot to grasp a wide range of regular and irregular

object as long as the objects are not too small. For ease of analysis, the experiments in

this section are based on an entirely autonomous mode of operation, while without any

teleoperation. Besides, it employs the algorithm of positioning but not adjustment

for orientation.

As can be seen from Fig. A.3, a person hands over an object to the robot in the

range of IR sensors but out of range of a direct grasp. Then the robot hand moves to

a pre-grasp position and closes the hand to grasp the objects. Irregular objects such

as a cutter, tape and toy hand, as well as slim objects such as a marker pen can be
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stably grasped. If only one sensor detects the object, the hand also will move close

to the object, thus ensuring that slim objects can also be grasped. In addition, the

sensors are close enough to each other so that even slim objects are detected by at

least one sensor.

(a) collision (b) transparent object

Figure 3.16: Failures of grasping

However, it fails to grasp transparent objects, which is a limitation of IR sensors (see

Fig. 3.16(b)).

Table 3.5: Grasping success rates

degree 0 15 30 45 60 75 90

Success rate 5/5 5/5 5/5 5/5 5/5 5/5 5/5

degree 105 120 135 150 165 180

Success rate 3/5 2/5 0/5 5/5 5/5 5/5
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Figure 3.17: Object orientation test

Unsuitable orientation is another reason of failure. To test the influence of orientation

for positioning algorithm without orientation adjustment, a box is used as a goal

object on the table as shown in Fig. 3.17. The surface of the box towards the sensors

has dimensions of 137mm⇥57mm. The angle ✓ ranges from 0 to 180 degrees in steps

of 15 degrees. The hand orientation is fixed, but the position varies according to the

grasp algorithm. With ✓ 2 [105, 135] degrees (see Table 3.5), the fingers may collide

with the object as Fig. 3.16(a).

3.4.5 Adjustment of Orientation

Unsuitable orientation may cause failure for grasping. While the orientation issue

can be circumvented by teleoperation, it requires additional e↵ort from the user. In

this thesis, we look into the orientation issue especially to achieve more autonomous
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grasping. The adjustment of orientation is developed to improve the system to become

more intuitive.
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Figure 3.18: Orientation result

In order to deal with the orientation issue, we explore the orientation adjustment

algorithm. Fig. 3.18 shows that the robot hand is able to fit the orientation of a cube.

The experiment setup can be seen from Fig. 3.17, and the object is rotated about

the z-axis by an angle ✓ that ranges from �45 to 45 degrees. Only the results for the

yaw orientation are shown; the results for the roll orientation are similar. The initial

yaw orientation of the hand is 0 degree, and the steady state yaw orientation after

the algorithm converges is compared with the object orientation. In the 7 samples,

the maximum error between the hand orientation and the object orientation is 3.6081

degrees, while the minimum error is 0.1611 degrees. The result demonstrates that

the robot hand is able to match the object orientation with the proposed algorithm.
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3.4.6 Tracking Mobile Object

(a) Camera setting

(b) View from the camera mounted above

the table

Figure 3.19: Object trajectory detection
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Figure 3.20: Tracking mobile object. The black rectangle is an object. A is a point
on the corner of the object. The blue nearly rectangular line is the trajectory of the
object. The green stars are the trajectory of sensor 3. The three red circles represent
the three sensors. It is with respect to robot base frame.
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Figure 3.21: Trajectories of sensor 3 and the object during the tracking task

This proposed IR algorithm enables the robot to not only grasp an object robustly

but also track it in 3 dimensions.

To test the tracking ability, a box represented by a point labeled ’A’ in Fig. 3.20 is

translated by hand to trace the edge of 15cm⇥ 15cm rectangle. In this experiment,

the box trajectory can be detected using vision method. A camera is mounted above

a table, and a red circle is marked on the top of the box. We can get the pixel position

of the red circle center, then the object position with respect to the camera frame

can be calculated with a scaling(see Fig. 3.19).

This experiment is only performed on the x�y plane, since the result in the z direction

is similar as that in the y direction. Fig. 3.20 shows the paths taken by sensor 3 and

the object on the x � y plane after the tracking task, and Fig. 3.21 the trajectories
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in the x and y directions.

In the top graph of Fig. 3.21, when the object is moving in the positive x direction,

only sensor 2 can detect the object; therefore, sensor 3 has almost the same trajectory

with ’A’ point. When the object is moving forwards to the positive y direction, sensor

1 is pointing just o↵ the left edge of the object face parallel to the x direction, resulting

in an o↵set between the object and sensor 3. After that, sensor 1 also detects the

object, and the o↵set becomes larger. In the bottom graph of Fig. 3.21, when the

object is moving in the positive y direction, only sensor 2 can detect the object as

stated above. However, both sensors 1 and 2 can detect the object most of the time

in the opposite direction, and the distance from the sensor to the object is larger. It

is the reason why the trajectory length is less than 15cm in the y direction.

73



Chapter 4

Discussion

The key motivation for this thesis is in establishing an e↵ective system for a human-

robot cooperative grasping. Our approach enables the robot to combine teleoperation

and autonomous grasping. The experiments show that the user can remotely operate

the robot to a suitable pre-grasp position using the Kinect sensor. Next, the robot

can either grasp an object after being switched to full autonomous mode using hand

gesture commands or perform on-line adjustment of the final grasp to assist the user.

Gesture-based approach combines the advantages of having human initiative, and the

accuracy and robustness of the robotic system. Compared to previous approaches, it

needs no full feedback from the robot and tedious path planning.

IR-based algorithm neither tries regrasping strategies, premature object contact, nor

full object information. Instead it requires a little object knowledge from IR readings.
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It allows online grasp adjustments to search for the edge of an object. In the experi-

ments, the algorithm performed very well, and the robot successfully grasped a large

number of unknown objects. Although unsuitable orientations of polygon objects

may cause failure using only position algorithm, an additional algorithm enables the

robot to match the object orientation.

There exists an optimal ratio of teleoperation to assistance in our IR-based algorithm.

The optimal choice for r is around r = 1, which gives the least combined e↵ort

and final error with a small standard deviation. It allows the robot hand to move

away from the wrong object as commanded by the user, but generate a stable grasp

automatically in the absence of user intervention.

Another highlight of this proposed IR algorithm enables the robot to not only grasp

an object robustly but also track it in 3 dimensions.
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Chapter 5

Conclusion and Future Work

In this thesis, we have presented e↵ective systems of human-robot cooperative grasp-

ing. The systems are developed to operate the robot through combining teleoperation

and autonomous grasping. Initially, teleoperation of the robot was implemented with

a Microsoft Kinect.

Subsequently, two autonomous grasp approaches were developed for known and un-

known objects respectively. For known objects, gesture based grasp activation per-

formed grasping an object without human intervention. IR-based grasp assistive was

also developed that enables a robot to perform on-line adjustment of the final grasp

during teleoperation. It is a novel method to deal with uncertainty in the environ-

ment during teleoperated grasping. For unknown objects, three IR sensors are used

for proximal sensing the object distance. A potential function based algorithm pro-

vided a corrective signal for the hand to close in on the object using the distance
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information provided by the sensors. The experiment results demonstrate that a

wide range of regular and irregular objects can be grasped, and moving objects can

by tracked robustly.

The results proves that the combined approach provides a more precise and e↵ective

grasp as compared to a fully teleoperated grasp. A combined teleoperation system

provides more flexibility in control and allows quick modification of the process during

operation, which is better than full autonomous grasping in certain tasks.

The system can be improved if we embed the sensors in the robot hand instead of

mount on the hand. This will be dealt with in the future research. Another limitation

of our work is lack of force feedback, which makes the teleoperation less precise. This

issue could be handled after improving haptic technology.
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A.1. APPENDIX 1

(a) (b) (c)

(d) (e) (f)

Figure A.1: Grasp experiments: for every object, the top picture shows the initial
position of the sensor detecting an object. The middle and the bottom pictures show
the final grasp from front view and side view respectively.
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A.1. APPENDIX 1

(a) (b) (c)

(d) (e) (f)

Figure A.2: Grasp experiments: for every object, the top picture shows the initial
position of the sensor detecting an object. The middle and the bottom pictures show
the final grasp from front view and side view respectively.
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A.1. APPENDIX 1

(a) (b) (c)

Figure A.3: Grasp experiments: for every object, the top picture shows the initial
position of the sensor detecting an object. The middle and the bottom pictures show
the final grasp from front view and side view respectively.
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