Nothing Special   »   [go: up one dir, main page]

create a website
Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. (2012). JAMMAZI, RANIA ; Aloui, Chaker.
In: Energy Economics.
RePEc:eee:eneeco:v:34:y:2012:i:3:p:828-841.

Full description at Econpapers || Download paper

Cited: 112

Citations received by this document

Cites: 59

References cited by this document

Cocites: 23

Documents which have cited the same bibliography

Coauthors: 0

Authors who have wrote about the same topic

Citations

Citations received by this document

  1. Unveiling time-varying asymmetries in the stock market returns through energy prices, green innovation, and market risk factors: wavelet-based evidence from China. (2024). Hossain, Mohammad Razib ; Ramzan, Muhammad ; Alvarado, Rafael ; Adebayo, Tomiwa Sunday ; Abbasi, Kashif Raza.
    In: Economic Change and Restructuring.
    RePEc:kap:ecopln:v:57:y:2024:i:3:d:10.1007_s10644-024-09684-z.

    Full description at Econpapers || Download paper

  2. Forecasting the Crude Oil prices for last four decades using deep learning approach. (2024). Choudhury, Karabi Dutta ; Sen, Abhibasu.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:88:y:2024:i:c:s0301420723011492.

    Full description at Econpapers || Download paper

  3. A novel hybrid model with two-layer multivariate decomposition for crude oil price forecasting. (2024). Sun, Jingyun ; Zhao, Zhengling ; Wang, Shouyang.
    In: Energy.
    RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031341.

    Full description at Econpapers || Download paper

  4. How to select oil price prediction models — The effect of statistical and financial performance metrics and sentiment scores. (2024). Darcy, Anne ; Budin, Constantin ; Haas, Christian.
    In: Energy Economics.
    RePEc:eee:eneeco:v:133:y:2024:i:c:s0140988324001749.

    Full description at Econpapers || Download paper

  5. The role of green energy stock market in forecasting Chinas crude oil market: An application of IIS approach and sparse regression models. (2024). Sharif, Arshian ; Muhammadullah, Sara ; Khan, Faridoon ; Lee, Chien-Chiang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:130:y:2024:i:c:s0140988323007673.

    Full description at Econpapers || Download paper

  6. Forecasting the term structure of commodities future prices using machine learning. (2023). Saporito, Yuri F ; Figueiredo, Mario.
    In: Digital Finance.
    RePEc:spr:digfin:v:5:y:2023:i:1:d:10.1007_s42521-022-00069-3.

    Full description at Econpapers || Download paper

  7. Conditional autoencoder pricing model for energy commodities. (2023). You, Rongyu ; Teka, Hanen ; Liu, Zhenya.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:86:y:2023:i:pa:s0301420723007717.

    Full description at Econpapers || Download paper

  8. A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network. (2023). Cheng, LI ; Xue, Minggao ; Zhao, Geya.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pb:s0301420723006670.

    Full description at Econpapers || Download paper

  9. Forecasting the crude oil prices with an EMD-ISBM-FNN model. (2023). Wang, Donghua ; Zheng, Chunling ; Fang, Tianhui.
    In: Energy.
    RePEc:eee:energy:v:263:y:2023:i:pa:s0360544222022897.

    Full description at Econpapers || Download paper

  10. A new hybrid deep learning model for monthly oil prices forecasting. (2023). Gong, XU ; Guan, Keqin.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006345.

    Full description at Econpapers || Download paper

  11. Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?. (2023). Niu, Hongli ; Xu, Kunliang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:128:y:2023:i:c:s0140988323006278.

    Full description at Econpapers || Download paper

  12. Transformer-based forecasting for intraday trading in the Shanghai crude oil market: Analyzing open-high-low-close prices. (2023). Gao, Tianxiao ; Huang, Wenyang ; Wang, Xiuqing ; Hao, Yun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:127:y:2023:i:pa:s0140988323006047.

    Full description at Econpapers || Download paper

  13. What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting. (2023). Wang, Shouyang ; Wei, Yunjie ; Lin, Wencan ; Cheng, Zishu.
    In: Energy Economics.
    RePEc:eee:eneeco:v:123:y:2023:i:c:s0140988323002347.

    Full description at Econpapers || Download paper

  14. Forecasting the real prices of crude oil: What is the role of parameter instability?. (2023). Wang, Yudong ; Hao, Xianfeng.
    In: Energy Economics.
    RePEc:eee:eneeco:v:117:y:2023:i:c:s0140988322006120.

    Full description at Econpapers || Download paper

  15. Deep Reinforcement Learning for Gas Trading. (2023). Michler, Christian ; Granger, Nikita P ; Cy, Alexander ; Miao, Yinsen ; Wang, Yuanrong.
    In: Papers.
    RePEc:arx:papers:2301.08359.

    Full description at Econpapers || Download paper

  16. Neuro-wavelet Model for price prediction in high-frequency data in the Mexican Stock market. (2022). Miranda, Montserrat Reyna ; Salcido, Vicente Gomez ; Roldan, Ricardo Massa.
    In: Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance).
    RePEc:imx:journl:v:17:y:2022:i:1:a:6.

    Full description at Econpapers || Download paper

  17. A Hybrid Model for China’s Soybean Spot Price Prediction by Integrating CEEMDAN with Fuzzy Entropy Clustering and CNN-GRU-Attention. (2022). Cai, YI ; Tang, Zhenpeng ; Liu, Dinggao.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:23:p:15522-:d:980424.

    Full description at Econpapers || Download paper

  18. Exploring the Trend of Commodity Prices: A Review and Bibliometric Analysis. (2022). Jiao, Jianbin ; Hu, YI ; Zhang, QI ; Wang, Shouyang.
    In: Sustainability.
    RePEc:gam:jsusta:v:14:y:2022:i:15:p:9536-:d:879376.

    Full description at Econpapers || Download paper

  19. Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?. (2022). Niu, Hongli ; Xu, Kunliang.
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:184:y:2022:i:c:s0040162522004887.

    Full description at Econpapers || Download paper

  20. How does economic policy uncertainty respond to the global oil price fluctuations? Evidence from BRICS countries. (2022). Cao, Yan ; Cheng, Sheng ; Wang, Yilei.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004688.

    Full description at Econpapers || Download paper

  21. A decomposition ensemble based deep learning approach for crude oil price forecasting. (2022). Dong, Yao ; Xiao, Ling ; Hu, Weiqiang ; Jiang, HE.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:78:y:2022:i:c:s0301420722003014.

    Full description at Econpapers || Download paper

  22. Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm. (2022). Hao, Yan ; Wang, Jianzhou ; Wu, Chunying.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002288.

    Full description at Econpapers || Download paper

  23. Forecast of Bayesian-based dynamic connectedness between oil market and Islamic stock indices of Islamic oil-exporting countries: Application of the cascade-forward backpropagation network. (2022). Dolatabadi, Ali ; Doudkanlou, Mohammad Ghasemi ; Rashidi, Muhammad Mahdi ; Adekoya, Oluwasegun Babatunde ; Asl, Mahdi Ghaemi.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722002264.

    Full description at Econpapers || Download paper

  24. Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework. (2022). Sun, Shaolong ; Zhao, Zhengling ; Guo, Jingjun.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s0301420722001854.

    Full description at Econpapers || Download paper

  25. Forecasting crude oil market returns: Enhanced moving average technical indicators. (2022). Zhang, Yaojie ; Wang, Yudong ; Liu, LI ; Wen, Danyan.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:76:y:2022:i:c:s0301420722000216.

    Full description at Econpapers || Download paper

  26. Forecasting: theory and practice. (2022). Shang, Han Lin ; Rubaszek, Michał ; Martinez, Andrew ; Grossi, Luigi ; Franses, Philip Hans ; Fiszeder, Piotr ; Clements, Michael ; Castle, Jennifer ; Carnevale, Claudio ; Kolassa, Stephan ; Thorarinsdottir, Thordis ; Guo, Xiaojia ; Reade, James J ; Petropoulos, Fotios ; Nikolopoulos, Konstantinos ; Koehler, Anne B ; Thomakos, Dimitrios ; Browell, Jethro ; Rapach, David E ; Modis, Theodore ; Kang, Yanfei ; Tashman, Len ; Boylan, John E ; Gunter, Ulrich ; Ramos, Patricia ; Ellison, Joanne ; Meeran, Sheik ; Richmond, Victor ; Talagala, Thiyanga S ; Bijak, Jakub ; Guidolin, Massimo ; Pinson, Pierre ; Dokumentov, Alexander ; Jeon, Jooyoung ; Bessa, Ricardo J ; Pedregal, Diego J ; de Baets, Shari ; Ziel, Florian ; Syntetos, Aris A ; Bergmeir, Christoph
  27. Forecasting the real prices of crude oil: A robust weighted least squares approach. (2022). Hao, Xianfeng ; Wang, Yudong.
    In: Energy Economics.
    RePEc:eee:eneeco:v:116:y:2022:i:c:s0140988322005345.

    Full description at Econpapers || Download paper

  28. Prediction of crude oil prices in COVID-19 outbreak using real data. (2022). Kaymak, Yiit.
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:158:y:2022:i:c:s0960077922002004.

    Full description at Econpapers || Download paper

  29. Crude Oil Price Forecast Based on Deep Transfer Learning: Shanghai Crude Oil as an Example. (2021). Zeng, Taishan ; Ma, Liang ; Deng, Chao.
    In: Sustainability.
    RePEc:gam:jsusta:v:13:y:2021:i:24:p:13770-:d:701678.

    Full description at Econpapers || Download paper

  30. What Microeconomic Fundamentals Drove Global Oil Prices during 1986–2020?. (2021). Malliaris, Anastasios.
    In: JRFM.
    RePEc:gam:jjrfmx:v:14:y:2021:i:8:p:391-:d:618933.

    Full description at Econpapers || Download paper

  31. Multi-step-ahead crude oil price forecasting based on two-layer decomposition technique and extreme learning machine optimized by the particle swarm optimization algorithm. (2021). Chen, Kaijie ; Du, Xiaoxu ; Wu, Junchuan ; Tang, Zhenpeng ; Zhang, Tingting.
    In: Energy.
    RePEc:eee:energy:v:229:y:2021:i:c:s0360544221010458.

    Full description at Econpapers || Download paper

  32. Fuel price co-movements among France, Germany and Italy: A time-frequency investigation. (2021). Albulescu, Claudiu ; Mutascu, Mihai Ioan .
    In: Energy.
    RePEc:eee:energy:v:225:y:2021:i:c:s0360544221004850.

    Full description at Econpapers || Download paper

  33. Energy futures price prediction and evaluation model with deep bidirectional gated recurrent unit neural network and RIF-based algorithm. (2021). Wang, Jun.
    In: Energy.
    RePEc:eee:energy:v:216:y:2021:i:c:s0360544220324063.

    Full description at Econpapers || Download paper

  34. Analysis and forecast of Chinas energy consumption structure. (2021). Su, Bin ; Zhang, Minglong ; Zeng, Sheng ; Tao, Qingmei ; Luo, Song ; Liu, Jun ; Gao, Yuan.
    In: Energy Policy.
    RePEc:eee:enepol:v:159:y:2021:i:c:s030142152100495x.

    Full description at Econpapers || Download paper

  35. Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions. (2021). Patra, Saswat.
    In: Energy Economics.
    RePEc:eee:eneeco:v:101:y:2021:i:c:s0140988321003406.

    Full description at Econpapers || Download paper

  36. When Pep comes calling, the oil market answers: The effect of football player transfer movements on abnormal fluctuations in oil price futures. (2021). , Quan ; Do, Hung Xuan ; Smyth, Russell ; Nepal, Rabindra.
    In: Energy Economics.
    RePEc:eee:eneeco:v:100:y:2021:i:c:s0140988321002310.

    Full description at Econpapers || Download paper

  37. Advanced price forecasting in agent-based electricity market simulation. (2021). Fichtner, Wolf ; Keles, Dogan ; Kraft, Emil ; Fraunholz, Christoph.
    In: Applied Energy.
    RePEc:eee:appene:v:290:y:2021:i:c:s0306261921002142.

    Full description at Econpapers || Download paper

  38. Trend of Oil Prices, Gold, GCC Stocks Market during Covid-19 Pandemic: A Wavelet Approach. (2021). Sisodia, Gyanendra Singh ; Tellez, Jesus Cuauhtemoc ; Daffodils, Jennifer ; Rafiuddin, Aqila.
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2021-04-64.

    Full description at Econpapers || Download paper

  39. On the predictability of crude oil market: A hybrid multiscale wavelet approach. (2020). Bekiros, Stelios ; Muzaffar, Ahmed Taneem ; Uddin, Gazi Salah ; Hernandez, Jose Arreola.
    In: Journal of Forecasting.
    RePEc:wly:jforec:v:39:y:2020:i:4:p:599-614.

    Full description at Econpapers || Download paper

  40. Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods. (2020). Alvarez-Diaz, Marcos.
    In: Empirical Economics.
    RePEc:spr:empeco:v:59:y:2020:i:3:d:10.1007_s00181-019-01665-w.

    Full description at Econpapers || Download paper

  41. Co-movements in commodity markets and implications in diversification benefits. (2020). Hamori, Shigeyuki ; Fang, Zheng ; Chang, Youngho ; Tian, Shuairu ; Cai, Xiaojing.
    In: Empirical Economics.
    RePEc:spr:empeco:v:58:y:2020:i:2:d:10.1007_s00181-018-1551-3.

    Full description at Econpapers || Download paper

  42. Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm. (2020). He, Ling-Yun ; Meng, YA ; Zeng, Guan-Rong ; Zhao, Lu-Tao.
    In: Computational Economics.
    RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9858-x.

    Full description at Econpapers || Download paper

  43. Forecasting Crude Oil Market Crashes Using Machine Learning Technologies. (2020). Hamori, Shigeyuki ; Zhang, Yulian.
    In: Energies.
    RePEc:gam:jeners:v:13:y:2020:i:10:p:2440-:d:357298.

    Full description at Econpapers || Download paper

  44. A novel hybrid approach to forecast crude oil futures using intraday data. (2020). Apergis, Nicholas ; Visalakshmi, S ; Manickavasagam, Jeevananthan .
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:158:y:2020:i:c:s0040162520309525.

    Full description at Econpapers || Download paper

  45. Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model. (2020). Lin, Ling ; Zhou, Zhongbao ; Xiao, Helu ; Jiang, Yong.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:543:y:2020:i:c:s0378437119319697.

    Full description at Econpapers || Download paper

  46. A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. (2020). Bekiros, Stelios ; Ahmad, Wasim ; Altan, Ayta ; Karasu, Sekin.
    In: Energy.
    RePEc:eee:energy:v:212:y:2020:i:c:s0360544220318570.

    Full description at Econpapers || Download paper

  47. Energy futures and spots prices forecasting by hybrid SW-GRU with EMD and error evaluation. (2020). Wang, Jun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:90:y:2020:i:c:s0140988320301675.

    Full description at Econpapers || Download paper

  48. Forecasting the real prices of crude oil using robust regression models with regularization constraints. (2020). Wang, Yudong ; Hao, Xianfeng ; Zhao, Yuyang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:86:y:2020:i:c:s0140988320300220.

    Full description at Econpapers || Download paper

  49. The economic and financial properties of crude oil: A review. (2020). Auer, Benjamin R ; Lang, Korbinian.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:52:y:2020:i:c:s1062940818302559.

    Full description at Econpapers || Download paper

  50. Multi-scale interactions between economic policy uncertainty and oil prices in time-frequency domains. (2020). Li, Jianping ; Wang, Jun ; Chen, Xiuwen ; Sun, Xiaolei.
    In: The North American Journal of Economics and Finance.
    RePEc:eee:ecofin:v:51:y:2020:i:c:s1062940818302456.

    Full description at Econpapers || Download paper

  51. Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment. (2020). Tang, Liyang.
    In: Papers.
    RePEc:arx:papers:2005.08735.

    Full description at Econpapers || Download paper

  52. A Continuous Differentiable Wavelet Shrinkage Function for Economic Data Denoising. (2019). He, Xuansen.
    In: Computational Economics.
    RePEc:kap:compec:v:54:y:2019:i:2:d:10.1007_s10614-018-9849-y.

    Full description at Econpapers || Download paper

  53. Can We Forecast Daily Oil Futures Prices? Experimental Evidence from Convolutional Neural Networks. (2019). Tanaka, Katsuyuki ; Hamori, Shigeyuki ; Luo, Zhaojie ; Kinkyo, Takuji ; Takiguchi, Tetsuya ; Cai, Xiaojing.
    In: JRFM.
    RePEc:gam:jjrfmx:v:12:y:2019:i:1:p:9-:d:195801.

    Full description at Econpapers || Download paper

  54. An Adaptive Hybrid Learning Paradigm Integrating CEEMD, ARIMA and SBL for Crude Oil Price Forecasting. (2019). Zhou, Tengfei ; Chen, YU ; Wu, Jiang ; Li, Taiyong.
    In: Energies.
    RePEc:gam:jeners:v:12:y:2019:i:7:p:1239-:d:218826.

    Full description at Econpapers || Download paper

  55. Improved EEMD-based crude oil price forecasting using LSTM networks. (2019). Wu, Yu-Xi ; Zhu, Jia-Qi.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:516:y:2019:i:c:p:114-124.

    Full description at Econpapers || Download paper

  56. Global renewable energy development: Influencing factors, trend predictions and countermeasures. (2019). Gao, Guowei ; Wang, Chenglong ; Ji, Qiang ; Wei, Zhifei ; Xu, Xiaofeng.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:63:y:2019:i:c:11.

    Full description at Econpapers || Download paper

  57. Long-term forecasts for energy commodities price: What the experts think. (2019). Page, Lionel ; Zhou, Fan ; Washington, Simon ; Zheng, Zuduo ; Perrons, Robert K.
    In: Energy Economics.
    RePEc:eee:eneeco:v:84:y:2019:i:c:s0140988319302658.

    Full description at Econpapers || Download paper

  58. An effective and robust decomposition-ensemble energy price forecasting paradigm with local linear prediction. (2019). Wei, Yi-Ming ; Chu, Xianghua ; Li, LI ; He, Huangda ; Xie, Kangqiang ; Qin, Quande ; Wu, Teresa.
    In: Energy Economics.
    RePEc:eee:eneeco:v:83:y:2019:i:c:p:402-414.

    Full description at Econpapers || Download paper

  59. Monthly crude oil spot price forecasting using variational mode decomposition. (2019). Wu, Qianqian ; Zhu, Shaowen ; Li, Jinchao.
    In: Energy Economics.
    RePEc:eee:eneeco:v:83:y:2019:i:c:p:240-253.

    Full description at Econpapers || Download paper

  60. The VEC-NAR model for short-term forecasting of oil prices. (2019). Wei, Yi-Ming ; Fan, Tijun ; Li, Tian ; Cheng, Fangzheng.
    In: Energy Economics.
    RePEc:eee:eneeco:v:78:y:2019:i:c:p:656-667.

    Full description at Econpapers || Download paper

  61. Causal structure among US corn futures and regional cash prices in the time and frequency domain. (2018). Xu, Xiaojie.
    In: Journal of Applied Statistics.
    RePEc:taf:japsta:v:45:y:2018:i:13:p:2455-2480.

    Full description at Econpapers || Download paper

  62. Forecasting Crude Oil Prices Using Ensemble Empirical Mode Decomposition and Sparse Bayesian Learning. (2018). Jia, Yanchi ; Hu, Zhenda ; Li, Taiyong ; Zhou, Yingrui ; Wu, Jiang.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:7:p:1882-:d:158756.

    Full description at Econpapers || Download paper

  63. A novel decompose-ensemble methodology with AIC-ANN approach for crude oil forecasting. (2018). Ding, Yishan .
    In: Energy.
    RePEc:eee:energy:v:154:y:2018:i:c:p:328-336.

    Full description at Econpapers || Download paper

  64. Global crude oil price prediction and synchronization based accuracy evaluation using random wavelet neural network. (2018). Huang, Lili ; Wang, Jun.
    In: Energy.
    RePEc:eee:energy:v:151:y:2018:i:c:p:875-888.

    Full description at Econpapers || Download paper

  65. Interval decomposition ensemble approach for crude oil price forecasting. (2018). Sun, Shaolong ; Wei, Yunjie ; Wang, Shouyang.
    In: Energy Economics.
    RePEc:eee:eneeco:v:76:y:2018:i:c:p:274-287.

    Full description at Econpapers || Download paper

  66. Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example. (2018). Drachal, Krzysztof.
    In: Energy Economics.
    RePEc:eee:eneeco:v:74:y:2018:i:c:p:208-251.

    Full description at Econpapers || Download paper

  67. Forecasting the WTI crude oil price by a hybrid-refined method. (2018). Chai, Jian ; Li, Jie-Xun ; Zhang, Zhe George ; Zhou, Xiao-Yang ; Xing, Li-Min.
    In: Energy Economics.
    RePEc:eee:eneeco:v:71:y:2018:i:c:p:114-127.

    Full description at Econpapers || Download paper

  68. A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms. (2018). Wang, Minggang ; Stanley, Eugene H ; Tian, Lixin ; Chen, Lin ; Du, Ruijin ; Zhao, Longfeng.
    In: Applied Energy.
    RePEc:eee:appene:v:220:y:2018:i:c:p:480-495.

    Full description at Econpapers || Download paper

  69. International interdependence between cash crop and staple food futures price indices: A wavelet-BEKK-GARCH assessment. (2018). Heckelei, Thomas ; Grosche, S ; Amrouk, E M.
    In: 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia.
    RePEc:ags:iaae18:277376.

    Full description at Econpapers || Download paper

  70. Grain Price Forecasting Using a Hybrid Stochastic Method. (2017). Zhao, YU ; He, Lei ; Shi, Zhongshun ; Zhang, XI.
    In: Asia-Pacific Journal of Operational Research (APJOR).
    RePEc:wsi:apjorx:v:34:y:2017:i:05:n:s0217595917500208.

    Full description at Econpapers || Download paper

  71. A forecasting approach for truckload spot market pricing. (2017). Guloglu, Bulent ; Budak, Aysenur ; Ustundag, Alp.
    In: Transportation Research Part A: Policy and Practice.
    RePEc:eee:transa:v:97:y:2017:i:c:p:55-68.

    Full description at Econpapers || Download paper

  72. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis. (2017). Wei, Jian ; Ye, Jimin ; Bao, Yanling .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:484:y:2017:i:c:p:412-427.

    Full description at Econpapers || Download paper

  73. A deep learning ensemble approach for crude oil price forecasting. (2017). Zhao, Yang ; Yu, Lean ; Li, Jianping.
    In: Energy Economics.
    RePEc:eee:eneeco:v:66:y:2017:i:c:p:9-16.

    Full description at Econpapers || Download paper

  74. Do oil price asymmetric effects on the stock market persist in multiple time horizons?. (2017). Sun, Xiaoqi ; Gao, Xiangyun ; An, Haizhong ; Huang, Shupei.
    In: Applied Energy.
    RePEc:eee:appene:v:185:y:2017:i:p2:p:1799-1808.

    Full description at Econpapers || Download paper

  75. Prediction-Based Multi-Objective Optimization for Oil Purchasing and Distribution with the NSGA-II Algorithm. (2016). Yu, Lean ; Tang, Ling ; Yang, Zebin.
    In: International Journal of Information Technology & Decision Making (IJITDM).
    RePEc:wsi:ijitdm:v:15:y:2016:i:02:n:s0219622016500097.

    Full description at Econpapers || Download paper

  76. Multivariate EMD-Based Modeling and Forecasting of Crude Oil Price. (2016). Lai, Kinkeung ; Zha, Rui ; Wu, Jun ; He, Kaijian.
    In: Sustainability.
    RePEc:gam:jsusta:v:8:y:2016:i:4:p:387-:d:68672.

    Full description at Econpapers || Download paper

  77. An ICA-based support vector regression scheme for forecasting crude oil prices. (2016). Fan, Liwei ; Li, Huiping ; Pan, Sijia .
    In: Technological Forecasting and Social Change.
    RePEc:eee:tefoso:v:112:y:2016:i:c:p:245-253.

    Full description at Econpapers || Download paper

  78. Time–frequency featured co-movement between the stock and prices of crude oil and gold. (2016). Gao, Xiangyun ; Huang, Xuan.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:444:y:2016:i:c:p:985-995.

    Full description at Econpapers || Download paper

  79. Macroeconomic performance of oil price shocks: Outlier evidence from nineteen major oil-related countries/regions. (2016). Su, Bin ; Ju, Keyi ; Liu, Lifan ; Wu, Junmin ; Zhou, Dequn.
    In: Energy Economics.
    RePEc:eee:eneeco:v:60:y:2016:i:c:p:325-332.

    Full description at Econpapers || Download paper

  80. Unveiling heterogeneities of relations between the entire oil–stock interaction and its components across time scales. (2016). Huang, Shupei ; Hao, Xiaoqing ; Gao, Xiangyun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:59:y:2016:i:c:p:70-80.

    Full description at Econpapers || Download paper

  81. Oil price forecasting using gene expression programming and artificial neural networks. (2016). Mostafa, Mohamed M ; El-Masry, Ahmed A.
    In: Economic Modelling.
    RePEc:eee:ecmode:v:54:y:2016:i:c:p:40-53.

    Full description at Econpapers || Download paper

  82. Forecasting the term structure of crude oil futures prices with neural networks. (2016). Baruník, Jozef ; Malinska, Barbora ; Barunik, Jozef.
    In: Applied Energy.
    RePEc:eee:appene:v:164:y:2016:i:c:p:366-379.

    Full description at Econpapers || Download paper

  83. Extended forecast methods for day-ahead electricity spot prices applying artificial neural networks. (2016). Paraschiv, Florentina ; Keles, Dogan ; Fichtner, Wolf ; Scelle, Jonathan .
    In: Applied Energy.
    RePEc:eee:appene:v:162:y:2016:i:c:p:218-230.

    Full description at Econpapers || Download paper

  84. Comparing Functional Link Artificial Neural Network And Multilayer Feedforward Neural Network Model To Forecast Crude Oil Prices. (2016). Nanda, Santosh Kumar ; Hamdi, Manel ; Aloui, Chaker.
    In: Economics Bulletin.
    RePEc:ebl:ecbull:eb-16-00159.

    Full description at Econpapers || Download paper

  85. A novel mode-characteristic-based decomposition ensemble model for nuclear energy consumption forecasting. (2015). Wang, Shouyang ; He, Kaijian ; Tang, Ling.
    In: Annals of Operations Research.
    RePEc:spr:annopr:v:234:y:2015:i:1:p:111-132:10.1007/s10479-014-1595-5.

    Full description at Econpapers || Download paper

  86. Oil Prices and African Stock Markets Co-movement: A Time and Frequency Analysis. (2015). Zamereith, Grakolet Arnold ; Mendy, Pierre .
    In: MPRA Paper.
    RePEc:pra:mprapa:75852.

    Full description at Econpapers || Download paper

  87. A wavelet based approach to measure and manage contagion at different time scales. (2015). Berger, Theo.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:436:y:2015:i:c:p:338-350.

    Full description at Econpapers || Download paper

  88. Identifying the multiscale impacts of crude oil price shocks on the stock market in China at the sector level. (2015). Huang, Shupei ; Gao, Xiangyun.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:434:y:2015:i:c:p:13-24.

    Full description at Econpapers || Download paper

  89. Exploring asymmetric behavior pattern from Indian oil products prices using NARDL and GHSOM approaches. (2015). Chattopadhyay, Manojit ; Mitra, Subrata Kumar.
    In: Energy Policy.
    RePEc:eee:enepol:v:86:y:2015:i:c:p:262-272.

    Full description at Econpapers || Download paper

  90. A novel hybrid method for crude oil price forecasting. (2015). Zhang, Yue-Jun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:49:y:2015:i:c:p:649-659.

    Full description at Econpapers || Download paper

  91. A decomposition–ensemble model with data-characteristic-driven reconstruction for crude oil price forecasting. (2015). Yu, Lean ; Tang, Ling ; Wang, Zishu .
    In: Applied Energy.
    RePEc:eee:appene:v:156:y:2015:i:c:p:251-267.

    Full description at Econpapers || Download paper

  92. Evolutionary Neural Network model for West Texas Intermediate crude oil price prediction. (2015). Chiroma, Haruna ; Herawan, Tutut ; Abdulkareem, Sameem .
    In: Applied Energy.
    RePEc:eee:appene:v:142:y:2015:i:c:p:266-273.

    Full description at Econpapers || Download paper

  93. Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey. (2015). Aloui, Chaker ; Hamdi, Manel .
    In: Economics Bulletin.
    RePEc:ebl:ecbull:eb-14-00800.

    Full description at Econpapers || Download paper

  94. Forecasting the term structure of crude oil futures prices with neural networks. (2015). Baruník, Jozef ; Malinska, Barbora .
    In: Papers.
    RePEc:arx:papers:1504.04819.

    Full description at Econpapers || Download paper

  95. Instabilities in the relationships and hedging strategies between crude oil and US stock markets: do long memory and asymmetry matter?. (2014). Aloui, Chaker.
    In: Working Papers.
    RePEc:ipg:wpaper:2014-549.

    Full description at Econpapers || Download paper

  96. Safe Havens, Feedback Loops, and Shock Propagation in Global Asset Prices. (2014). Wolski, Marcin ; Ohnsorge, Franziska ; Zhang, Yuanyan S.
    In: IMF Working Papers.
    RePEc:imf:imfwpa:2014/081.

    Full description at Econpapers || Download paper

  97. Crude Oil Spot Price Forecasting Based on Multiple Crude Oil Markets and Timeframes. (2014). Deng, Shangkun ; Sakurai, Akito .
    In: Energies.
    RePEc:gam:jeners:v:7:y:2014:i:5:p:2761-2779:d:35518.

    Full description at Econpapers || Download paper

  98. Wavelet-based evidence of the impact of oil prices on stock returns. (2014). Reboredo, Juan ; Rivera-Castro, Miguel A..
    In: International Review of Economics & Finance.
    RePEc:eee:reveco:v:29:y:2014:i:c:p:145-176.

    Full description at Econpapers || Download paper

  99. An improved wavelet–ARIMA approach for forecasting metal prices. (2014). Angus, Andrew ; Kriechbaumer, Thomas ; Casado, Monica Rivas ; Parsons, David.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:39:y:2014:i:c:p:32-41.

    Full description at Econpapers || Download paper

  100. Instabilities in the relationships and hedging strategies between crude oil and US stock markets: Do long memory and asymmetry matter?. (2014). Nguyen, Duc Khuong ; Chkili, Walid ; Aloui, Chaker.
    In: Journal of International Financial Markets, Institutions and Money.
    RePEc:eee:intfin:v:33:y:2014:i:c:p:354-366.

    Full description at Econpapers || Download paper

  101. Government control or low carbon lifestyle? – Analysis and application of a novel selective-constrained energy-saving and emission-reduction dynamic evolution system. (2014). Fang, Guochang ; Fu, Min ; Sun, Mei ; Tian, Lixin.
    In: Energy Policy.
    RePEc:eee:enepol:v:68:y:2014:i:c:p:498-507.

    Full description at Econpapers || Download paper

  102. Predicting oil price movements: A dynamic Artificial Neural Network approach. (2014). Jamasb, Tooraj ; Godarzi, Ali Abbasi ; Amiri, Rohollah Madadi ; Talaei, Alireza .
    In: Energy Policy.
    RePEc:eee:enepol:v:68:y:2014:i:c:p:371-382.

    Full description at Econpapers || Download paper

  103. A compressed sensing based AI learning paradigm for crude oil price forecasting. (2014). Yu, Lean ; Zhao, Yang ; Tang, Ling.
    In: Energy Economics.
    RePEc:eee:eneeco:v:46:y:2014:i:c:p:236-245.

    Full description at Econpapers || Download paper

  104. Wavelet dynamics for oil-stock world interactions. (2014). Pinho, Carlos ; Madaleno, Mara.
    In: Energy Economics.
    RePEc:eee:eneeco:v:45:y:2014:i:c:p:120-133.

    Full description at Econpapers || Download paper

  105. Forecasting the Crude Oil Price with Extreme Values. (2014). Haibin, Xie ; Yi, HU ; Mei, YU ; Mo, Zhou.
    In: Journal of Systems Science and Information.
    RePEc:bpj:jossai:v:2:y:2014:i:3:p:193-205:n:1.

    Full description at Econpapers || Download paper

  106. Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices. (2013). Xiong, Tao ; Hu, Zhongyi ; Bao, Yukun.
    In: Energy Economics.
    RePEc:eee:eneeco:v:40:y:2013:i:c:p:405-415.

    Full description at Econpapers || Download paper

  107. The impacts of carbon tax on energy intensity and economic growth – A dynamic evolution analysis on the case of China. (2013). Fang, Guochang ; Fu, Min ; Sun, Mei ; Tian, Lixin.
    In: Applied Energy.
    RePEc:eee:appene:v:110:y:2013:i:c:p:17-28.

    Full description at Econpapers || Download paper

  108. A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices. (2012). jinliang, zhang ; Mingming, Tang .
    In: Journal of Economics and Business.
    RePEc:eee:jebusi:v:64:y:2012:i:4:p:275-286.

    Full description at Econpapers || Download paper

References

References cited by this document

  1. Alexandridis, A. ; Livanis, E. Forecasting Crude Oil Prices Using Wavelet Neural Networks. 2008 Published in the proc. of 5th FSDET (ΦΣΔΕΤ): Athens, Greece
    Paper not yet in RePEc: Add citation now
  2. Azoff, M. Neural Network Time Series Forecasting of Financial Markets. 1994 John Wiley & Sons: New York
    Paper not yet in RePEc: Add citation now
  3. Bao, Y. ; Zhang, X. ; Yu, L. ; Wang, S. Crude oil prediction based on multiscale decomposition. 2007 Lecture Notes in Computer Science. 4489 933-936
    Paper not yet in RePEc: Add citation now
  4. Baumöhl, E. ; Lyócsa, Š. Stationarity of Time Series and the Problem of Spurious Regression. 2009 En : MPRA Paper 27926. University Library of Munich: Germany

  5. Bekara, M. ; Fleury, G. Model selection using cross validation Bayesian predictive densities. 2003 En : Signal Processing and Its Applications, 2003. Proceedings. Seventh International Symposium on. :
    Paper not yet in RePEc: Add citation now
  6. Bernabe, A. ; Martina, E. ; Alvarez-Ramirez, J. ; Ibarra-Valdez, C. A multi-model approach for describing crude oil price dynamics. 2004 Physica A. 338 567-584

  7. Chakrabarti, A. ; Ghosh, J.K. Some aspects of Bayesian model selection for prediction. 2006 En : Conference paper, ISBA 8th World Meeting on Bayesian Statistics. :
    Paper not yet in RePEc: Add citation now
  8. Chen, G. (2009). Essays on model selection using Bayesian inference. A dissertation submitted to graduate school of New-brunswik, Rutgers the state university of New Jersey, 40–42. http://mss3.libraries.rutgers.edu/dlr/TMP/rutgers-lib_26243-PDF-1.pdf.
    Paper not yet in RePEc: Add citation now
  9. Coifman, R.R. ; Donoho, D.L. Translation-invariant de-noising. 1995 En : Antoniades, A. Wavelets and Statistics. Springer Lecture Notes. Springer-Verlag: New York
    Paper not yet in RePEc: Add citation now
  10. De Souza e Silva, E.G. ; Legey, L. ; De Souza e Silva, E.A. Forecasting oil price trends using wavelet and hidden Markov models. 2010 Energy Economics. 32 1507-1519

  11. Deng, W.J. ; Chen, W.C. ; Pei, W. Back-propagation neural network based importance–performance analysis for determining critical service attributes. 2008 Expert Systems with Applications. 34 1115-1125
    Paper not yet in RePEc: Add citation now
  12. Dunis, C. ; Huang, X. Forecasting and trading currency volatility: an application of recurrent neural regression and model combination. 2002 Journal of Forecasting. 21 317-354

  13. Dunis, C. ; Williams, M. Modelling and trading the EUR/USD exchange rate: do neural network models perform better?. 2002 Derivatives Use, Trading and Regulation. 8 211-239
    Paper not yet in RePEc: Add citation now
  14. Fausett, L. Fundamentals of Neural Networks: Architectures, Algorithms and Applications. 1994 Prentice-Hall: Florida Institute of Technology, Melbourne
    Paper not yet in RePEc: Add citation now
  15. Hanbay, D. ; Turkoglu, I. ; Demir, Y. An expert system based on wavelet decomposition and neural network for modelling Chua's circuit. 2008 Expert Systems with Applications. 34 2278-2283
    Paper not yet in RePEc: Add citation now
  16. Hastie, T. ; Tibshirani, R. ; Friedman, J. The Elements of Statistical Learning. 2001 Springer: New York
    Paper not yet in RePEc: Add citation now
  17. Haykin, S. Neural Networks: A Comprehensive Foundation. 1999 Prentice-Hall: Upper Saddle River, NJ
    Paper not yet in RePEc: Add citation now
  18. He, K. ; Xie, C. ; Chen, S. ; Lai, K.K. Estimating VaR in crude oil market: A novel multi-scale non-linear ensemble approach incorporating wavelet and neural network. 2009 Neurocomputing. 72 3428-3438
    Paper not yet in RePEc: Add citation now
  19. Jammazi, R. ; Aloui, C. Wavelet decomposition and regime shifts: Assessing the effects of crude oil shocks on stock market returns. 2010 Energy Policy. 38 1415-1435

  20. Jost, A. Neural networks: a logical progression in credit and marketing decision system. 1993 Credit World. 81 26-33
    Paper not yet in RePEc: Add citation now
  21. Kaastra, I. ; Boyd, M. Designing a neural network for forecasting financial and economic time series. 1996 Neurocomputing. 10 215-236
    Paper not yet in RePEc: Add citation now
  22. Kaboudan, M.A. Compumetric forecasting of crude oil prices. 2001 En : . :
    Paper not yet in RePEc: Add citation now
  23. Khaw, J.F.C. ; Lim, B.S. ; Lim, L.E.N. Optimal design of neural network using the Taguchi method. 1995 Neurocomputing. 7 225-245
    Paper not yet in RePEc: Add citation now
  24. Kingdon, J. ; Taylor, J.C. ; Mannion, C.L. Intelligent Systems and Financial Forecasting. 1997 Springer-Verlag: New York
    Paper not yet in RePEc: Add citation now
  25. Kulkarni, S. ; Haidar, I. Forecasting model for crude oil price using artificial neural networks and commodity futures prices. 2009 International Journal of Computer Science and Information Security. 2 1-8

  26. Law, R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. 2000 Tourism Management. 21 331-340
    Paper not yet in RePEc: Add citation now
  27. Lippmann, R.P. An introduction to computing with neural nets. 1987 IEEE ASSP Magazine. 4-22
    Paper not yet in RePEc: Add citation now
  28. Malik, F. ; Nassereddine, M. Forecasting output using oil prices: A cascaded artificial neural network approach. 2006 Journal of Economics and Business. 58 168-180

  29. Mallat, S.G. A theory for multiresolution signal decomposition: The wavelet representation. 1989 IEEE Transactions on Pattern Analysis and Machine Intelligence. 11 674-693
    Paper not yet in RePEc: Add citation now
  30. Mallat, S.G. Multiresolution approximations and wavelet orthonormal bases of L2(R). 1989 Transactions of the American Mathematical Society. 315 69-87
    Paper not yet in RePEc: Add citation now
  31. McNeils, D. Neural Networks in Finance Gaining Predictive Edge in the Market. 2005 Elsevier Academic Press: Massachusetts
    Paper not yet in RePEc: Add citation now
  32. Murtagh, F. ; Starck, J.L. ; Renaud, O. On neuro-wavelet modelling. 2004 Decision Support Systems, Special Issue Data Mining for Financial Decision Making. 37 475-484
    Paper not yet in RePEc: Add citation now
  33. Nason, G.P. ; Von Sachs, R. Wavelets in time series analysis. 1999 Philosophical Transactions of the Royal Society of London A. 357 2511-2526

  34. Ogut, H. ; Doganay, M.M. ; Aktas, R. Detecting stock-price manipulation in an emerging market: The case of Turkey. 2009 Expert Systems with Applications. 36 11944-11949
    Paper not yet in RePEc: Add citation now
  35. Refenes, A. Neural Networks in the Capital Markets. 1995 John Wiley & Sons: New York
    Paper not yet in RePEc: Add citation now
  36. Rumelhart, D. ; Hinton, G. ; Williams, R. Learning internal representations by error propagation. 1986 En : Rumelhart, D. ; McClelland, J. Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press: Cambridge, MA
    Paper not yet in RePEc: Add citation now
  37. Russell, S.J. ; Norvig, P. Artificial Intelligence: A Modern Approach. 1995 Prentice-Hall: Englewood Cliffs, NJ
    Paper not yet in RePEc: Add citation now
  38. Saito, N. ; Beylkin, G. Multiresolution representations using the auto-correlation functions of compactly supported wavelets. 1992 IEEE Transactions Signal Processing. 41 3584-3590
    Paper not yet in RePEc: Add citation now
  39. Shambora, W.E. ; Rossitier, R. Are there exploitable inefficiencies in the futures market for oil?. 2007 Energy Economics. 29 18-27

  40. Shao, J. Linear model selection by cross-validation. 1993 Jounal of American Statistical Association. 88 486-494
    Paper not yet in RePEc: Add citation now
  41. Shensa, M.J. The discrete wavelet transform: Wedding the á trous and Mallat algorithms. 1992 IEEE Transactions on Signal Processing. 10 2463-2482
    Paper not yet in RePEc: Add citation now
  42. Tabak, B.M. ; Feitosa, M.A. An analysis of the yield spread as a predictor of inflation in Brazil: Evidence from a wavelets approach. 2009 Expert Systems with Applications. 36 7129-7134
    Paper not yet in RePEc: Add citation now
  43. Tabak, B.M. ; Feitosa, M.A. Forecasting industrial production in Brazil: Evidence from a wavelet approach. 2010 Expert Systems with Applications. 37 6345-6351
    Paper not yet in RePEc: Add citation now
  44. Van Eyden, R.J. The application of neural networks in the forecasting of share prices. 1996 Finance & Technology Publishing: Haymarket, VA
    Paper not yet in RePEc: Add citation now
  45. Vanstone, B. Trading in the Australian stock market using artificial neural networks. 2006 :
    Paper not yet in RePEc: Add citation now
  46. Vehtari, A. ; Lampinen, J. Bayesian model assessment and comparison using cross-validation predictive densities. 2002 Neural Computation. 14 2339-2468
    Paper not yet in RePEc: Add citation now
  47. Wegner, F.V. ; Both, M. ; Fink, R.H.A. Automated detection of elementary calcium release events using the Trous wavelet transform. 2006 Biophysical Journal. 90 2151-2163
    Paper not yet in RePEc: Add citation now
  48. Wu, D. ; Yang, Z. ; Liang, L. Using DEA-neural network approach to evaluate branch efficiency of a large Canadian bank. 2006 Expert Systems with Applications. 31 108-115
    Paper not yet in RePEc: Add citation now
  49. Xie, W. ; Yu, L. ; Xu, S. ; Wang, S. A new method for crude oil price forecasting based on support vector machines. 2006 Lecture Notes in Computer Science. 3994 444-451
    Paper not yet in RePEc: Add citation now
  50. Yang, C.W. ; Hwang, M.J. ; Huang, B.N. An analysis of factors affecting price volatility of the US oil market. 2002 Energy Economics. 24 107-119

  51. Yang, X. ; Khumera, H. ; Zhang, W. Back propagation wavelet neural network based prediction of drill wear from thrust force and cutting torque signals. 2009 Computer and Information Science. 3–2 75-86
    Paper not yet in RePEc: Add citation now
  52. Yin, C. ; Rosendahl, L. ; Luo, Z. Methods to improve prediction performance of ANN models. 2003 Simulation Modelling Practice and Theory. 11 211-222
    Paper not yet in RePEc: Add citation now
  53. Yonaba, H. ; Anctil, F. ; Fortin, V. Comparing sigmoid transfer functions for neural network multistep ahead streamflow forecasting. 2010 Journal of Hydrologic Engineering. 275-283
    Paper not yet in RePEc: Add citation now
  54. Yousefi, A. ; Wirjanto, T.S. The empirical role of the exchange rate on the crude-oil price information. 2004 Energy Economics. 26 783-799
    Paper not yet in RePEc: Add citation now
  55. Yousefi, S. ; Weinreich, I. ; Reinarz, D. Wavelet-based prediction of oil prices. 2005 Chaos Solitons and Fractals. 25 265-275

  56. Yu, L. ; Wang, S. ; Lai, K.K. Forecasting crude oil price with an EMD-based neural network Ensemble learning paradigm. 2008 Energy Economics. 30 2623-2635

  57. Yu, L. ; Wang, S. ; Lai, K.K. ; Wen, F. A multiscale neural network learning paradigm for financial crisis forecasting. 2010 Neurocomputing. 73 716-725
    Paper not yet in RePEc: Add citation now
  58. Zhang, B.-L. ; Coggins, R. ; Jabri, M.A. ; Dersch, D. ; Flower, B. Multiresolution forecasting for futures trading using wavelet decompositions. 2001 IEEE Transactions on Neural Networks. 12 765-775
    Paper not yet in RePEc: Add citation now
  59. Zhang, G. ; Patuwo, B.E. ; Hu, M.Y. Forecasting with Artificial Neural Networks: The State of The Art. 1998 International Journal of Forecasting. 14 35-62

Cocites

Documents in RePEc which have cited the same bibliography

  1. Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning. (2023). Jamaani, Fouad ; Mohsin, Muhammad.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:85:y:2023:i:pa:s0301420723004919.

    Full description at Econpapers || Download paper

  2. The Foreign Exchange Auction System’s Effect on SME Stability and Performance. (2023). Chikwira, Collin.
    In: International Journal of Economics and Financial Issues.
    RePEc:eco:journ1:2023-05-12.

    Full description at Econpapers || Download paper

  3. Predicting the changes in the WTI crude oil price dynamics using machine learning models. (2022). Mustafayev, Eldayag ; Guliyev, Hasraddin.
    In: Resources Policy.
    RePEc:eee:jrpoli:v:77:y:2022:i:c:s030142072200112x.

    Full description at Econpapers || Download paper

  4. Forecasting Short-Term Oil Price with a Generalised Pattern Matching Model Based on Empirical Genetic Algorithm. (2020). He, Ling-Yun ; Meng, YA ; Zeng, Guan-Rong ; Zhao, Lu-Tao.
    In: Computational Economics.
    RePEc:kap:compec:v:55:y:2020:i:4:d:10.1007_s10614-018-9858-x.

    Full description at Econpapers || Download paper

  5. Accurate Estimated Model of Volatility Crude Oil Price. (2020). Ahadiat, Ayi ; Supriyanto, Supriyanto ; Tresiana, Novita ; Azhar, Rialdi ; Gunarto, Toto.
    In: International Journal of Energy Economics and Policy.
    RePEc:eco:journ2:2020-05-26.

    Full description at Econpapers || Download paper

  6. Macroeconomic effects of the budget deficit in the Republic of Macedonia. (2018). Martin, Noveski.
    In: Croatian Review of Economic, Business and Social Statistics.
    RePEc:vrs:crebss:v:4:y:2018:i:2:p:5-14:n:2.

    Full description at Econpapers || Download paper

  7. Transport Infrastructure Development, Public Performance and Long-Run Economic Growth: A Case Study for the Eu-28 Countries. (2018). Cigu, Elena ; Agheorghiesei, Daniela Tatiana ; Toader, Elena ; Gavrilu, Anca Florentina.
    In: Sustainability.
    RePEc:gam:jsusta:v:11:y:2018:i:1:p:67-:d:192688.

    Full description at Econpapers || Download paper

  8. Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework. (2018). Drachal, Krzysztof.
    In: Energies.
    RePEc:gam:jeners:v:11:y:2018:i:5:p:1207-:d:145404.

    Full description at Econpapers || Download paper

  9. Crude oil price analysis and forecasting based on variational mode decomposition and independent component analysis. (2017). Wei, Jian ; Ye, Jimin ; Bao, Yanling .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:484:y:2017:i:c:p:412-427.

    Full description at Econpapers || Download paper

  10. Simultaneity of Crime Incidence in Mindanao. (2016). Madanlo, Lalaine ; Tamayo, Adrian ; Murcia, John Vianne .
    In: MPRA Paper.
    RePEc:pra:mprapa:72648.

    Full description at Econpapers || Download paper

  11. The crude oil price bubbling and universal scaling dynamics of price volatility. (2016). Garcia-Carranco, Sergio M ; Balankin, Alexander S ; Bory-Reyes, Juan .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:452:y:2016:i:c:p:60-68.

    Full description at Econpapers || Download paper

  12. Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?. (2016). Drachal, Krzysztof.
    In: Energy Economics.
    RePEc:eee:eneeco:v:60:y:2016:i:c:p:35-46.

    Full description at Econpapers || Download paper

  13. Forecasting Crude Oil Price Using Artificial Neural Networks: A Literature Survey. (2015). Aloui, Chaker ; Hamdi, Manel .
    In: Economics Bulletin.
    RePEc:ebl:ecbull:eb-14-00800.

    Full description at Econpapers || Download paper

  14. Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling. (2012). JAMMAZI, RANIA ; Aloui, Chaker.
    In: Energy Economics.
    RePEc:eee:eneeco:v:34:y:2012:i:3:p:828-841.

    Full description at Econpapers || Download paper

  15. Unit-root and stationarity testing with empirical application on industrial production of CEE-4 countries. (2011). Výrost, Tomáš ; Lyócsa, Štefan ; Baumohl, Eduard ; Vrost, Toma ; Lyocsa, Tefan.
    In: MPRA Paper.
    RePEc:pra:mprapa:29648.

    Full description at Econpapers || Download paper

  16. Are crude oil markets multifractal? Evidence from MF-DFA and MF-SSA perspectives. (2010). He, Ling-Yun ; Chen, Shu-Peng .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:389:y:2010:i:16:p:3218-3229.

    Full description at Econpapers || Download paper

  17. Impact of crude oil market behaviour on unit bid prices: the evidence from the highway construction sector. (2009). Damnjanovic, Ivan ; Zhou, Xue.
    In: Construction Management and Economics.
    RePEc:taf:conmgt:v:27:y:2009:i:9:p:881-890.

    Full description at Econpapers || Download paper

  18. Oil and natural gas prices and greenhouse gas emission mitigation. (2009). van Ruijven, Bas ; van Vuuren, Detlef P..
    In: Energy Policy.
    RePEc:eee:enepol:v:37:y:2009:i:11:p:4797-4808.

    Full description at Econpapers || Download paper

  19. A generalized pattern matching approach for multi-step prediction of crude oil price. (2008). Wei, Yi-Ming ; Liang, Qiang ; Fan, Ying.
    In: Energy Economics.
    RePEc:eee:eneeco:v:30:y:2008:i:3:p:889-904.

    Full description at Econpapers || Download paper

  20. Correlation analysis of chaotic trajectories from Chua’s system. (2008). Rodriguez, Eduardo ; Alvarez-Ramirez, Jose ; Puebla, Hector ; Echeverria, Juan Carlos .
    In: Chaos, Solitons & Fractals.
    RePEc:eee:chsofr:v:36:y:2008:i:5:p:1157-1169.

    Full description at Econpapers || Download paper

  21. Regime-switching characterization of electricity prices dynamics. (2006). Mari, Carlo.
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:371:y:2006:i:2:p:552-564.

    Full description at Econpapers || Download paper

  22. Power-law periodicity in the 2003–2004 crude oil price dynamics. (2005). Bernabe, Araceli ; Alvarez-Ramirez, Jose ; Rodriguez, Eduardo ; Ibarra-Valdez, Carlos .
    In: Physica A: Statistical Mechanics and its Applications.
    RePEc:eee:phsmap:v:349:y:2005:i:3:p:625-640.

    Full description at Econpapers || Download paper

Coauthors

Authors registered in RePEc who have wrote about the same topic

Report date: 2024-12-22 05:50:24 || Missing content? Let us know

CitEc is a RePEc service, providing citation data for Economics since 2001. Sponsored by INOMICS. Last updated October, 6 2023. Contact: CitEc Team.