A. GaÃŒÂbor and I. Kondor. Portfolios with nonlinear constraints and spin glasses. Physica A: Statistical Mechanics and its Applications, 274(1):222–228, 1999.
A. Kempf and C. Memmel. Estimating the global minimum variance portfolio. Schmalenbach Business Review, 58:332–348, 2006.
- B. Scherer and R. D. Martin. Introduction to Modern Portfolio Optimization With NUOPT and S-PLUS. Springer, 2005.
Paper not yet in RePEc: Add citation now
- Candès, E. J. and Romberg, J. K. and Tao, T. Stable signal recovery from incomplete and inaccurate measurements. Communications on pure and applied mathematics, 59(8):1207–1223, 2006.
Paper not yet in RePEc: Add citation now
- D. Amelunxen, M. Lotz, M. B. McCoy, and Joel A. Tropp. Living on the edge: A geometric theory of phase transitions in convex optimization. Inform. Inference, 3(3):224–294, 2013.
Paper not yet in RePEc: Add citation now
- D. Donoho and J. Tanner. Observed universality of phase transitions in highdimensional geometry, with implications for modern data analysis and signal processing. Philosophical Transactions of The Royal Society A, Mathematical Physical and Engineering Sciences, 367:4273–93, 2009.
Paper not yet in RePEc: Add citation now
F. Caccioli, I. Kondor, and G. Papp. Portfolio optimization under expected shortfall: contour maps of estimation error. arXiv preprint arXiv:1510.04943, 2015.
- F. Caccioli, I. Kondor, M. Marsili, and S. Still. Liquidity risk and instabilities in portfolio optimization. International Journal of Theoretical and Applied Finance, 19(05):1650035, 2016.
Paper not yet in RePEc: Add citation now
F. Caccioli, S. Still, M. Marsili, and I. Kondor. Optimal liquidation strategies regularize portfolio selection. The European Journal of Finance, 19(6):554–571, 2013.
G. Frahm and C. Memmel. Dominating estimators for minimum-variance portfolios. Journal of Econometrics, 159(2):289–302, 2010.
- G. Frahm. Linear Statistical Inference for Global and Local Minimum Variance Portfolios. Statistical Papers, 2008. DOI: 10.1007/s00362-008-0170-z.
Paper not yet in RePEc: Add citation now
G. K. Basak, R. Jagannathan, and T. Ma. A jackknife estimator for tracking error variance of optimal portfolios constructed using estimated inputs. Management Science, 55(6):990–1002, 2009.
- G. Papp, F. Caccioli, and I. Kondor. Variance-bias trade-off in portfolio optimization under expected shortfall with `2 regularization. available at http:// arXiv:1602.08297v1 [q-fin.PM], 2016.
Paper not yet in RePEc: Add citation now
H. Markowitz. Portfolio selection. Journal of Finance, 7:77–91, 1952.
I. Kondor, F. Caccioli, G. Papp, and M. Marsili. Contour map of estimation error for expected shortfall. Available at http://ssrn.com/abstract=2567876 and http://arxiv.org/abs/1502.0621, 2015.
I. Kondor, S. Pafka, and G. Nagy. Noise sensitivity of portfolio selection under various risk measures. Journal of Banking and Finance, 31:1545–1573, 2007.
I. Varga-Haszonits and I. Kondor. Noise sensitivity of portfolio selection in constant conditional correlation GARCH models. Physica, A385:307–318, 2007.
I. Varga-Haszonits, F. Caccioli, and I. Kondor. Replica approach to mean-variance portfolio optimization. arXiv preprint arXiv:1606.08679, 2016.
- J. Brodie, I. Daubechies, C. De Mol, D. Giannone, and I. Loris. Sparse and stable Markowitz portfolios. Proceedings of the National Academy of Science, 106(30):12267–12272, 2009.
Paper not yet in RePEc: Add citation now
- J. Bun, J-P. Bouchaud, and M. Potters. My beautiful laundrette: Cleaning correlation matrices for portfolio optimization. available at https://www.researchgate.net/publication/302339055, 2016.
Paper not yet in RePEc: Add citation now
- J. D. Jobson and B. Korkie. Improved estimation for Markowitz portfolios using James-Stein type estimators. Proceedings of the American Statistical Association (Business and Economic Statistics), 1:279–284, 1979.
Paper not yet in RePEc: Add citation now
J.-P. Bouchaud and M. Potters. Theory of financial risk and derivative pricing. Cambridge Univ. Press, 2003.
- M. MeÃŒÂzard, G. Parisi, and M. A. Virasoro. Spin glass theory and beyond. World Scientific Lecture Notes in Physics Vol. 9, World Scientific, Singapore, 1987.
Paper not yet in RePEc: Add citation now
O. Ledoit and M. Wolf. A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal., 88:365–411, 2004.
- O. Ledoit and M. Wolf. Honey, I shrunk the sample covariance matrix. J. Portfolio Management, 31:110, 2004.
Paper not yet in RePEc: Add citation now
O. Ledoit and M. Wolf. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10(5):603–621, 2003.
O. Ledoit and M. Wolf. Nonlinear shrinkage estimation of large-dimensional covariance matrices. Institute for Empirical Research in Economics University of Zurich Working Paper, (515), 2011.
- O. Ledoit and S. PeÃŒÂcheÃŒÂ. Eigenvectors of some large sample covariance matrix ensembles. Probability Theory and Related Fields, 151(1-2):233–264, 2011.
Paper not yet in RePEc: Add citation now
- P. Bühlmann and S. Van De Geer. Statistics for high-dimensional data: methods, theory and applications. Springer Science & Business Media, 2011.
Paper not yet in RePEc: Add citation now
P. Jorion. Bayes-stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21:279–292, 1986.
- P. Jorion. Portfolio optimization in practice. Financial Analysts Journal, 48(1):68– 74, 1992.
Paper not yet in RePEc: Add citation now
R. Jagannathan and T. Ma. Risk reduction in large portfolios: Why imposing the wrong constraints helps. Journal of Finance, 58:1651–1684, 2003.
- R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pages 267–288, 1996.
Paper not yet in RePEc: Add citation now
S. Ciliberti and M. MeÃŒÂzard. Risk minimization through portfolio replication. Eur. Phys. J., B 57:175–180, 2007.
S. Ciliberti, I. Kondor, and M. MeÃŒÂzard. On the feasibility of portfolio optimization under expected shortfall. Quantitative Finance, 7:389–396, 2007.
- T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning, data mining, inference, and prediction. Second edition. Springer series in statistics Springer, Berlin, 2008.
Paper not yet in RePEc: Add citation now
T. Shinzato. Replica analysis for the duality of the portfolio optimization problem. Phys. Rev. E, 94:052307, 2016.
V. DeMiguel, L. Garlappi, and R. Uppal. Optimal versus naive diversification: how efficient is the 1/n portfolio strategy? Review of Financial Studies, 22(22):1915– 1953, 2009.
V. DeMiguel, L. Garlappi, F. J. Nogales, and R. Uppal. A generalized approach to portfolio optimization: Improving performance by constraining portfolio norms. Management Science, 55:798–812, 2009.
V. Golosnoy and Y. Okhrin. Multivariate shrinkage for optimal portfolio weights. The European Journal of Finance, 13:441–458, 2007.
Y. Okhrin and W. Schmid. Distributional properties of portfolio weights. Journal of Econometrics, 134:235 – 256, 2006.