
Pervasive software services for mobile ad-hoc teams

Mehdi Jazayeri
Technische Universität Wien

jazayeri@tuwien.ac.at

Abstract
Mobile, ad hoc teams are an increasingly common form of collaboration. Workers in
such teams often are involved in several highly information-intensive projects. They
work with people in several organizations, on short-term, goal-oriented tasks. Most
of today’s information technology-based tools have been developed to support tradi-
tional, static, project-oriented teams. The support of mobile, ad-hoc collaboration
offers many challenges to tool developers. The paper considers the application of
pervasive computing services to the problem. The paper is speculative, but, I hope,
stimulating.

Keywords: software architecture, ad-hoc teams, mobility, cooperation services,
teamwork services

1. Introduction
As teams of knowledge workers have become more dispersed and mobile, the proc-
esses they are engaged in have increased in complexity and they have been inundated
with various types and quantities of information. A typical knowledge worker has to
carry several gadgets for communication and data management. The data and com-
munication are used for organizing personal tasks or coordinating tasks with col-
leagues. The worker has to regularly sift through incoming and past information to
determine the information relevant to his or her current context. How effectively the
worker is able to perform his or her task depends on how well he or she can remem-
ber the relevant information and documents, remember their relationships to one an-
other, and maintain access to them while on the move. As tasks become more com-
plex, the relationships among documents become even more complex. To make mat-
ters worse, knowledge workers are typically involved in several tasks at the same
time, some short-lived and others long-term. Keeping track of all tasks and their de-
pendencies has become a formidable endeavor. The emergence of the “pervasive
computing” environment, also referred to as “ambient intelligence”, promises the
availability of essentially unlimited computing and communication capability regard-
less of location. How these capabilities can be exploited is a matter of current specu-
lation and limited by our imagination. We envision that task support for knowledge
workers can be pushed into the intelligent ambient in each working environment. We
will analyze a typical team project—paper selection by a program committee for a
conference—to illustrate typical requirements, show how this project may be sup-

ported by the MOTION team support environment, and explore possibilities for em-
bedding this support in the pervasive computing environment. A fundamental re-
structuring of system and application software architecture is necessary to achieve
this kind of support.

2. A typical scenario of ad hoc team cooperation
Ad hoc team formations are an increasingly common form of cooperation for knowl-
edge workers. Ad hoc teams are formed to solve a specific problem and have a lim-
ited lifetime. Many processes such as software inspections and reviews or task forces
rely on such teams. Members of ad hoc teams often come from different organiza-
tions and different locations. The members share information and interact for the lim-
ited lifetime of the project. Members are often mobile and meetings may be held
physically or virtually. Such teams traditionally use separate applications for different
parts and phases of the project.
An example of such an ad hoc team is a conference program committee. We present
a scenario of a conference program committee process as a driving example. We use
the example to show the many different tasks and processes involved in order to be
able to identify where environment services may be helpful.
A conference program committee (PC) is formed to solicit and select papers to be
presented at a conference. A conference’s steering committee appoints a PC Chair to
run the process of paper selection. The chair then selects members of the program
committee. Typically, the committee is selected from experts in the field using vari-
ous criteria to ensure that the committee includes a broad mixture of subspecialties, a
balance of academia and industry, and geographical diversity. The major milestone
for the committee is the program committee meeting in which the submitted papers
are discussed and the best ones selected for conference presentation. The meeting
takes place over one to two days and involves considerable cost and effort due to
travel and local arrangements. There are, however, much pre- and post-meeting ac-
tivities as well, just as there are for any review meeting processes. For the program
committee process, we identify pre-meeting, meeting, and post-meeting phases.

2.1 Pre-meeting phase
In the pre-meeting phase, the committee drafts a call for papers (CFP) and publishes
it in appropriate venues, soliciting papers for the conference. Today, this is done
mostly on a conference Website and through (repeated) electronic mail postings. The
CFP contains instructions on how to submit a paper, in what format, any length re-
strictions, and special requirements such as copyright releases. Many conferences
also have restrictions such as rules against simultaneous submissions to a different
conference or journal. Committee members also try to informally spread the word
about the conference and solicit good papers. This practice is based on the assump-
tion that the committee members, being experts, know the other experts in the field,
who are likely to be performing work of interest to the conference.
Once the CFP is published, potential authors around the world consider the confer-
ence and some prepare and submit papers according to the instructions in the CFP.
Today (2003), most submissions are done electronically through a Website; physical
paper submission through the post office is not supported. For perspective, it is inter-
esting to note that in 1999, very few conferences supported electronic submission.

The submitted papers are stored in a repository. There are many conference paper
submission systems that support this process.
Once the deadline for paper submissions has expired, the PC Chair assigns papers to
reviewers from the PC. This itself is an intricate process. First, the Chair collects an
expertise and preference list from PC members. The criteria for assigning papers for
review are usually based on this information but also have to balance the load among
reviewers and also avoid potential conflicts of interest. For example, a paper should
not be assigned for review to the author’s close friends, colleagues, or competitors.
Depending on the size of the conference, each paper may be assigned three or more
reviewers, and each reviewer may be assigned up to twenty papers to review. Some-
times, PC members may ask another person to review the paper. These “external”
reviewers become virtual members of the PC but are not present at the PC meeting.
The reviewers have a deadline for completing their reviews. This means that they
must read the paper, prepare a detailed review with explicit comments for the authors
and for the committee, together with a recommendation as to whether to accept or
reject the paper. The reviews must be submitted a week or two before the meeting.
Today, these reviews are submitted electronically and stored in a repository. Depend-
ing on the policies chosen by the PC Chair, the reviews for papers may or may not be
visible to other reviewers of the same paper. If the reviews are visible, the reviewers
have a chance to discuss their possibly divergent opinions and perhaps reach an
agreement about the status of the paper before the meeting. Typically, the reviews are
not visible to those with a conflict of interest with the paper.
The Chair reviews the reviews to determine if there are any problem cases. An exam-
ple problem case is if the reviewers indicate that they do not have sufficient expertise
to be confident in their review. Another example is when there is real difference of
opinion among the reviewers. In such cases, the Chair may decide to get an addi-
tional review on the paper, either from a member of the PC or externally. On the ba-
sis of the reviews, the Chair determines what papers should be discussed at the pro-
gram committee meeting. Sometimes the choice of papers to be discussed is commu-
nicated to the PC beforehand and other times only at the beginning of the meeting.

2.2 Meeting phase
The reviewing work is done before the PC meeting, but the meeting is where final
decisions about the disposition of the papers are taken. The meeting is thus the cul-
mination of the PC’s work. Since the PC members are from different organizations
and from different parts of the world, most members have to travel to the meeting
place. Sometimes, meetings are even held at airport lounges to ease the travel burden
for everyone. The point is that most members, possibly all, are away from their home
environment. Sometimes, Internet access is available and other times not.
The goal of the meeting is to discuss the papers and their reviews and to decide
which papers should be accepted for presentation at the conference. Typically, the
papers with uniformly poor reviews are not discussed, based on the assumption that if
all reviewers disliked the paper, no one is going to argue that the paper should be
accepted. On the other hand, papers with uniformly positive reviews are discussed so
that all PC members are informed of the top papers in the conference. This discussion
is not strictly aimed at reaching the primary goal of the meeting but is intended for
community and awareness building. Most of the meeting is devoted to discussing
papers with mixed reviews.

The meeting is usually supported by some kind of management software. Typically,
the paper to be discussed is displayed on a screen, along with the reviewer names.
These days, all members have laptops with stored reviews of all papers. The Chair
decides the order in which papers are to be discussed and the order in which review-
ers start the discussion. Sometimes, papers with positive reviews are discussed first,
sometimes those with negative reviews, and other times in some mixed order. The
policy tries to optimize the efficiency of the process but also should take into account
group psychology. Those members who have conflicts of interest with the paper be-
ing discussed usually leave the room and do not take part in the discussion. A trivial
example is a paper’s author who must not be present when his or her paper is being
considered. Many conferences have guidelines for handling papers authored by pro-
gram committee members to avoid conflicts of interest. Sometimes, PC member pa-
pers are subjected to more reviews or higher standards.
The PC Chair moderates the meeting. The reviewers present their opinions about
each paper and argue the points in favor and against the paper. The PC Chair tries to
determine from the arguments whether the paper should be accepted or rejected.
Sometimes there are middle-ground decisions such as accepting the paper for a poster
session rather than a regular paper. Sometimes there are categories of papers such as
research papers versus industrial papers versus experience reports or case studies.
Sometimes explicitly different standards are applied to the various categories and
sometimes the standards are implicit. The goal is to reach a consensus decision about
each paper. Sometimes a consensus is not possible and the discussion is about the
risk of accepting a possibly bad paper versus the risk of rejecting a possibly good
paper. Eventually, the Chair has to finalize a decision.
At the conclusion of the meeting, a set of papers has been selected for the conference,
possibly categorized in different classes.

2.3 Post-meeting phase
The goal of the next phase of the process is the preparation of the Proceedings for the
conference. Before that can be done, the Chair must communicate with the authors of
the papers about the status of their papers. First, the reviewers are asked to update
their reviews, if necessary, based on the discussions at the PC meeting. It is possible
that some arguments have revealed new insights that should be communicated with
the authors, either to explain the reasons for the rejection of the paper or to help the
author improve the paper. Once the reviews have been updated, the PC chair sends a
notification letter to the authors announcing acceptance or rejection of the paper. The
letter is accompanied by reviews that explain the decision to the author and some-
times contain suggestions for improving the paper. The authors of the accepted pa-
pers are given a deadline for submitting “camera-ready” versions of their papers,
appropriately improved, in a prescribed format, together with a signed copyright re-
lease form.
The camera-ready papers are collected together by the PC Chair to form the core of
the Conference Proceedings. They are sent to the publisher who publishes the Pro-
ceedings and delivers them to the conference site.

3. Technological support for PC meetings
It is interesting to examine the development of technology and how it has been ap-
plied to the PC meeting problem. Before 1990, most paper submissions were done on
paper and through the post office. In early to mid 1990s, reviewers generally emailed
their reviews of papers to the PC Chair. In 1997, I chaired the PC of European Soft-
ware Engineering Conference and the ACM Symposium on the Foundations of Soft-
ware Engineering (ESEC/FSE). We had physical submissions of papers through the
regular post office. We sent by courier mail copies of papers to be reviewed. Review-
ers emailed their reviews. We wrote Perl scripts to process the reviews and produce
reviewer booklets for the PC Meeting. The process was primarily manual.
In 2000, I co-chaired the PC Meeting of the International Conference on Software
Engineering (ICSE). We encouraged electronic submissions. We received two papers
(from the same person) in paper form. The rest of the 350+ papers were submitted
electronically. We experienced some surmountable problems in postscript/pdf com-
patibility. We used the Cyberchair paper management system (www.cyberchair.org/).
Each reviewer had a user/password to access the system, download the papers as-
signed to him or her, and submit reviews on the papers. After submitting a review,
the reviewer could see the other reviews and could start discussing the differences
with the other reviewers. This discussion was through email, outside the system. The
PC chairs were “expected” to be copied on the discussion emails. The electronic
submissions eliminated the cost of courier mailing entirely, both for the authors and
for the conference. The cost was replaced by the additional task of printing of papers
by reviewers.
To prepare for the discussions of the committee meeting, we produced a huge booklet
containing all the reviews of the papers, individualized for each of the 50 members of
the committee. In 2003, when I attended the PC meeting of ESEC/FSE as a member,
the Chair distributed (electronically) all the relevant reviews beforehand and each
member carried a laptop to the meeting with copies of all the papers to be discussed
and all the reviews. There were hardly any physical papers at the meeting. On the
other hand, in 2000, when members left the meeting, they left the booklets at the
meeting, respecting their confidentiality. In 2003, we received an email from the PC
Chair (after the meeting) to remove the reviews from our laptops.

Certainly the nature of program committee meetings has changed with increasing use
of technology. The changes in process have also affected the authors, reviewers and
publishers. Today, most conferences are supported by some management software
that provide, to different degrees, paper submission, reviewer registration (with lists
of competences), paper assignment to reviewers, review submission, discussion fo-
rums, ordering of papers for discussion, camera-ready submissions, and Proceedings
production. There are also systems that provide other services such as marketing of
the conference via emailing to appropriate Websites. A major change that has en-
abled a completely new approach to the meeting is that almost everyone has a laptop
computer. The use of the individual computers enables a much more interactive and

efficient discussion at the meeting (at least by those members who are not playing
solitaire or reading email!).

It is interesting to consider the innovations that will be possible in this scenario with
the application of pervasive computing. Pervasive computing has the potential to
augment human performance by providing ubiquitous access to information, process-
ing, and services in a truly distributed fashion. The program committee-meeting sce-
nario is a prototypical example for investigating possible applications of pervasive
computing because it is a typical teamwork scenario, requiring support for highly
flexible processes. We will first consider our meeting scenario in the context of an
existing team-support software before taking up the issue of pervasive computing.

The figure below is an overview of the activities of a PC from the point of view of
Cyberchair, reproduced from the Cyberchair Website. The Website also contains
more precise definitions of terms author, reviewer, and so on, and links to related
papers. A paper by Oscar Nierstrasz [Nierstrasz] proposes a pattern language for
identifying the “champion” for a paper in a PC Meeting, the person who will argue
that the purpose should be accepted. The pattern is used in many conference meet-
ings.

4. Implementing teamwork in MOTION
In the last few years, the EU project MOTION (www.motion.softeco.it) developed a
teamwork support environment, also called MOTION. This environment consisted of
three layers: communication layer, teamwork support layer, and user-interface layer.
The goal of the environment was to enable application developers to build domain-
specific or task-specific team-support software tools (or groupware). For example,
one pilot application was built to support product design review meetings. Such

meetings have similar requirements to the ones we have described for program com-
mittee meetings.

The communication layer is based on a peer-to-peer architecture and provides event-
based communication; the user-interface layer provides facilities for building GUI
interfaces that are device-independent; the teamwork support layer (TWS) exposes
the main facilities of the platform to application builder through an application pro-
gramming interface (TWSAPI). The primary abstractions provided by the TWS are
users, artifacts, profiles, communities, repositories, and access rights. Users define
specific actors in the process; artifacts define objects to be accessed and manipulated
by users; communities define groups of users with similar interests; profiles define
attributes (meta-data) of users, artifacts, and communities; repositories define (dis-
tributed) containers for artifacts; access rights define which actors may access which
objects. Because the underlying architecture is peer-to-peer, repositories may be
formed from sub-repositories located on different peers. Because MOTION supports
off-line processing, repositories may sometimes not contain all data if some peers are
unavailable. With the use of these abstractions, we can begin to model the Program
Committee Review problem as shown below:

• Users: Authors, Reviewers, Chairs, External Reviewers
• Community: Reviewers, Chairs, Reviewers for specific papers (subcommu-

nity of Reviewers)
• Artifacts: Papers, Reviews, Notification letters to authors (automatically

generated), Proceedings
• Profiles: Describe reviewers, their expertise and interests; papers and re-

views can also have profiles
• Access rights defined by chairs as a result of paper assignment and conflict

declarations
• Repositories: for Submitted papers, for Reviews, for Camera-ready papers

Communities share artifacts. For example, a (sub)community of reviewers assigned
to a paper may be associated with that paper. They may subscribe to be notified of
any changes in the status of the paper, such as submission of new reviews for that
paper. The publish-subscribe communication paradigm of MOTION integrates nicely
with the community notification process. The peer-to-peer architecture of MOTION
provides natural support for ad-hoc networking so that a program committee meeting
can be run on an ad-hoc network of those members present at the meeting. The col-
lection of artifacts available on the laptops of the members in the network forms the
global repository of the review process. MOTION provides no support for process
definitions. That is, the support for tasks such as assigning papers to reviewers must
be programmed in a programming language using the API of TWS to make use of
TWS abstractions. In practice, because of the high-level nature of the TWS abstrac-
tions, these programs turn out to be quite short and easy to write. Still, the knowledge
about the process is embedded in these programs and relationships among these tasks
are not evident at all.

We have concluded that MOTION needs a process definition and composition com-
ponent to enable tasks to be defined and executed (enacted). Such a process defini-
tion component would make it possible to document, instantiate, and reuse task defi-
nitions. For example, a generic task could be “assigning tasks”. Two specific in-
stances of this task are “assigning a review to a reviewer” and “assigning resolution
of divergent reviews to a community of reviewers.” Given appropriate task definition
units, a given program committee review system could be built by instantiating and
composing appropriate units into workflows. A workflow engine can then enact and
monitor the progress of the process. Some process composition ideas are being ex-
plored in the DMC architecture presented in [Dustdar & Gall].
We can start the process of task definition by identifying the many tasks embedded in
the process. Some tasks may be defined as individual and others as group tasks. For
example, reviewing a paper is an individual task; discussing the reviews is a group
task. Some tasks are specific, such as reviewing a paper; other tasks are more general
but also not as well defined such as searching for specific expertise and skills among
the reviewers. Over time, we could build a repository of such task units that can be
used in future projects.
A particularly useful task unit is “search for an expert.” We first encountered the
need for this activity in the MOTION project where both of our industrial partners
presented it as a critical problem for them. When faced with a critical problem, it is
often difficult to find who holds the critical knowledge for solving that problem and
where that person is. Apparently, large corporations have this problem and it is in-
creasingly in importance as work becomes knowledge intensive and knowledge
workers become mobile. We have seen several instances in the program committee
problem where such a task would be needed: in finding members for the program
committee initially and when trying to assign reviewers to papers. We will see other
examples in the next section.

5. What about pervasive services?
What I have described as the process of paper reviewing is typical of review proc-
esses. It is also typical of ad-hoc, mobile teams of knowledge workers. Indeed, for
most of the members in the committee, the task of reviewing papers is only a small
part of their daily duties. Typically, they perform the task in their “spare” time and
often while traveling. They are collaborating in this task with other members who are
part of other organizations and also involved in this task in their spare time. The
members do not share any common computing infrastructures. In many cases, they
may not even have met in person. The almost exclusive mode of communication is
email. Most members do their reviewing off-line and submit their reviews when they
can establish a connection to the Internet. They would probably prefer to submit their
reviews off-line and upload them (automatically) when connected. Most systems do
not support such a feature today. Therefore, off-line review preparation and on-line
cut-and-paste is common practice.
Let us first look at some obvious pervasive computing facilities that can directly in-
fluence our program committee meeting process. The first service that one expects is

“presence awareness.” If we could detect which members were present in the meet-
ing, we could improve many of the processes involved in the meeting. For example,
the system could notify those members with conflicts of interest to exit the room just
before discussion of the paper starts. It could also notify the committee when discus-
sions may begin. The system could maintain a list of papers that may be discussed to
ensure that no paper discussion starts unless all the relevant reviewers are present. It
could even check the presence of other reviewers who are expert in the area, even if
they are not reviewers of the paper. It could identify reviewers who could shed light
when disagreements arise. This idea can be generalized to a meeting agenda manager
that dynamically updates the agenda on the basis of presence of individuals. A more
sophisticated version would also use a policy module for ordering the discussions.
Presence detection could also be used to notify a particular group who may have a
review to discuss among themselves when they are in the vicinity of each other.
(Remember that sometimes the people may not know each other personally.)
Another obviously useful service is support for information management. Informa-
tion management includes enabling access to information, filtering relevant informa-
tion, and synchronizing the information in the face of updates. The environment
should be able to provide such features on the basis of the location of the person and
the device he or she is carrying, without the need for painstaking device driver or
plugin installations. Data synchronization is an especially important issue. This is
necessary both after users have been off-line and after changes have been made by
other people. For the reviewers in our scenario, this means that the status of their
papers are kept up to date on their local device. A simple synchronization would be
to update the clock on all devices when entering a different time zone. The detection
of the presence of a person at a capable site can trigger relevant synchronization
processes automatically.
Presence detection can also be the basis for establishing communications of rele-
vance. We have seen that at least two kinds of communication are necessary: notifi-
cations and messages of longer length. In fact, notification services seem indispensa-
ble to mobile workers even though they are not so universally supported. Pervasive
computing services should make this easier in the future.
We can divide further help that can come from additional (or better) technology—
such as pervasive computing and services—into generic support for knowledge work
activities and specific support for program committee meetings. The generic support
needed is to help knowledge workers focus on their current activity, help them in
carrying out that activity, and ease the task of switching between activities. To focus
on the current activity, the environment must present the context appropriate for that
activity. For example, if I am involved in reviewing papers for a particular confer-
ence, my work context should contain the papers assigned to me and the status of
each paper, but also any notes I have made about those papers, any emails I have
received about the reviewing activity, perhaps the conference’s Website, past pro-
ceedings of the conference, copies of the authors’ previous relevant papers, and the
paper’s cited references. At the moment of working on this activity, I would not like
to see any of my other email messages or receive any other email unless it is related
to this task (or is an urgent message). I would like to receive a notification if some

information about a paper I am reviewing has changed, for example, if the PC Chair
has decided that the paper should be discarded due to some discovered irregularity.1
Supporting the current activity requires an encoding of the task being performed so
that the environment can monitor and report the progress of the activity. This also
requires maintaining the context of the activity, such as all needed and affected
documents, relevant team members, those depending on the activity and those con-
tributing to the activity, messages communicated in relation to this activity, sched-
ules, and relationship to other activities. For example, in reviewing a paper, a PC
member is pursing an activity that is a part of a larger activity including a group of
reviewers working on the same paper, whose group activity is itself part of a larger
activity initiated by the PC Chair, and so on.
Switching between activities requires the suspension and saving of the current con-
text and reloading and restarting of a new context, preferably with a convenient
overview of the current status that includes all changes and messages since the activ-
ity was suspended.
All this support for activities must be provided taking into account the following re-
alities of the knowledge workers’ environment:

• Complete distribution: people are distributed around the world with access
to their private computing environment without a centralized shared facility

• Complete heterogeneity: people use a variety of hardware devices and soft-
ware tools; there is increasing variety of special-purpose and general-
purpose devices

• Mobility and disconnected operations: people are often away from their
home location (if indeed they have one) and sometimes are not able to main-
tain an Internet connection

On the other hand, what we will have are environments with rich computing and
communication capabilities and knowledge workers traveling between them carrying
their various devices. Since each device cannot carry the entire database or applica-
tion, support for the application must be embedded in these environments. We can
classify the support needed for the tasks we have discussed as information manage-
ment, communication management, and workflow management. All of these must be
managed on a global scale. Traditional centralized or client-server architectures are
clearly insufficient to meet these requirements. Entirely new software architectures
and concepts will be needed. We envision that applications will be composed of units
that are spread over pervasive computing environments and devices that are carried
by people. Devices carry the various task contexts and switch between them with the
help of the services provided by the environment. In this way, users do not carry spe-
cific documents or data with them. These will follow them based on their task context

1 Even though we seem to be unable to deal with unwanted spam mail, the filtering
of relevant messages appears to be an easier problem to solve.

as needed. The paradigm is that as people move from one rich environment to an-
other, they recharge their contexts just as they may recharge their batteries.

6. Conclusions
I have described a scenario of a teamwork process in some detail. I believe that this
scenario can be used for identifying teamwork processes and direct the search for
supporting services. I have also considered how such problems may be addressed in
future pervasive computing environments. I have only scratched the surface of this
rich field. In my own group, we are working on architectural design issues [Dust-
dar&Gall], heterogeneity issues [Gschwind, Oberleitner, Jazayeri], and correctness of
event-based applications [Fenkam, Gall, and Jazayeri]. I believe that correctness and
quality are fundamentally important issues in an increasingly wired world and any
software support, including those for teamwork support, must come with proven
guarantees about their offered services. With pervasive services, guarantees for the
support of heterogeneity and maintenance of security and privacy guarantees are re-
quired qualities.
The process and teamwork issues are studied in many communities, including work-
flow, CSCW, and software process. References may be found from the MOTION
Website. There are many projects on pervasive computing environments, including
Aura at Carnegie Mellon University and Gaia at the University of Illinois. We are
examining those very carefully. Our own ideas on composing applications out of
mobile components are presented in [Jazayeri].

7. References
Schahram Dustdar and Harald Gall, “Architectural Concerns in Distributed and Mo-
bile Collaborative Systems,” Journal of Systems Architecture, to appear.

Pascal Fenkam, Harald Gall, and Mehdi Jazayeri, “Composing Specifications of
Event Based Applications,” Proceedings of the Conference on Fundamental Ap-
proaches to Software Engineering (FASE 2003), Springer Verlag, April 7-11, 2003,
Warsaw, Poland.

Thomas Gschwind, Johan Oberleitner, and Mehdi Jazayeri, “The Vienna Component
Framework: Enabling Composition Across Component Models,” Proceedings of the
25th International Conference on Software Engineering, pp. 25-35, May 3--10, 2003,
Portland, Oregon, USA.

Mehdi Jazayeri, “Software Components: Pervasive Challenges (invited paper),” Pro-
ceedings of Radical innovations in Software Engineering of the Future (Monterey
2002), Venice, Italy, October 2002.

Oscar Nierstrasz, “Identify the Champion,” Pattern Languages of Program Design, N.
Harrison, B. Foote and H. Rohnert (Eds.), vol. 4, Addison Wesley, 2000, pp. 539-
556.

Harald Gall, Engin Kirda, Pascal Fenkam, and Gerald Reif, “TWSAPI: A Generic
Teamwork Services Application Programming Interface,” Proceedings of the Inter-
national Workshop on Mobile Teamwork 2002, Collocated with the 22nd Interna-
tional Conference on Distributed Computing Systems(ICDCS 2002), July 2-3, 2002,
Vienna, Austria.

	Str:
	:141: 15
	:151: 16
	:161: 17
	:171: 18
	:181: 19
	:191: 20
	:201: 21
	:211: 22
	:221: 23
	:231: 24
	:241: 25
	:251: 26

