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Abstract 
Over recent years, bioinspired swarm techniques have gained significant popularity for addressing real-
world engineering optimization challenges. One promising application of these methods is developing 
and optimizing of intelligent systems, specifically fuzzy control systems. This paper examines research 
issues and performs a comparative analysis of bioinspired swarm methods for parameter optimization in 
fuzzy control systems. It compares various hybrid modifications of particle swarm optimization and grey 
wolf optimization techniques, specifically adapted for fuzzy system parameter optimization, against 
traditional search methods. As a case study, the paper uses the parametric optimization of a Takagi-
Sugeno fuzzy control system designed for a quadrotor-type unmanned aerial vehicle (UAV). The 
simulation results confirm the effectiveness of the presented swarm bioinspired optimization techniques, 
taking into account both the performance of the UAV's fuzzy control system and the computational costs 
involved. 
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1. Introduction 

At designing intricate objects and systems in diverse fields like technology, agriculture, 
manufacturing, economics, and medicine, there's often a need to locate optimal solutions within a 
complex, multidimensional search space [1-4]. Standard optimization techniques frequently fail to 
meet these demands due to the unpredictable nature of the terrain and the existence of multiple 
local optima in the functions under consideration, which capture the complex relationships 
between solution effectiveness and unknown parameters [5-8]. Currently, approximate techniques 
of global optimization are gaining traction due to their capacity to find high-quality solutions 
efficiently in terms of both computational resources and time [9-12]. Bioinspired swarm and 
evolutionary algorithms stand out among these methods [13-15]. Unlike traditional methods of 
local search, bioinspired approaches are effective even with limited information about the nature 
and characteristics of the systems being optimized. They are proficient at avoiding local minima 
and are versatile enough to be applied to a wide array of real-world optimization problems. 
Additionally, these methods utilize straightforward computational procedures that mimic the 
behaviors of social animals, evolutionary concepts such as natural selection, and certain physical 
phenomena. In essence, bioinspired intelligent algorithms can be effectively combined with various 
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local search methods, significantly improving the optimization process by strategically merging 
global and local search principles [16, 17]. 

In recent years, several intelligent algorithms have proven particularly effective and widely 
adopted for tackling diverse optimization challenges. Notable among these are particle swarm 
optimization (PSO) [18], ant lion optimization (ALO) [19], cuckoo search (CS) algorithm [20], grey 
wolf optimization (GWO) [21], whale optimization algorithm (WOA) [22], firefly algorithm (FA) 
[23], and chaotic swarming of particles (CSP) algorithm [24]. Moreover, numerous hybrid 
techniques have been successfully applied in the development of complex systems [25]. 

The use of metaheuristic swarm and evolutionary techniques for designing and optimizing 
intelligent control and decision support systems is a promising field, particularly when applied to 
systems based on fuzzy logic [14, 26, 27]. Recent research shows that fuzzy systems (FS) optimized 
with bioinspired methods are highly effective in tackling complex control and decision support 
issues across various domains [13, 28]. For instance, studies [29-32] have adapted PSO methods for 
the parametric optimization of linguistic terms (LT) in fuzzy automatic control systems (ACS) for 
different technical applications. Specifically, [29] discusses the optimization of triangular LT 
vertices for a fuzzy power control system in an industrial wireless sensor network. Meanwhile, [31] 
focuses on optimizing 1st type Gaussian LT parameters for a fuzzy ACS in an autonomous mobile 
robot operating in uncertain environments. Additionally, the GWO method has shown highly 
competitive results in parametric optimization for various fuzzy system configurations, 
outperforming other well-known bioinspired techniques [17, 33, 34]. Therefore, ongoing research 
into developing, refining, and implementing bioinspired swarm methods for synthesizing and 
optimizing different types of fuzzy systems is essential and highly relevant.  

This study centers on the research and comparison of bio-inspired swarm techniques for the 
parametric optimization of a Takagi-Sugeno fuzzy automatic control system, specifically designed 
for a quadcopter UAV. The quadcopter drone possesses the ability to navigate through various 
terrains and environments, serving as a versatile tool for conducting intricate inspection and 
monitoring tasks in various environments and conditions. To fully harness the potential of this 
UAV, an intelligent control system optimized using advanced methods is essential [35]. Selecting 
the most suitable method to achieve high efficiency while maintaining low computational costs is a 
challenging task. Hence, the main goal of this study is to carry out efficiency research and perform 
a comparative analysis of various adaptations (basic and hybrid) of PSO and GWO swarm 
techniques for the parametric optimization of fuzzy ACSs. 

2. Hybrid fuzzy automatic control system for the unmanned aerial 
vehicle 

Quadcopter-type UAVs are among the most advanced and popular types of micro-class drones, 
which have recently been widely used for monitoring and inspection tasks in various civil and 
military sectors [36-38]. Also, such drones can be effectively used in critical infrastructure facilities 
along with other mobile robotic means to perform complex tasks of increased importance and 
danger [39]. These devices have several advantages over other types of unmanned aerial vehicles, 
including high maneuverability, the ability to take off and land vertically, hovering capability, high 
energy efficiency, and ease of maintenance. However, quadcopters are also quite complex to 
control, making it appropriate to use intelligent ACS, particularly fuzzy control systems, for their 
automation [35, 40]. One of the most important tasks in automating the spatial movement of such 
drones is the stabilization and automatic regulation of their flight altitude.  

In this work, the fuzzy control system for quadcopter flight altitude is considered for 
researching and comparing different swarm optimization methods. To improve the quality of the 

altitude control and, accordingly, the overall efficiency of the processes of automating 
its vertical movement, it is advisable to use a hybrid fuzzy ACS based on a classical PID controller 
and a sliding mode controller, the structure of which is shown in Figure 1.  



 

Figure 1: Basic structure of the hybrid fuzzy ACS for the UAV. 

In turn, the following notations are used in Figure 1: SD is the setting device; CC is the classical 
PID controller; SMC is the sliding mode controller; FS is the fuzzy system for determining value of 
the aggregating weight coefficient KH; AS is the sensor for altitude measuring; LU is the limiting 
unit that passes only positive signals and limits them to a level of no more than one; zS and zR are 
the set and real values of the flight altitude of the UAV; uSD, uAS, uPID, uSC, and u1 are the 
corresponding output signals of the SD, AS, classical PID controller, sliding mode controller, and 
the entire hybrid controller z is the control error formed at the output of the adder in the main 

feedback channel; ε z  and εzdt  are the control error derivative and integral, respectively;  kP, kD, 

and kI are the PID controller gains; Fg and Fz are the gravity force and various disturbances acting 
on the UAV.  

In this hybrid ACS, the classical PID controller is combined with the sliding mode controller 
using a specific fuzzy system that calculates the weighting factor KH. At the same time, the 
aggregation of the output control signals of the classical uPID and sliding mode uSC controllers is 
carried out using the KH coefficient, as a result of which the control signal of the hybrid controller 
u1 is calculated according to the expression: 

( ) .= + −1 H PID H SC1u K u K u  (1) 

At sufficiently small values of the control error z (in the vicinity of the set value of the 
controlled coordinate zS), the coefficient KH approaches unity, and the resulting control signal u1 for 
the UAV is largely determined by the output signal of the classical PID controller uPID. In turn, at 
significant values of the error z, the coefficient KH approaches zero, and the greatest contribution 
to the signal u1 is made by the control signal of the sliding mode controller uSC. Moreover, due to 
the additional use of the derivative of the flight altitude control error ε z , when calculating the KH 

coefficient, the dynamics of transitions from one control mode to another are better taken into 

turn, the limiting unit LU calculates the modulus of the output signal of the FS and limits it to a 
level of no more than one. 



The output control signal of the sliding mode controller uSC is calculated based on the current 
values of the sliding surface SK according to relationship (2), and the sliding surface SK itself is 
calculated based on equation (3).  

     

               

,

   

;

,    

, ;

;

+ 


= =
− 

Cmax К

SС К

Cmax К

at 0

0 at 0

at 0

u S

u S

u S

 (2) 

( ) ( )
... ,

− −

−= + + + +
2 1

1К 2 1ε ε ε ε
n n

na aS a  (3) 

where uCmax is the maximum possible value of the SMC control signal; a1, a2 an 1 are coefficients 
of the Hurwitz polynomial (a polynomial with real coefficients, all zeros of which are located in the 
left complex half-plane); n  

In this case, a sliding surface of the first order is used, its only coefficient according to the 
Hurwitz polynomial a1 is equal to 2.4 (a1 = 2.4). The parameters of the traditional PID controller are 
as follows: kP = 2.54; kD = 1.43; kI = 0.513. In turn, these coefficients are calculated on the basis of a 
mathematical model of a quadcopter UAV [17, 37] for the conditions of constancy of all its 
coefficients. 

In turn, the FS calculates the value of the KH weighting factor according to the dependence: 

( ), ,=H FS P Dε εz zK f K K  (4) 

where KP and KD are the normalizing factors of the FS.  
The desired flight altitude of the UAV zS can be specified by the upper-level control system, 

which is recommended to be implemented using IoT (Internet of Things) technology [41-43]. 
In this study, to conduct a comparative analysis of the considered swarm techniques, a 

parametric optimization of the Takagi-Sugeno type FS was performed for the hybrid ACS of the 
X to be optimized is defined by the 

expression (5)  

 , , ,= LT CiX K P P  (5) 

where Ki is the vector of normalizing factors (KP and KD); PLT is the vector of adjustable parameters 
of the linguistic terms; PC is the vector of weighting gains for the consequences of the rule 
base  rules. 

For the input signals of the fuzzy system the following linguistic terms of the triangular type 
z  5 LTs (BN  big negative; SN  small negative; Z  zero; SP  small positive; BP  

big positive); ε z   3 LTs (N  negative; Z  zero; P  positive). Therefore, the PLT vector contains 24 

tunable parameters, each of which must be optimized. In turn, the rule base of this fuzzy system 
consists of 15 rules, each defined by expression (6) 

( ) ( )“ ” “ ” “ ,= = = + +1 2P D H P D1 2 3IF  AND  Tε ε ε εHEN z z zr r z rLT LT k kK K kK K K  (6) 

where LT1 and LT2 are certain linguistic terms; k1r, k2r, and k3r are the weighting gains of the r-th 
rule. 

Thus, the PC vector of consequent weighting coefficients consists of 45 coefficients. Overall, the 
parameter vector X to be optimized in this case comprises 71 parameters. 

Next, we move directly to optimizing the parameters of the proposed hybrid fuzzy control 
system. This step involves conducting efficiency research and a comparative analysis of various 
modifications (both basic and hybrid) of PSO and GWO swarm techniques. 



3. Swarm-based parameter optimization of the hybrid fuzzy control 
system for a quadcopter UAV 

The a
system using effective and well-established swarm methods like PSO and GWO [17, 18, 21, 44]. 
These methods, along with their various hybrid modifications integrated with local search 
techniques, aim to expedite convergence. Specifically, hybrid PSO modifications based on the elite 
strategy with gradient descent (GD) and extended Kalman filter (EKF) algorithms, as proposed in 
[44], will be applied. Furthermore, an enhanced GWO technique [45], along with its hybridization 
with GD and EKF techniques as suggested in [17], will be considered. Finally, for thorough 

stem 
using individual local search techniques as GD and EKF. 

The fundamental principles of the PSO algorithm and its application for the synthesis and 
parametric optimization of FSs are thoroughly covered in [16, 18]. Additionally, the authors in [44] 
proposed enhancing the FS optimization processes by hybridizing PSO with GD and EKF, utilizing 
an elite strategy. The key idea behind these modifications is to enable an independent parallel 
search by the best particle in the swarm using GD or EKF, which can potentially speed up 
convergence and reduce the computational and time costs associated with these methods. 

The basic and improved GWO methods are thoroughly detailed in [21] and [45]. The enhanced 
GWO method incorporates an additional dimension learning-based hunting (DLH) strategy to 
boost population diversity and prevent premature convergence to suboptimal solutions [45]. In 
[17], the authors suggested hybridizing the improved GWO with local search methods such as GD 
and EKF. To implement this, similar to hybrid PSO techniques, alpha, beta, and delta agents are 
assigned to perform local searches in their nearby areas using GD or EKF, alongside utilizing group 
hunting and DLH strategies. 

In this research to conduct a comparative analysis during the optimization processes, the 
s actual transient response from the desired response 

was selected as the objective function J [17]. In turn, the desired response was calculated based on 
the reference model, which had the transfer function of the second-order dynamic object [17]. The 
objective function's optimal value was set to Jopt = 3100, which needed to be reached during the 
optimization process. To ensure comprehensive research, the maximum number of iterations was 
capped at Nmax = 200, serving as the termination criterion for the optimization. For the PSO 
algorithm and its hybrid modifications, the following adjustable parameters were used: the swarm 
size Zmax = 30, the maximum particle velocity Vmax = 10, and acceleration coefficients C1 = C2 = 0.1. 

Zmax = 30. The same constraints 
as in [44] and [17] were applied in this case. 

The procedures for optimizing the parameter vector X were conducted sequentially using each 
of the investigated swarm methods, repeating the process five times and selecting the best 
outcomes. During each iteration, the objective function values were computed by simulating the 

operating modes, specifically addressing both large and small deviations from the specified values. 
In addition, all simulation calculations were performed using the mathematical model of the UAV 
flight detailed in papers [17, 37]. 

To evaluate the efficacy of the swarm optimization methods used in this study, it is suggested to 
compare the achieved minimum values of the objective function Jmin alongside the associated 
computational costs. Moreover, the computational resources required to reach the predefined 
optimal value Jopt of the objective function are considered for evaluation. In this regard, the 
computational costs of the analyzed techniques are largely determined by the total number of 

J needed Jopt for the optimal 
value Jopt Jmin for the best value Jmin. This is explained by the fact that the calculation of the 
current value of the objective function using a complex simulation model of a fuzzy control system 
requires significantly greater computational and time costs compared to simpler computational 



operations of the considered optimization algorithms [17]. Also, based on a certain value of the 
total number of objective function evaluations, the total time of the calculations performed can be 
determined quite simply, depending on the power of the computing resources used. 

The Figure 2 illustrates the progression of the best values of the objective function during the 
optimization of the vector X using the methods under study: 1  basic PSO; 2  hybrid PSO with 
GD; 3  hybrid PSO with EKF; 4  basic GWO; 5  IGWO (improved GWO); 6  hybrid IGWO with 
GD; 7  hybrid IGWO with EKF; 8  GD; 9  EKF. 

 

Figure 2: Graphs depicting the variation in the best values of the objective function J throughout 
the optimization of the hybrid fuzzy ACS for  (across iterations N = 0...100). 

Table 1 provides a summary of the best results from the computational experiments conducted 
for optimizing vector X with each of the investigated methods. 

 

Table 1 
The best outcomes of the simulation experiments obtained in the optimization of the hybrid fuzzy 
ACS  

Optimization technique NJopt Jopt Jmin NJmin Jmin 
Basic PSO 136 3974 3016 162 4728 

Hybrid PSO with GD 74 2250 2918 91 2760 
Hybrid PSO with EKF 76 2310 2927 96 2910 

Basic GWO 122 3324 3031 149 4053 
IGWO 59 3216 2942 71 3864 

Hybrid IGWO with GD 35 2025 2847 42 2424 
Hybrid IGWO with EKF 31 1797 2712 36 2082 

GD - - 4366 84 84 
EKF - - 4218 77 77 

 
In turn, when it comes to swarm methods and their diverse adaptations (including hybrid and 

Jopt Jmin typically exceed the corresponding iteration 
counts NJopt and NJmin. This is because the objective function must be computed at each iteration for 
every agent within the swarm. In contrast, for standalone methods like the gradient method and 
the extended Jmin required to reach its 
minimum value Jmin equals the iteration count NJmin. 



The presented outcomes in Figure 2 and Table 1 confirm that hybrid IGWO methods 
demonstrate higher effectiveness compared to hybrid PSO algorithms in the parametric 
optimization of the fuzzy system for computing the coefficient KH of the hybrid ACS for the UAV. 
Thus, to find the optimal value of the objective function J using hybrid IGWO methods with EKF 
and GD, in the best case scenario, it required 513 and 225 fewer evaluations of the objective 
function respectively compared to using hybrid PSO algorithms based on the elite strategy with 
EKF and GD. Furthermore, the implementation of hybrid IGWO methods on average ensured the 
achievement of a smaller minimum value of the objective function Jmin compared to hybrid PSO 
techniques. 

For addressing this specific problem (optimization of the hybrid fuzzy ACS for the UAV), the 
most effective approach is the hybrid IGWO method with EKF. Implementing this method enabled 
the attainment of the optimal value of the objective function for the hybrid fuzzy ACS (J 
with the fewest number of evaluations of the objective function Jopt = 1797). Furthermore, when 
implementing this method on the 36th iteration (Figure 2, curve 7), the lowest value of the 
objective function was achieved (Jmin = 2712).  

The separate application of the gradient method and the extended Kalman filter algorithm in 
this case did not allow achieving the optimal value of the objective function (J 
feature of this specific problem (parametric optimization of the hybrid fuzzy ACS for the UAV) is 
that the application of the hybrid PSO method with GD enabled faster attainment of the optimal 

technique with EKF. Additionally, the standalone gradient method showed better results than the 
standalone EKF algorithm. 

Furthermore, the optimized parameters of the resulting vector Xbest exhibit the following 
specific values. Regarding the vector of normalization factors Ki, the components were determined 
to be KP = 0.0587; KD = 0.072. The representation of linguistic terms for the input variables of the FS 
with their optimized parameters is illustrated in Figure 3. 

 

Figure 3: Optimized linguistic terms for the input signals of the hybrid fuzzy system for the UAV 
control. 

The fragment of the rule base within the optimized  fuzzy system, achieved using the 
hybrid IGWO method incorporating EKF for minimizing the objective function, is detailed in Table 
2.  

Table 2 
Fragment of the rule base for the FS of the hybrid fuzzy system for the UAV control 

Rule 
number 

LTs of the input variables  

KP z  KD εz
 k1r k2r k3r 

1  BN N 0.004 0.006 0.013 
3 BN P 0 0.024 0.02 
5 SN Z 0.413 0.5616 0.908 
10 SP N 0.825 0.142 0.82 
15 BP P 0 0.016 0.0023 



 
Furthermore, the entire vector comprising optimized weighting coefficients PC is expressed as 

follows: 
PC = {0.004; 0.006; 0.013; 0.002; 0.017; 0.016; 0; 0.024; 0.02; 0.307; 0.103; 0.703; 0.413; 0.5616; 0.908; 

0.545; 0.653; 0.426; 10.176; 0.134; 1.24; 11.8; 5.386; 1.58; 10.44; 1.851; 1.633; 0.825; 0.142; 0.82; 0.547; 
10.24; 0.479; 0.352; 0.139; 0.736; 0.002; 0.006; 0.0075; 0.0054; 0.085; 0; 0; 0.016; 0.0023}. 

Let's now move on to examine the results from simulation experiments conducted on the 

methods being investigated. 

4. Simulation tests of the hybrid fuzzy control system for the UAV 

To validate the effectiveness of the developed hybrid fuzzy ACS with optimized FS parameters 
based on the proposed hybrid IGWO method with EKF, transient flight processes of the UAV are 
depicted in Figure 4. Curves 1, 2, and 3 represent the system outputs (actual flight altitude values of 
the quadcopter at constant horizontal coordinates) with the hybrid controller (based on the 
optimized FS using hybrid GWO method with EKF), fuzzy PID controller, and optimally tuned 
traditional PID controller (developed in [17]). Line 4 represents the set altitude value of the UAV 
flight, while line 5 depicts the disturbance influence of wind Fz. Additionally, Table 3 provides a 
comparative analysis of the altitude control system performance metrics for the aforementioned 
transient processes.  

In turn, the numerical data in Table 3 correspond to the change in time of the actual UAV flight 
altitude zR when varying the set altitude value zS from 0 to 40 m (Figure 4). 

 

Figure 4:  

From the data presented in Figure 4 and Table 3, it is clear that the hybrid fuzzy control system 
implemented for the quadcopter UAV, utilizing optimized FS via the hybrid IGWO method with 
EKF, demonstrates significantly higher control quality metrics compared to configurations 
employing optimized fuzzy and conventional PID controllers. Specifically, this system exhibits 



faster response times and reduced overshoot, which are key indicators of dynamic control 
performance. 

Table 3 
Analysis of quality  

altitude control system 

 
Traditional PID 

controller 
Fuzzy PID 
controller 

Hybrid fuzzy 
controller 

Rise time, s  3.96 4.02 4.26 
Regulating time, s  14.21 4.47 4.31 

Overshoot, % 45.55 3.75 1.21 

 

5. Conclusions 

This research focuses on evaluating and comparing swarm bio-inspired techniques for parameter 
optimization in fuzzy control systems. In particular, it examines various hybrid adaptations of 
particle swarm optimization and grey wolf optimization methods, tailored for FS parameter 
optimization, comparing them both with each other and with traditional search methods. 

The study involves research and comparative analysis using a specific case: the parametric 
optimization of a Takagi-Sugeno hybrid fuzzy automatic control system for an unmanned aerial 
vehicle of a quadcopter type. The simulation results indicate that hybrid IGWO methods generally 
outperform hybrid PSO methods in optimizing parameters of a particular fuzzy system that 
aggregates a classical PID controller with a sliding mode controller within the UAV's ACS. Among 
the evaluated methods, the hybrid IGWO method with EKF proves to be the most effective for this 
challenge. Its application achieves the optimal objective function value for the hybrid fuzzy ACS 
(J Jopt = 1797). 

Additionally, the hybrid fuzzy ACS, by integrating the benefits of both a classical PID controller 
and a sliding mode controller via the FS, along with employing a highly efficient parameter 
optimization method, shows improved responsiveness and reduced overshoot compared to the ACS 
that utilizes a fuzzy PID controller. As a result, identifying the optimal vector for the FS of the 
hybrid ACS for the UAV using the hybrid IGWO technique with EKF did not demand substantial 

Jmin = 2082). This overall confirms the high effectiveness of the 
proposed fuzzy hybrid ACS model and developed in [17] hybrid swarm parameter optimization 
approach. 

The optimization techniques discussed in this study can also demonstrate their effectiveness in 
enhancing fuzzy control systems for various complex systems, as evidenced by both this research 
and other related studies. Future work will focus on a more thorough theoretical analysis of these 
algorithms, particularly examining their sensitivity to adjustments in parameters such as the 
swarm size, acceleration coefficients, speed restrictions, etc. Additionally, further research will 
explore optimizing different fuzzy control systems for several various technical plants and include 
a comparison of their performance with more state-of-the-art multi-agent and evolutionary 
algorithms. 
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