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Abstract 
The residual block in deeper DNNs has a positive effect on feature extraction, but it is limited 
by practical computational resources. Deeper structures have limited performance gains in 
later stages, while residuals in lightweight DNNs reduce the abstract feature representation 
capability. We propose a lightweight parallel gating framework (PG-PRNet) based on the 
adaptive progressive regularization algorithm (APR), which changes the constant mapping of 
residual, increases the representation of structural information, and compresses the structure 
by Hard-Sigmoid, layer pruning, etc. The APR algorithm avoids the irrationality of using the 
same regularization rules in different cases. This better preserves the shallow spatial location 
information and deep abstract semantic information, improving the performance of the 
lightweight model for different specification. PG-PRNet is embedded in two vision tasks. It 
outperforms the listed models on the GTSRB and BDD100K datasets while maintaining low 
storage and computational overhead. 
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1. Introduction 1 

DNNs can learn the intrinsic properties and underlying semantic features of data from a large 
number of samples. To a certain extent, the more complex the network is, the more high-dimensional 
abstract semantic features are obtained. Researchers have proposed many methods to design deeper 
models. EfficientNetv2 finds a balance between depth, width and resolution to build complex 
structures [1]. Performs well after pre-training on large datasets. However, practical hardware 
conditions limit this. In this paper, we propose a GhostModule-based parallel gated feature extractor 
(PG-PRNet) to selectively control feature embedding into branches, change the traditional constant 
mapping of residual branches to lighten the network, introduce stochastic depth to prevent network 
overfitting [2]. We also use Hard Sigmoid and Layer Pruning to further reduce the model parameters. 
Due to the variety in the dimensionality of the inputs and the depth of the network, it is not reasonable 
to train the model using the same regularization rules. Therefore, an Adaptive Progressive 
Regularization (APR) algorithm is also proposed to solve this problem. The effectiveness of PG-
PRNet in two vision tasks was experimentally demonstrated. The main contributions of this paper can 
be summarized as follows. 
 We propose a parallel gating unit (PG and Fused-PG) consisting of GhostModule, SE and 

DepthwiseConv as an intermediate module of the network, improve the constant mapping of 
residual branches, and configure three specifications of PG-PRNetB0 to PG-PRNetB2. 

 We use an adaptive progressive regularization algorithm to solve the unreasonable problem of 
using the same regularization rules for features of different sizes, resolutions, and network 
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specifications. The shallow spatial location information and deep abstract semantic 
information are better preserved. 

 We embed the proposed feature extraction framework into image recognition and object 
detection, and validate the performance of PG-PRNet on GTSRB and BDD100K datasets. 

2. Related Work 

In its early years focused on improving accuracy by building more complex neural networks. 
AlexNet designed a DNNs with 60 million parameters and 60,000 neurons, which earned first place in 
the ImageNetLSVRC-2012 competition [3]. Parallel computing on dozens of devices by Google 
confirms that distributing the model across multiple devices is another solution [4]. However, in 
recent years, scholars have found that simply increasing the depth of the model can lead to 
performance degradation. ResNet shows that as the depth of the network increases, the accuracy gain 
obtained later decreases due to overfitting, gradient disappearance, etc [5]. The residual structure 
adopted by ResNet preserves the shallow spatial location information as much as possible. This 
avoids the above problems to a large extent. 

SOTA models usually use neural network structure search (NAS) to find the best structural 
parameters for building the network [6]. This places higher demands on the hardware. Some 
researchers are working on network compression. DepthwiseConv most assigning only one set of 
convolutional kernels to each channel can achieve great speedups with little loss of accuracy [7]. 
GhostModule presents a plug-and-play module that reduces intermediate feature maps and allows 
models to be easily deployed on mobile devices. In this paper, GhostModule and DepthwiseConv are 
used to build PG-PRNet lightweight networks, which combines layer pruning and Hard Sigmoid. 

3. Methodology 

The overall network structure is shown in figure 1. In the feature extraction part, in order to avoid 
the computational overload caused by the large feature embedding in the later stage, the input image 
is first passed through a CBR block, which increases the channel dimension and reduces the width and 
height scales. Then there are multiple Fused-PG and PG units proposed in this paper. The detailed 
description of the improvement points is as follows: 

3.1. Model compression. 

In this paper, layer pruning is used to reduce the overall scale. In order to minimize the sacrifice of 
accuracy, parallel gating is used, and the representation of residual branches is added. Multiple 

parallel gating units form a cascade feature representation. According to GhostNet, each trained DNN 
contains many similar intermediate feature maps. We start by generating only half of the intermediate 
feature maps, generating the same number of features by linear mapping, called Ghost. Finally, 
connect the  

two parts in series. Extensive use of GhostModule and DepthwiseConv in the PG unit reduces the 
amount of computation. 

The squeeze and excitation module (SE) is inserted into the PG unit to impose an attention 
mechanism with low computational cost [8]. The Squeeze part of the main branch compresses the 
features in the channel dimension, and the Excitation part learns the feature weights of the channel. 
The core idea is that the model learns the attention weight of the channel by loss, so that the weight of 
the effective feature map is relatively large, and the weight of the invalid feature map is relatively 
small. We use two 1x1 convolutions instead of fully connected layers, and use Hard Sigmoid 
activation instead of ReLU, which reduces the amount of computation. 
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Figure 1. The pipeline of PG-PRNet. Four images from the GTSRB dataset are listed here. Grad-CAM 
activates and weights the output of the last convolutional layer and visualizes the result in different 
colors, which shows which parts of the image the model focuses more on [9]. Due to the 
effectiveness of the proposed method, most of the categories can be highly focused. 

3.2.  PG and Fused-PG Units 

MBConv differs from the traditional process of dimensionality reduction of residuals [10]. The 
features input to the inverse residual block are first expanded to higher dimensions and then deeply 
mapped to the lower dimensional space. The PG unit inherits this process. As shown in figure 1, the 
parameters of the network structure are reduced in the PG unit by using a modified GhostModule 
instead of CNN. Constant mapping is redundant in the lightweight model (which means that the input 
features go to the next layer without modification) because it deprives the branching part of the ability 
to obtain abstract features. We add Pooling and GhostModule to the branch part to selectively output 
the generated branch-specific folded embeddings by thresholding, which can freely choose the 
relationship to the backbone part, which is called parallel gating. 

 
Table 1. Compare Top-1 classification accuracy with Fused or not (224 pixels on GTSRB). 
Resolution:224 B0(%) B1(%) B2(%) 
All-Fused 97.3 98.0 97.9 
No-Fused 96.8 96.9 95.4 
Partial-Fused 98.3 98.4 99.0 

3.2.1. PG unit. 

In the backbone part, a DepthwiseConv of size 3x3 extends the previous feature. The attention 
score is computed in the SE module, which makes the model focus on features that are more 
important to the channel. Then reduce the dimension with 1x1GhostModule. The average pooling 
layer in the branch section selectively compresses features, acting as gating and local area feature 
aggregation. Downsampling and fusion are performed using the Ghost module. Finally connect the 
trunk and branch parts. Stochastic depth is used to prevent network model degradation. The 
simplified mathematical expression of the whole process is equation (1) [11]. 

 𝐹௨௧ = 𝐹  𝑃൫𝐹 ൯ (1) 
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Where 𝐹 , 𝐹  represent the generated feature by the 𝐿 -th module backbone and branc. P୪ 
represents the survival probability of 𝐹 , which fits the Bernoulli distribution, 𝑃 ∈ [0,1]. 𝐹 , 𝐹  are 
expressed as. 𝐹 = 𝐺𝑀{𝑆𝐸[𝐷𝑒𝑝𝑡ℎ(𝐹 )]} (2) 𝐹 = ቊ𝐺𝑀ൣ𝑃𝑜𝑜𝑙൫𝐹 ൯൧, 𝑠 = 2𝐺𝑀൫𝐹 ൯             , 𝑒𝑙𝑠𝑒 (3) 

3.2.2. Fused-PG. 

PG uses DepthwiseConv to reduce computation, but it is limited in the early stages. As can be 
seen from table 1, if all modules use Depthwise, the performance will drop. Therefore, we only use 
it in the first few stages of the model. In the Fused-PG module, the 1x1 CNN and Depthwise are 
replaced by 3x3 for convolution to reduce computation, and DepthwiseConv is removed. The 
simplified mathematical expression is equation (4). 𝐹 = 𝐺𝑀{𝑆𝐸[𝐺𝑀൫𝐹 ൯]} (4) 

Algorithm 1. Adaptive progressive regularization (APR) 
Input: Network blocks length 𝐿 , initial image size 𝑆 , final image size 𝑆 , initial 
regularization dropout rate 𝑑, adjustment factor 𝜆, 𝛽, 𝜇, 𝜚 
Output: Trained model. 
1: if 𝐿 ≥ 𝜚 then 
2: Last blockc survival probability: 𝑃 ← ఒ 
3: else 
4: Last blockc survival probability: 𝑃 ← 1.0 
5: end if 
6: for 𝑖 = 1 to 𝐿 do 
7: Image size or feature map size: 𝑆 ← 𝑆 − (𝑆 − 𝑆)  

8: Dropout rate: 𝑑 ← ௌ(ௌିௌబ) 
9: Survival probability: 𝑃 ← 1 −  (1 − 𝑃) 

10: Train model with 𝑑 and 𝑃 
11: end for 

3.3. Adaptive Progressive Regularization 

Similar to EfficientNetv2, we consider the regularization problem for the training of a multi-
granularity variable model. First, we add the regularization to the network depth. Second, the survival 
probability problem at stochastic depth is considered. Third, the adaptive probability calculation 
expression of dropout is improved. In PG-PRNet, the head has more redundant information, and a 
larger regularization factor is required to improve the generalization ability. In the tail, the features are 
mapped to a high-dimensional abstract space with smaller features, so a smaller regularization factor 
is used. For lightweight models, residuals are very important. When the model is very shallow, try to 
keep the residuals. When the model is complex, the residuals are discarded appropriately. Therefore it 
is not reasonable to use the same regularization rules all the time. Therefore, the survival probability 
and dropout rate need to be flexibly adjusted to fit the feature size and network depth. There are 
identifiers defined as. 
 The length of the network module is 𝑙, and if 𝑙 is larger, a higher regularization rate is required, 

and the ratio of the two is controlled by λ. 
 The whole model has 𝑀 stages. And the features of the middle hidden layer gradually decrease 

from the first stage to the last stage, and the dropout rate is positively related to the feature 
map size. 
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The scale coefficients of feature map size and survival probability are β, μ, respectively, and the 
overall steps can be described as algorithm 1. The ablation experiments in Section 4.3 further 
elaborate and demonstrate the effectiveness of APR. 

4. Experiments 

All our experiments were done on a Nvidia RTX 2080Ti server using Pytorch. In the parameters of  
adaptive regularization, we set the threshold ϱ = 11, 𝑢 = 0.25, β = 1, λ = 7. We validate the PG- 
PRNet feature extraction performance on two tasks on two datasets.  

4.1. PG-PRNet for Image Recongnition 

The recognition of traffic signs is a challenging real-world problem related to intelligent 
transportation  

systems. The German Traffic Sign Recognition Benchmark (GTSRB) contains more than 50,000 
images of daytime and nighttime scenes from 43 categories [12]. Images that are too similar are 
removed using the Structural Similarity Index (SSMI) algorithm. The mean and variance of the local 
and global luminance of each image were calculated for adaptive luminance and contrast 
enhancement, and the distribution of each category was approximated after processing. Using the 
cross-entropy loss function, Adam optimizer and Cosine Annealing scheduler, we set the weight 
decay factor = 0.0005, initial learning rate = 0.001, batch size = 64, epoch = 100. the resolution of the 
design varies from 48 to 224. The training set was preprocessed using random cropping, Gaussian 
noise. To validate the performance of the feature extractor, a PG-PRNet feature extractor with 
classification head was added to evaluate its image recognition performance. It mainly includes a 
global average pooling layer, aggregated features and features compressed by a fully connected layer, 
and softmax output of category probabilities. 

4.2. Result analyse 

We use the inference time of a single image with 224 resolution and the amount of parameters as 
an indicator of network complexity, perform five calculations, and finally take the average. The 
results are shown in table 2. The PG-PRNet model uses the SE module and GhostModule, so the 
amount of parameters has been improved, but due to the calculation amount of the two, as well as the 
use of Hard Sigmoid, layer pruning and DepthwiseConv, therefore, the picture The inference speed is 
the best (56 ms < 70 ms < 74 ms), where the number of parameters of B0 is second only to 
EfficientNetV1, but the accuracy of the latter is much lower than our method. 

Thanks to the parallel gating unit, our model can obtain good shallow spatial position information  
while keeping light weight. Because of the parallel gating, it also has the function of selecting 

input features in the branch part, and mapping the features to high dimensions. 
 

Table 2.  Performance comparison of image recognition tasks on the GTSRB dataset (TOP-1 
accuracy (%)). 
Methods 48 96 160 224 Params(M) Infer-time(ms) 
PG-PRNet_B0(Ours) 92.7 93.4 96.8 98.3 3.2 56 
PG-PRNet_B1(Ours) 92.5 93.1 96.9 98.4 5.4 81 
PG-PRNet_B2(Ours) 91.8 93.3 98.4 99.0 7.2 100 
Vision Transformer(P=16) 86.3 89.7 87.5 87.0 10.2 110 
EfficientNet V1 89.5 92.3 94.6 96.5 0.7 74 
EfficientNet V2 92.0 93.4 97.8 98.3 22.4 245 
GhostNet 80.6 89.7 96.5 97.7 4.0 70 
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4.3. Ablation experiments 

Two adaptive regularization methods are considered: Dropout and Stochasitc depth. Larger 𝑝 is 
used for larger features and smaller 𝑝 is used for smaller features. The lower dimension contains more 
spatial location information, but the higher dimension contains more abstract semantic information.  

Both kinds of information are very important for inference. It is not reasonable to use the same 𝑝 
and 𝑑 for the whole structure. In algorithm 1, the survival probability 𝑝  and dropout rate 𝑑  are 
adaptively adjusted according to the size of the feature map. This problem is mitigated to some extent. 

 
Figure 2. Comparison of Top-1 accuracy with and without adaptive progressive regularization 
algorithm. Solid dots: With APR. Hollow rectangle: Not APR. 
 

 
Figure 3. Pipeline to embed PG-PRNet into YOLOv4 model. Using PG-PRNet to generate the feature 
vectors of the last three layers, through the Neck of YOLOv4, the three output feature matrices are 
obtained, and the final detection results are generated after some complex post processing. 
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Figure 4.  List the detection results under 6 typical target detection difficulties (Video Motion Blur, 
Continuously Stacked Small Objects, Multi-Category At Night, Rain Disturbance, Complex Road 
Conditions, Highway During At Day). 

4.4. PG-PRNet for Object Detection 

BDD100K is a traffic driving video dataset that can be used for a variety of autonomous driving 
task scenarios, containing up to 100,000 images for 10 task scenarios. In this paper, for the use of 
lightweight models, we use a subset of 10,000 of these images of autonomous driving scenarios to test 
performance in terms of target detection. As shown in figure 3, the output features of the last three 
layers of PG-PRNet are extracted using the Neck of YOLOv4 [13]. Using Mosaic data enhancement, 
we introduced copy-and-paste data enhancement to improve the detection accuracy of small targets 
[14]. Finally, the three scales of features are output and the corresponding target detection results are 
obtained after post-processing (NMS). We list three images as a reference for the results. The 
parameters are set to batch size = 16, loop scheduler and Adam optimizer. 

 
Table 3. We use the listed model as the Backbone, connected to the YOLOv4 Neck. Compare our 
proposed method (Bold) with other methods. We complete mAP50, mAP75, single image parameter 
and inference time calculation on a 608-pixel image. 

Method mAP50(%) mAP75(%) Params(M) Infer-time(ms) 
PG-PRNet_B0(Ours) 55.6 27.7 11.5 311 
PG-PRNet_B1(Ours) 56.2 28.9 13.0 332 
PG-PRNet_B2(Ours) 56.8 30.2 15.8 356 
GhostNet 43.8 19.7 11.9 344 
MobileNetv1 49.3 22.5 12.5 320 
MobileNetv2 41.9 16.2 10.2 372 
MobileNetv3 42.2 18.3 11.4 363 
DenseNet121 48.8 20.4 16.5 645 
DenseNet169 49.1 20.8 22.6 873 
DenseNet201 54.7 22.1 27.8 946 

4.5. Results Analyze. 

It can be seen that in the case of training only 300 epoches, our model is advanced. The optimum is 
achieved with 11.5 millions number of parameters and 311 ms inference time, and, the deepened 
model has a significant performance improvement. This demonstrates that the parallel gating unit 
effectively improves the feature representation of the branch, making the feature extraction capability 
of PG-PRNet still highly applicable even after many model compression methods. In figure 4, six 
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typical difficulties of target detection in real-time traffic scenarios are listed. Our approach maintains 
high detection accuracy and robustness. A parallel gating unit is used in combination with an adaptive 
progressive regularization algorithm. The Copy-Paste and Mosaic based approach reduces overfitting, 
improves model generalization, and enhances performance in scenes with occlusion, too many small 
targets, rain, multiple categories, and video motion blur. 

5. Conclusion 

In this work, we propose a lightweight parallel gated feature extraction framework to represent the 
residual branching information of a given feature in a new cascade, which changes the constant 
mapping of the residual structure in lightweight networks. In addition, an adaptive progressive 
regularization algorithm is used to adapt the regularization rules for different size features and 
different scale networks, called PG-PRNet. The framework is embedded into image recognition and 
object detection to verify its feature extraction capability, and our model achieves optimality in model 
volume and accuracy. Its efficiency at variable resolution is demonstrated. 
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