
Do Androids Dream of Electric Fences? Safety-Aware Reinforcement Learning
with Latent Shielding

Chloe He,1, 2, 3 Borja G. León, 1 Francesco Belardinelli 1

1 Department of Computing, Imperial College London
2 Wellcome / EPSRC Centre for Interventional and Surgical Sciences, University College London

3 Apricity, London
chloe.he.21@ucl.ac.uk, b.gonzalez-leon19@ic.ac.uk, francesco.belardinelli@ic.ac.uk

Abstract

The growing trend of fledgling reinforcement learning sys-
tems making their way into real-world applications has been
accompanied by growing concerns for their safety and ro-
bustness. In recent years, a variety of approaches have been
put forward to address the challenges of safety-aware rein-
forcement learning; however, these methods often either re-
quire a handcrafted model of the environment to be pro-
vided beforehand, or that the environment is relatively simple
and low-dimensional. We present a novel approach to safety-
aware deep reinforcement learning in high-dimensional envi-
ronments called latent shielding. Latent shielding leverages
internal representations of the environment learnt by model-
based agents to “imagine” future trajectories and avoid those
deemed unsafe. We experimentally demonstrate that this
approach leads to improved adherence to formally-defined
safety specifications.

Introduction
The steady trickle of reinforcement learning (RL) systems
making their way out of the lab and into the real world
has cast a spotlight on the safety and robustness of RL
agents. The motivation behind this should be relatively easy
to grasp: when training an agent in real-world settings, it is
desirable that some states are never reached as they could,
for instance, cause permanent damage to the hardware the
agent is controlling. We can thus informally define the no-
tion of safety-aware RL in terms of the classical RL setup
with the added requirement that the number of unsafe states
visited be minimised. Under this definition, however, it has
been found that many state-of-the-art RL algorithms un-
necessarily enter unsafe states despite safe alternatives be-
ing available and there being a positive correlation between
avoiding such states and reward (Giacobbe et al. 2021).

The field of safety-aware RL encompasses a multitude
of approaches ranging from constrained policy optimisation
(Chow et al. 2017; Achiam et al. 2017; Yang et al. 2020)
to safety critics (Srinivasan et al. 2020; Bharadhwaj et al.
2021; Thananjeyan et al. 2021) to meta-learning (Turchetta
et al. 2020). In this work, we focus on a particular family of

Copyright © 2022 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY
4.0).

approaches known as shielding (Alshiekh et al. 2018; An-
derson et al. 2020; Giacobbe et al. 2021; ElSayed-Aly et al.
2021; Pranger et al. 2021). Central to shielding is the no-
tion of a shield, a filter that checks actions proposed by the
agent’s existing policy with reference to a model of the en-
vironment’s dynamics and some formal safety specification.
The shield overrides actions that may lead to an unsafe state
using some other safe (but by no means optimal) policy. A
key advantage of many shielding approaches is that the re-
sulting shielded policies are formally verifiable; however,
a shortcoming is that they require a model of environmen-
tal dynamics - typically handcrafted - to be provided in ad-
vance. Providing such a model may prove difficult for com-
plex real-world environments, with inaccuracies and human
biases creeping into handcrafted models.

In this work, we propose a safe RL agent that makes uses
of latent shielding, an approach to shielding in environments
where a formally-specified dynamics model is not available
in advance. At an intuitive level, the agent uses a data-driven
approach to learn its own latent world model (a component
of which is a dynamics model) which is then leveraged by a
shield. The shield then uses the agent’s model to “imagine”
trajectories arising from different actions, forcing the agent
to avoid those it foresees leading to unsafe states. In addi-
tion, the agent can be trained within its own latent world
model thus reducing the number of safety violations seen
during training.

Contributions The main contribution of this work is a
framework for shielding agents in complex, stochastic and
high-dimensional environments without knowledge of envi-
ronmental dynamics a priori. We further introduce a new
method to aid exploration when training shielded agents.
Though our framework loses the formal safety guarantees
associated with traditional symbolic shielding approaches,
our experiments illustrate that latent shielding reduces un-
safe behaviour during training and achieves testing perfor-
mance comparable to previous symbolic approaches.

Preliminaries
In this section, we cover some relevant background topics.
We begin by introducing our problem setup for safety-aware
RL and give an overview of the specification language used
in this work. This is followed by an outline of the latent

world model we make use of in this work as well as a dis-
cussion on shielding.

Problem Setup

We consider an agent interacting with an environment E
modelled as a partially observable Markov decision pro-
cess (POMDP) with states s ∈ SE , observations ot ∈ OE ,
agent-generated actions at ∈ AE and scalar rewards rt ∈ R
over discrete time steps t ∈ [0, 1, ..., T − 1]. We assume the
environment has been augmented with a labelling function
Lϕ
E : SE → {safe, unsafe} that, at each time step, informs

us whether a violation has occurred with respect to some
formal safety specification ϕ. For the avoidance of doubt,
we define a violation to have occurred whenever ϕ does not
hold. This is a weaker assumption than previous works in
shielding (which assume access to an abstraction of the envi-
ronment) and can be thought as a secondary safety-focused
reward function with a binary output. Intuitively, the goal of
the agent is to learn a policy π that maximises its expected
cumulative reward while minimising the number of viola-
tions of ϕ.

Syntactically Co-Safe Linear Temporal Logic

In this work, we use syntactically co-safe Linear Temporal
Logic (scLTL) (Kupferman and Vardi 2001) as our speci-
fication language. Valid scLTL formulae over some set of
atomic propositions AP can be constructed according to the
following grammar:

ϕ ::= true | d | ¬d | ϕ ∨ ϕ | ϕ ∧ ϕ | ⃝ϕ | ϕ ∪ ϕ | ⋄ϕ (1)

where d ∈ AP , ¬ (negation), ∨ (disjunction), ∧ (conjunc-
tion) are the familiar operators from propositional logic, and
⃝ (next), ∪ (until) and ⋄ (eventually) are temporal operators.

The main rationale behind our choice of specification
language is the fact that we can efficiently monitor a sys-
tem’s adherence to an scLTL specification using a technique
known as progression (Bacchus and Kabanza 2000). This is
highly advantageous as it means that, given an scLTL speci-
fication, Lϕ

E can be straightforwardly synthesised.

Recurrent State-Space Models

We refer to the predictive model of an environment main-
tained by a model-based agent as its world model. World
models can be learnt from experience and be used both as
a substitute for the environment during training (Ha and
Schmidhuber 2018; Hafner et al. 2021) and for planning at
run-time (Hafner et al. 2019b). Though many realisations
of the notion of a world model exist, the world model used
in this work is based on the recurrent state-space model
(RSSM) proposed by (Hafner et al. 2019b).

An RSSM is composed of three key components: a latent
dynamics model, a reward model, and an observation model.
These components act on compact states formed from the
concatenation of a deterministic latent state ht and stochas-
tic latent state zt.

Latent Dynamics Model The latent dynamics model is
made up of a number of smaller models. First, the recurrent
model ht = f(ht−1, zt−1, at−1) is used to compute the de-
terministic latent state based on the previous compact state
and action. From ht and the current observation ot, a distri-
bution q(zt|ht, ot) over posterior stochastic latent states zt
is computed by the representation model. At the same time,
a distribution p(ẑt|ht) over prior stochastic latent states ẑt
is computed by the transition model, based only on ht. Dur-
ing training, the transition model attempts to minimise the
Kullback Leibler (KL) divergence between the prior and pos-
terior stochastic latent state distributions. In doing this, the
RSSM learns to predict future latent states (using the recur-
rent and transition models) without access to future observa-
tions.

Observation Model The observation model computes the
distribution p(ôt|ht, zt) over observations ôt for a particu-
lar state. Though not strictly needed, the observation model
can prove useful for visualising predicted future states and
providing a richer training signal.

Reward Model The reward model computes the distribu-
tion p(r̂t|ht, zt) over rewards r̂t for a particular state.

In practice, the distributions p and q are implemented with
neural networks pθ and qθ respectively, parameterised by
some set of parameters θ. These latent dynamics models de-
fine a fully-observable Markov decision process (MDP) as
the latent states in the agent’s own internal model can al-
ways be observed by the agent (Hafner et al. 2019a). We
denote the state space of this MDP (comprised of compact
latent states) as SI .

Shielding

The classical formulation of shielding in RL is given by (Al-
shiekh et al. 2018). It assumes access to two ingredients: an
LTL safety specification and abstraction (a MDP model of
the environment that captures the aspects of the environment
relevant for planning ahead with respect to the safety speci-
fication). These ingredients are used to construct a formally
verifiable reactive system that monitors the agent’s actions,
overriding those which lead to violation states.

Proposed by (Giacobbe et al. 2021), bounded prescience
shielding (BPS) avoids the need for hand-crafted abstrac-
tions by exploiting the fact that some agents are trained in
computer simulations. The shield operates by leveraging ac-
cess to the program underlying the simulation to look ahead
into future states within some finite horizon. Using BPS
over classical shielding does, however, come with a few dis-
advantages. Firstly, it requires access to the simulation at
run-time which may prove difficult to provide (especially in
cases where running the simulation is computationally ex-
pensive). Moreover, an agent using BPS, even when start-
ing from a safe state, can find itself entering unsafe states in
cases where the number of steps between a violation being
caused by an action and the violation state itself exceeds the
shield’s look-ahead horizon. This is not the case for classical
shielding which resembles BPS with an infinite horizon.

Bounded Safety
The notion of safety used by BPS is defined over MDPs. For
an arbitrary MDP with states S and actions A, a bounded
trajectory ρ of length H is a sequence of states and actions
s0

a0−→ s1
a1−→ . . .

an−1−−−→ sn comprised of no more than
H states and with the final state sn either being a terminal
state or n = H − 1. We further denote the set of all finite
trajectories starting from some arbitrary state s ∈ S by ϱ(s)
and the set of all bounded trajectories of length H that start
from s by ϱH(s).

We say a bounded trajectory ρ of length H satisfies H-
bounded safety with respect to safety specification ϕ, written
SH(ρ, ϕ), if and only if for all si ∈ ρ, Lϕ

E(si) = safe.
Moreover, we can extend the notion of H-bounded safety
over the set of policies: a policy π is H-bounded safe with
respect to ϕ, denoted as SH(π, ϕ), if and only if for all s
∈ S,
• either there exists some ρ ∈ ϱH(s) such that SH(ρ, ϕ)

and π(s0) = a0;
• or for all ρ ∈ ϱH(s), ¬SH(ρ, ϕ).

In other words, the policy will choose a safe trajectory as
long as one exists. Finally, we formally define a violation
of ϕ to be inevitable in state s0 ∈ S if and only if for all
ρ ∈ ϱ(s0), ¬SH(ρ, ϕ).

Shielded Dreams
We introduce the notion of latent shielding, a novel class
of shielding approaches that replace abstractions used by
shields with learned latent dynamics models thus allowing
the enforcement of formal safety specifications while avoid-
ing the need for an explicitly-defined abstraction of the en-
vironment. We further introduce the first such approach, ap-
proximate bounded prescience shielding, a framework for
latent shielding that leverages latent world models learnt
by model-based deep RL (DRL) agents. In this work, our
model-based agent of choice is Dreamer1 (Hafner et al.
2021), which we modify to incorporate shielding into its
data collection, training and deployment phases.

Safety RSSM
We augment the standard RSSM with a labelling function
Lϕ
I : SI → {safe, unsafe} which maps latent states st ∈

SI to whether they correspond to states in violation of ϕ.
As with the other models, Lϕ

I is implemented with a neural
network with a categorical output lθ also parameterised by
θ. This yields an enhanced RSSM (illustrated in Figure 1)
which we will refer to as a safety RSSM (SRSSM).

We train lθ along with the other components of the
SRSSM with the objective

min
θ

Lmodel = Lobservation +Lreward +LKL +Lviolation

(2)
where the first three terms are as described in (Hafner et al.
2019a, 2021). Lviolation is a new term that we introduce that

1In practice, any model-based agent with a latent dynamics
model can be used.

Figure 1: Safety RSSM. In this example, the model observes
the environment for two time steps and predicts the subse-
quent two time steps. at denotes the action taken at step t,
ot the observation, ht the deterministic component of the
latent state, zt the posterior stochastic component, ẑt the
prior stochastic component, λ̂t the violation prediction (our
novel contribution, highlighted in yellow), ôt the predicted
observation and r̂t the predicted reward. Circles represent
stochastic variables whereas squares represent deterministic
variables. An arrow from one shape to another indicates that
the source is used in the calculation of the destination.

acts as a weighted binary cross-entropy loss over predictions
by lθ.

Approximate Bounded Prescience Shielding
We now integrate the SRSSM as part of a latent shielding
approach which we shall refer to as approximate bounded
prescience shielding (ABPS). Though ABPS is inspired by
BPS, it differs in two key aspects: (1) we approximate the
labelling function Lϕ

E and environmental dynamics using an
SRSSM; and (2) we sample a fixed number of potential
future trajectories as opposed to exhaustively exploring all
possibilities.

Thus, our approach can be thought of as an approxima-
tion of some “ideal” bounded prescience shield that uses the
true environmental dynamics and labelling function. The ad-
vantage of the first difference should be obvious: it enables
the shield to learn its own abstraction, removing the need
for hand-crafting or access to a digital environment’s under-
lying program. Why the second difference is advantageous
may be slightly less obvious - it’s a heuristic that allows us
to increase the horizon H . By directing the sampling of tra-
jectories in accordance with states and actions the policy is
biased towards (as opposed to uniformly), it may be possi-
ble to achieve comparable performance to a standard BPS in
foreseeing unsafe states. The intuition behind this is that by
not sampling trajectories the agent is unlikely to take, more
of our computational budget can be dedicated into ensur-
ing that the agent’s most likely trajectories are safe. In other
words, we will not spend time planning to correct actions
that the agent is unlikely to take.

More formally, our shielded policy π∗ can be written:

π∗(st) =

{
π(st), if P (lθ(st+1) = 1|π(st)) < ϵ

πalt(st), otherwise
(3)

where π(st) is the agent’s policy without shielding; st ∈ SI
is some compact latent state; and πalt is an alternative policy
that ensures that, if a violation isn’t already inevitable, the

agent avoids a predicted unsafe state. Though more complex
candidates for πalt (such as selecting the unshielded policy’s
highest-ranked safe action (Alshiekh et al. 2018)) do exist,
the implementation of πalt in this work simply considers all
the other actions until a safe trajectory is found. In the event
that no safe action is found, the agent takes a random action.

Since the SRSSM models stochasticity, we can sample
multiple futures arising from an action being taken and de-
rive probabilistic estimates of whether an action will lead
to a violation. In this way, we can estimate the safety of an
action taken in a given state by checking whether the prob-
ability of a violation occurring (inferred by sampling) ex-
ceeds a fixed threshold ϵ (see Algorithm 1). Moreover, the
sampling process can, in practice, be augmented to sample
a wider range of trajectories (less likely to be taken by the
agent) by adding a small amount of noise η ∼ N (0, σ2) to
actions suggested by the policy during sampling.

Algorithm 1: Approximate Bounded Prescience
Shielding in latent space.

Input: Current compact latent state (h, z),
unshielded action a, horizon H , number of
trajectories to sample N , random noise η,
alternative policy πalt and threshold ϵ.

Output: A tuple containing an action and whether or
not the shield had to interfere.

1 Initialise array of zeros Λ with length N .
2 for n = 1..N do

/* Sample a trajectory and check
if it is unsafe. */

3 Imagine trajectory
ρ = (h, z)

a−→ (ĥ1, ẑ1)
a1−→ ...

aH−1−−−→ (ĥH , ẑH)

where ai = π(ĥi, ẑi) + η.
4 if ∃i ∈ [1, 2, ...,H] such that

lθ(hi, zi) = unsafe then Λ[n] := 1.
5 end
/* Interfere if probability of

violation exceeds ϵ. */
6 interfered := false.
7 if 1

N

∑
λ∈Λ λ > ϵ then

8 a, interfered := πalt(hi, zi), true.
9 end

10 return ⟨a,interfered⟩.

Training Regime
We extend the training regime proposed in (Hafner et al.
2019a) to include the training and application of ABPS.
Though the full training procedure is detailed in Algorithm
2, we provide an overview below.

Overview The training procedure can be split into three
phases: data collection, latent world model training and
agent training (lines 10-22, 4-6 and 7-8 in Algorithm 2 re-
spectively). These phases are cycled through until conver-
gence.

Data Collection In this phase, the agent interacts with the
real environment to collect a dataset D ⊆ S × A × O ×
R × {0, 1} of states, actions, observations, rewards and vi-
olations with which a latent world model can be learned. At
the very start of training, we collect trajectories from S seed
episodes using a random policy; at all other times, we use
the agent’s shielded policy.

Latent World Model Training The goal of this phase is
to improve the model of the world so that the policy has an
accurate imagined environment to train in. To this end, we
train the latent world model with respect to the objective in
Equation 2 on B data sequences of length L sampled from
D.

Agent Training Agent training is composed of two steps.
First, starting from states from the same B data sequences
from the latent world model training phase, the agent imag-
ines I trajectories of length H with actions chosen from its
current policy. Next, the unshielded policy π is updated in
an actor-critic fashion as in (Hafner et al. 2019a, 2021).

Key Changes and Contributions We describe and dis-
cuss the key changes we have made that differentiate our
agent from previous approaches.

Experience Dataset. Elements in the experience dataset
D now contain a binary variable representing whether a vi-
olation has occurred λt.

Latent Shielding. Before being sent to the environment
E , actions at generated by the unshielded policy π are routed
through our newly-proposed latent shield (described in Al-
gorithm 1). The shield returns a new approximately H-
bounded safe action a′t.

Intrinsic Punishment. Whenever a violation occurs
(whether detected by the latent shield or by the environ-
ment), we override the environment’s reward function by in-
stead assigning a reward p < 0. This discourages the agent’s
unshielded policy π from taking actions that lead to unsafe
states through the standard RL setup. Over time, this means
that the shield will have to interfere less as π becomes biased
away from unsafe states. This is a standard practice in the
shielding literature (Alshiekh et al. 2018), however new to
the Dreamer family of agents (Hafner et al. 2019a,b, 2021).

Shield Introduction Schedule We introduce the novel
notion of a shield introduction schedule Π which can enable
and disable shielding during training. The rationale behind
this is that a shield backed by an inaccurate world model will
incorrectly label some safe states as unsafe, and vice versa.
In some cases, this may prove detrimental to the training
process: suppose lθ happens to be initialised in such a way
that all states are labelled as unsafe. As a result, the shield
can prevent the agent from exploring the environment and
improving its internal model of the environment. This, in
turn, can prevent the labelling function from learning to cor-
rectly differentiate safe states from unsafe states.

To give the agent time to learn a good world model before
restricting exploration through a learned shield, we augment
the training procedure with Π which aims to gradually in-
troduce shielding. To our knowledge, this is the first time
such a system has been proposed. Though there exist a wide

range of possible implementations of Π, in this work we use
a simple schedule that seems to work well empirically: start
training with shielding disabled and enable shielding once
the world model loss (in particular, the violation loss) be-
gins to plateau. A detailed comparison of different shield
introduction schedules, however, is beyond the scope of this
study and left for further work.

Algorithm 2: Training Dreamer with Approximate
Bounded Prescience Shielding.

Input: Punishment for violation rpunish, shield
imagination horizon H , number of steps to
imagine ahead for training I , number of seed
episodes S, number of training steps per
episode C, number of real environment
interaction steps per episode T , sequence
length L, batch size B, environment E ,
labelling function Lϕ

E and shield introduction
schedule Π.

1 Initialise dataset D with S seed episodes and neural
network parameters θ randomly.

2 while not converged do
/* Learning the internal world

model and agent policy. */
3 for c = 1..C do
4 Draw B data sequences

{(at, ot, rt, λt)
k+L
t=k } ∼ D.

5 Compute model states ht, zt and ẑt.
6 Update θ using representation learning.
7 Imagine a trajectory ρ of length I for each

state in each data sequence.
8 Update the unshielded policy π based on the

imagined trajectories.
9 end

/* Collecting data from the
environment. */

10 for t = 1..T do
11 Compute model states ht, zt from history.
12 Select action at with the unshielded policy,

adding exploration noise if desired.
13 if Π has enabled shielding then
14 Pass ht, zt and at into Algorithm 1 to

obtain the tuple ⟨a′t, interfered⟩.
15 else
16 a′t, interfered := at, false.
17 end
18 rt, ot := E .step (a′t).
19 Check if Lϕ

E has detected a violation and store
the result as 0 or 1 in λt.

20 if λt = 1 or interfered then rt := rpunish.
21 end
22 Add experience to dataset

D := D ∪ {(ot, at, rt, λt)
T
t=1}.

23 end

Experiments
In this section, we compare our ABPS agent against
Dreamer without shielding (Hafner et al. 2019a, 2021),
Dreamer with BPS (Giacobbe et al. 2021), and CPO
(Achiam et al. 2017). We also empirically investigate some
aspects of the internal workings of our agent. A summary of
the environments used can be found below.

Visual Grid World The Visual Grid World (VGW) en-
vironment is a simple deterministic navigation benchmark
with high-dimensional (64 × 64 × 3) visual observations
(see Figure 2) and discrete actions (up, down, left, right and
staying still). The agent’s (in green) task is to navigate to
randomly-placed targets (in black) while avoiding any un-
safe locations (in red). This yields a relatively straightfor-
ward safety specification:

¬agent in red square ∪ episode ended

where agent in red square is true if and only if the agent
is in an unsafe location, and episode ended is only true at
the end of an episode.

The reward function used is also quite simple, with a
small penalty term at each time step to encourage movement
(though indeed different forms of intrinsic motivation may
be also used):

R(st, at) =


100, agent reaches target,
−40, agent enters unsafe state,
−10, agent does not move,
−1, otherwise.

We experiment with both fixed and procedurally gener-
ated grids over episodes consisting of 500 steps.

Cliff Driver The Cliff Driver (CD) environment is a sym-
bolic benchmark with stochastic dynamics and continuous
actions. The agent controls the forward acceleration of a
car and is tasked with driving to the edge of a cliff as
quickly as possible without overshooting and falling into
the sea. The car exists on a one-dimensional road with ac-
tions at ∈ [−1, 1] which correspond to the acceleration of
the car. The car cannot move backwards and its speed vt is
lower-bounded at 0 (thus at < 0 corresponds to braking as
opposed to reversing). The agent starts each episode station-
ary at a fixed distance x0 from the edge of the cliff with its
distance at subsequent time steps being written xt. Stochas-
ticity comes from the fact that at each time step there is a
probability pstick that the car’s controls get “stuck” mean-
ing that the current action is ignored and replaced with the
previous action.

Observations from the environment are given as two-
dimensional vectors encoding the distance from the edge of
the cliff in one component and the speed of the car in the
other. The safety specification can thus be written:

¬agent fallen off cliff ∪ episode ended

where agent fallen off cliff is true if and only if the
agent has overshot the cliff, and episode ended is only true
at the end of an episode.

Figure 2: Comparison of latent trajectories in the agents’
learned models of the environment. All trajectories begin
from the leftmost observation and time progresses from left
to right. The bottom row of arrows denote the actions taken
just before each time step. From top to bottom, the three
rows of images correspond to trajectories in the latent space
of the BPS agent, the unshielded agent, and our agent.

Finally, the reward function is given as:

R(st, at) =

{
1− xt

x0
, agent has not fallen off cliff,

−5, otherwise.

We experiment with pstick = 0.1 and pstick = 0.5 on
roads 10 units long over episodes consisting of 20 steps.

Performance Evaluation
We evaluate our agents on three metrics: (1) average reward
per episode at test-time; (2) average number of violations
per episode at test-time; and (3) total number of violations
during training. Results are calculated by averaging over five
versions of each agent trained from different seeds.

Training Details Experiments were carried out on a ma-
chine with a single NVIDIA RTX 2080 Ti GPU, an AMD
Ryzen 7 2700X processor and 64GB of RAM. For each en-
vironment, the model-based agents were trained for the same
number of steps; the model-free CPO agents were allowed
to train for longer (2× longer for the VGW environment and
5× longer for the CD environments). The latent shield hori-
zon H was 2 and 6 for the VGW and CD environments re-
spectively.

We used the network architectures proposed in (Hafner
et al. 2019a). The number of nodes in each layer varied de-
pending on the environment and can be found in Table 2. We
implemented our encoder for symbolic observations from
the CD environment as a feed-forward network with three
fully-connected hidden layers and ReLU activations. For the
CPO agent, we used the same observation encoders and pol-
icy networks as mentioned above. Moreover, since the ac-
tion space of the CD environment is continuous, we discre-
tised the actions into four bins when performing BPS (this
boiled down to rounding the continuous actions proposed by
the agent to the nearest action in the set {−1,−0.1, 0.1, 1}.
Such modifications, however, were not needed for our agent.

Shield introduction schedules were kept relatively sim-
ple. For the VGW environment, the agent started with
shielding disabled. After 10 episodes (including 5 seed

Figure 4: Training reward curves of agents using latent
shielding with and without a shield introduction schedule
(SIS).

episodes), shielding was enabled every third episode. Af-
ter 20 episodes, shielding was enabled every other episode.
Shielding was fully enabled after 30 episodes. In addition,
the unsafe threshold ϵ was decayed linearly from 0.5 to
0.125 over the course of training. For the CD environment,
shielding was enabled after 60 episodes (including 50 seed
episodes).

Results As can be seen in Table 1, our agent collected
more reward at test-time than both the unshielded and BPS
agents in the VGW environment. Moreover, our agent saw
a seven-fold reduction in test-time violations compared to
the unshielded agent across both the fixed and procedu-
rally generated environments, averaging at less than one vi-
olation per episode for the fixed VGW. This reduction in
training violations is even more dramatic when compared
to the model-free CPO agent. Our agent outperformed the
other agents at test-time in the most stochastic CD environ-
ment (pstick = 0.5). This is possibly due to the SRSSM
used by our latent shield being better able to capture non-
determinism than BPS. Nevertheless, the result is still rather
impressive given that the agent using BPS sampled 1024 tra-
jectories at every time step whereas our agent only sampled
20. Plots of training reward and violations can be seen in
Figure 3.

Qualitative Evaluation of Learned Dynamics

We evaluate the quality of each agent’s latent dynamics
model by observing its trajectory predictions given a partic-
ular starting state and action sequence. Each agent was given
the same starting observation and predefined sequence of 10
actions. The agents took these actions in their respective la-
tent world models with the states traversed being decoded
for inspection. Results can be seen in Figure 2 and indicate
that, qualitatively, our agent’s decoder performed the best,
accurately predicting 10 frames into the future. One possi-
ble reason for this observation is that the inclusion of the
violation detection objective in the SRSSM encourages the
model to focus on accurately capturing violation states. An-
other potential factor is that the BPS agent never actually
enters unsafe states and thus finds it difficult to represent
them.

Flavour Metric Latent Unshielded BPS CPO

Testing Reward 15067 (434) 13148 (249) 12468 (620) -2925 (1065)
Fixed Testing Violations 0.30 (0.76) 2.25 (1.60) 0 (0) 13.43 (19.25)

Visual Training Violations 1262 (172) 2306 (833) 0 (0) 16455 (1435)

Grid World Testing Reward 8084 (2221) 6825 (1427) 1938 (3552) -1588 (2051)
Procedural Testing Violations 4.50 (3.59) 33.7 (16.28) 0 (0) 19.60 (13.83)

Training Violations 14018 (1852) 15309 (4686) 0 (0) 18705 (3756)

Testing Reward 8.57 (2.96) 10.76 (3.29) 10.50 (3.28) 7.56 (2.86)
pstick = 0.1 Testing Violations 0 (0) 0 (0) 0 (0) 3.40 (1.91)

Cliff Training Violations 58.2 (9.60) 90.0 (9.10) 24.0 (13.02) 973.0 (357.7)

Driver Testing Reward 8.10 (4.99) 6.63 (8.07) 7.10 (9.52) 6.44 (3.00)
pstick = 0.5 Testing Violations 0.18 (0.84) 0.54 (1.53) 0.22 (1.18) 0.48 (1.24)

Training Violations 91.8 (16.85) 157.6 (18.4) 80.4 (17.43) 3126 (2823)

Table 1: Comparison of trained agents with standard deviations in parentheses where applicable.

Do Shield Introduction Schedules Actually Help?
We compare the first 100 training episodes of our agent in
the fixed VGW environment with and without a shield intro-
duction schedule. As with the performance evaluation, re-
sults are calculated over five trained agents and a plot of
training reward can be seen in Figure 4. Though both agents
start at roughly the same reward, the agents with a shield
introduction schedule consistently outperforms their coun-
terparts without shield introduction schedules.

Related Work and Discussion
Latent World Models Learning latent world models from
visual observations has seen growing interest from the RL
community (Wahlström, Schön, and Deisenroth 2015; Wat-
ter et al. 2015; Racanière et al. 2017; Ha and Schmidhu-
ber 2018; Hafner et al. 2019a,b; Schrittwieser et al. 2020;
Hafner et al. 2021). One key trend in the literature is that of
training agents in their own learned world models (Ha and
Schmidhuber 2018; Hafner et al. 2019a, 2021). In this work,
we extend the world model formulation used in (Hafner et al.
2019a,b, 2021) to encode a notion of safety into state repre-
sentations.

Safety By Filtering Actions Overriding unsafe actions
with safe ones has been a popular approach to safety-aware
RL. Introduced into the RL scene by (Alshiekh et al. 2018),
shielding has received much research interest and has seen
applications in real-world settings (Nikou et al. 2021). Vari-
ous works have attempted to address some of its shortcom-
ings of the original formulation. These include allowing the
shield to be updated to aid exploration or correct model
imperfections (Anderson et al. 2020; Pranger et al. 2021);
improving performance in non-deterministic environments
(Jansen et al. 2020; Li and Bastani 2020); and extending
shielding to multi-agent RL (ElSayed-Aly et al. 2021). To
our knowledge, few works (Srinivasan et al. 2020; Thanan-
jeyan et al. 2021; Bharadhwaj et al. 2021; Giacobbe et al.
2021) focus on removing the need for handcrafting an ab-
straction (among the most time-consuming and error-prone
aspects of shielding), and only one of them (Giacobbe et al.
2021) achieves this without getting rid of the abstraction al-

together, albeit by providing the agent with access to the pro-
gram that controls the environment.

In contrast, latent shielding tackles the problem head-on
by directly learning an abstraction for use by the shield.
In this work, the abstraction we use is an SRSSM, which
captures stochasticity by design, a useful property for non-
deterministic environments. Though our latent shield satis-
fies an approximation of H-bounded safety with respect to
the learned abstraction, its safety with respect to the true en-
vironmental dynamics is not guaranteed and instead relies
on the fidelity with which the true dynamics are captured.
Furthermore, unlike for its formally-verified predecessors,
it is a necessary sacrifice that the agent visits unsafe states
during training in order to learn a notion of safety (unless, of
course, pre-training is possible). Nevertheless, a learned ab-
straction may be advantageous in settings where handcraft-
ing an abstraction is not feasible and privileged access to
some simulation (as in (Giacobbe et al. 2021)) cannot be as-
sumed. Moreover, latent shielding may provide a greater de-
gree of explainability over model-free methods which get rid
of the abstraction altogether (Srinivasan et al. 2020; Thanan-
jeyan et al. 2021; Bharadhwaj et al. 2021) - if the shield
overrides an action, one can reconstruct the imagined unsafe
trajectories that led to the interference. Finally, it should be
noted that the problem setup used in this work assumes no
prior knowledge on how safe behaviour might be achieved
in the environment. This may not be the case in many real-
world settings and it is conceivable that combining latent
shield learning with curriculum learning based on human
knowledge (in a system such as that proposed by (Turchetta
et al. 2020)) may lead to improved safety during training.

Conclusions
In this paper, we have presented latent shielding, a new
framework for shielding DRL agents without the need for
a handcrafted abstraction of the environment. Using this
framework, we have designed a novel shield and demon-
strated that this method not only leads to improved adher-
ence to safety specifications on two benchmark environ-
ments with respect to an unshielded agent, but also works
out-of-the-box on both continuous and discrete environ-

Figure 3: Reward curves (top row) and violations (bottom row) for the model-based agents on the (from left to right) fixed
VGW, procedurally generated VGW, cliff driver (pstick = 0.1) and cliff driver (pstick = 0.5) environments. The shaded area
denotes one standard deviation. Dotted lines denoting the performance of the CPO agent after training are given where possible
without distorting the scale of the y-axis.

Hyperparameter Value
VGW CD

Deterministic State Size 200 8
Stochastic State Size 30 16

NN Hidden Layer Size 200 16
Observation Embedding Size 1024 32

Discount Factor (γ) 0.99 0.99
Action Repeat 1 1

Seed Episodes (S) 5 50
Episode Length (T) 500 20

Batch Size (B) 50 250
Sequence Length (L) 50 10
Training Steps (C) 100 100

Exploration Noise Variance (σ2) 0.3 0.3
Imagination Horizon (I) 15 15
KL Balancing Ratio (β) 4:1 4:1

Violation Class Weighting 3 3
Model Learning Rate 1e-3 1e-4
Policy Learning Rate 8e-5 8e-5
Value Learning Rate 8e-5 8e-7

Bit Depth 5 -
Adam Epsilon 1e-7 1e-7

Adam Beta 0.9, 0.999 0.9, 0.999
ABPS Horizon (H) 2 6

ABPS Sampled Trajectories (N) 20 10
ABPS Unsafe Threshold (ϵ) 0.15 0.15

CPO Cost Limit 5 0

Table 2: Hyperparameters for experiments in each environ-
ment.

ments (unlike its predecessor, BPS). Furthermore, we have
demonstrated for the first time that shielding at inappropri-
ate times may adversely impact the performance of model-
based DRL agents and showed how this phenomenon can be
counteracted using our novel notion of shield introduction
schedules.

Our work opens several exciting avenues for future work.
For instance, this work uses a very simple shield introduc-
tion schedule; future work may provide a richer investiga-
tion into the properties of different schedules. Moreover,
though demonstrating promising empirical results, our reali-
sation of latent shielding loses the formally verifiable safety
guarantees enjoyed by many symbolic shielding approaches
- whether it is possible to construct a verifiable implementa-
tion of latent shielding, or compensate for the loss of formal
guarantees, are open problems.

Acknowledgements
The authors would like to thank Claudio Elgueta Karstegl
for turning our GPU machine off and on again during the
national lockdowns.

References
Achiam, J.; Held, D.; Tamar, A.; and Abbeel, P. 2017. Con-
strained Policy Optimization. In Precup, D.; and Teh, Y. W.,
eds., Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine
Learning Research, 22–31. PMLR.
Alshiekh, M.; Bloem, R.; Ehlers, R.; Könighofer, B.;
Niekum, S.; and Topcu, U. 2018. Safe Reinforcement Learn-
ing via Shielding. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32.
Anderson, G.; Verma, A.; Dillig, I.; and Chaudhuri, S. 2020.
Neurosymbolic Reinforcement Learning with Formally Ver-
ified Exploration. In Advances in Neural Information Pro-
cessing Systems, volume 33, 6172–6183.

Bacchus, F.; and Kabanza, F. 2000. Using Temporal Logics
to Express Search Control Knowledge for Planning. Artifi-
cial Intelligence, 116(1): 123–191.
Bharadhwaj, H.; Kumar, A.; Rhinehart, N.; Levine, S.;
Shkurti, F.; and Garg, A. 2021. Conservative Safety Critics
for Exploration. In International Conference on Learning
Representations.
Chow, Y.; Ghavamzadeh, M.; Janson, L.; and Pavone,
M. 2017. Risk-Constrained Reinforcement Learning with
Percentile Risk Criteria. J. Mach. Learn. Res., 18(1):
6070–6120.
ElSayed-Aly, I.; Bharadwaj, S.; Amato, C.; Ehlers, R.;
Topcu, U.; and Feng, L. 2021. Safe Multi-Agent Reinforce-
ment Learning via Shielding. In Proceedings of the 20th
International Conference on Autonomous Agents and Multi-
Agent Systems, AAMAS ’21, 483–491. Richland, SC: Inter-
national Foundation for Autonomous Agents and Multiagent
Systems. ISBN 9781450383073.
Giacobbe, M.; Hasanbeig, M.; Kroening, D.; and Wijk, H.
2021. Shielding Atari Games with Bounded Prescience.
In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, 1507–1509.
ISBN 9781450383073.
Ha, D.; and Schmidhuber, J. 2018. Recurrent World Mod-
els Facilitate Policy Evolution. In Proceedings of the 32nd
International Conference on Neural Information Processing
Systems, 2455–2467.
Hafner, D.; Lillicrap, T.; Ba, J.; and Norouzi, M. 2019a.
Dream to Control: Learning Behaviors by Latent Imagina-
tion. In International Conference on Learning Representa-
tions.
Hafner, D.; Lillicrap, T.; Fischer, I.; Villegas, R.; Ha, D.;
Lee, H.; and Davidson, J. 2019b. Learning Latent Dynam-
ics for Planning from Pixels. In Proceedings of the 36th In-
ternational Conference on Machine Learning, 2555–2565.
PMLR.
Hafner, D.; Lillicrap, T. P.; Norouzi, M.; and Ba, J. 2021.
Mastering Atari with Discrete World Models. In Interna-
tional Conference on Learning Representations.
Jansen, N.; Könighofer, B.; Junges, S.; Serban, A.; and
Bloem, R. 2020. Safe Reinforcement Learning Using
Probabilistic Shields (Invited Paper). In Konnov, I.; and
Kovács, L., eds., 31st International Conference on Concur-
rency Theory (CONCUR 2020), volume 171 of Leibniz In-
ternational Proceedings in Informatics (LIPIcs), 3:1–3:16.
Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum für
Informatik. ISBN 978-3-95977-160-3.
Kupferman, O.; and Vardi, M. Y. 2001. Formal Methods in
System Design, 19(3): 291–314.
Li, S.; and Bastani, O. 2020. Robust Model Predictive
Shielding for Safe Reinforcement Learning with Stochas-
tic Dynamics. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), 7166–7172.
Nikou, A.; Mujumdar, A.; Orlić, M.; and Vulgarakis Feljan,
A. 2021. Symbolic Reinforcement Learning for Safe RAN

Control. In Proceedings of the 20th International Confer-
ence on Autonomous Agents and MultiAgent Systems, AA-
MAS ’21, 1782–1784. Richland, SC: International Founda-
tion for Autonomous Agents and Multiagent Systems. ISBN
9781450383073.
Pranger, S.; Könighofer, B.; Tappler, M.; Deixelberger, M.;
Jansen, N.; and Bloem, R. 2021. Adaptive Shielding under
Uncertainty. In 2021 American Control Conference (ACC),
3467–3474.
Racanière, S.; Weber, T.; Reichert, D. P.; Buesing, L.; Guez,
A.; Rezende, D.; Badia, A. P.; Vinyals, O.; Heess, N.; Li, Y.;
Pascanu, R.; Battaglia, P.; Hassabis, D.; Silver, D.; and Wier-
stra, D. 2017. Imagination-Augmented Agents for Deep Re-
inforcement Learning. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Sys-
tems, NIPS’17, 5694–5705. Red Hook, NY, USA: Curran
Associates Inc. ISBN 9781510860964.
Schrittwieser, J.; Antonoglou, I.; Hubert, T.; Simonyan, K.;
Sifre, L.; Schmitt, S.; Guez, A.; Lockhart, E.; Hassabis, D.;
Graepel, T.; Lillicrap, T.; and Silver, D. 2020. Mastering
Atari, Go, Chess and Shogi by Planning with a Learned
Model. Nature, 588(7839): 604–609.
Srinivasan, K.; Eysenbach, B.; Ha, S.; Tan, J.; and Finn, C.
2020. Learning to be Safe: Deep RL with a Safety Critic.
ArXiv, abs/2010.14603.
Thananjeyan, B.; Balakrishna, A.; Nair, S.; Luo, M.; Srini-
vasan, K.; Hwang, M.; Gonzalez, J. E.; Ibarz, J.; Finn, C.;
and Goldberg, K. 2021. Recovery RL: Safe Reinforcement
Learning With Learned Recovery Zones. IEEE Robotics and
Automation Letters, 6(3): 4915–4922.
Turchetta, M.; Kolobov, A.; Shah, S.; Krause, A.; and Agar-
wal, A. 2020. Safe Reinforcement Learning via Curriculum
Induction. Advances in Neural Information Processing Sys-
tems, 33.
Wahlström, N.; Schön, T. B.; and Deisenroth, M. P. 2015.
From Pixels to Torques: Policy Learning with Deep Dynam-
ical Models. arXiv:1502.02251.
Watter, M.; Springenberg, J. T.; Boedecker, J.; and Ried-
miller, M. 2015. Embed to Control: A Locally Linear Latent
Dynamics Model for Control from Raw Images. In Proceed-
ings of the 28th International Conference on Neural Infor-
mation Processing Systems - Volume 2, 2746–2754.
Yang, T.-Y.; Rosca, J.; Narasimhan, K.; and Ramadge, P. J.
2020. Projection-Based Constrained Policy Optimization.
In International Conference on Learning Representations.

