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Abstract

We describe a biologically-inspired research agenda with
parallel tracks aimed at AI and AI safety. The bottom-
up component consists of building a sequence of biophysi-
cally realistic simulations of simple organisms such as the
nematode Caenorhabditis elegans, the fruit fly Drosophila
melanogaster, and the zebrafish Danio rerio to serve as plat-
forms for research into AI algorithms and system architec-
tures. The top-down component consists of an approach to
value alignment that grounds AI goal structures in neuropsy-
chology, broadly considered. Our belief is that parallel pursuit
of these tracks will inform the development of value-aligned
AI systems that have been inspired by embodied organisms
with sensorimotor integration. An important set of side ben-
efits is that the research trajectories we describe here are
grounded in long-standing intellectual traditions within exist-
ing research communities and funding structures. In addition,
these research programs overlap with significant contempo-
rary themes in the biological and psychological sciences such
as data/model integration and reproducibility.

Introduction
Bostrom’s orthogonality thesis states, under certain weak
assumptions, that the intelligence of an agent and its goal
structure are independent variables (Bostrom 2014). The
orthogonality thesis is a useful conceptual tool for correct-
ing for anthropomorphic bias, i.e. the assumption that an
arbitrary agent will behave in a manner similar to human
beings. Particularly in a climate of fear and uncertainty
about future AI systems, the orthogonality thesis can be a
helpful framing to encourage reasoning more clearly about
the risks of advanced AI systems and to dislodge concerns
arising from science fiction movies and sloppy journalism.
However, from an engineering standpoint, it is worth con-
sidering that the design of safe, superintelligent AI systems
may benefit from examining system architectures in which
the intelligent substrate and fundamental goal structure of
an agent have been intentionally coupled. We have used
the phrase anthropomorphic design to refer to approaches
in which AI systems are built to possess commonalities
with human neuropsychology (Sarma and Hay 2017;
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Sarma, Hay, and Safron 2018; Sotala 2016).

Anthropomorphic design is best described in reference
to the concept of value alignment, which refers to the
construction of AI systems that act in accordance with
human values throughout their operation (Bostrom 2014;
Russell 2016). In recent years, value alignment has been
decomposed into specific sub-problems representing possi-
ble failure modes of AI systems (Amodei et al. 2016). For
instance, consider the sub-problem of “avoiding negative
side effects.” Often times when we specify a goal, we
implicitly assume additional criteria from our model of the
world and our value systems which go unstated (Shanahan
2006). As an example, if we have a fully autonomous waste
management system to which we give the goal “reduce
pollution,” we do not want the system to go dump all of
the pollution in a neighboring region outside of the range
of its sensors, thereby “reducing pollution.” A more robust
understanding of how to design systems which accomplish
their objective while minimizing external impact may allow
us to tackle an essential component of value alignment. In
a similar vein, “avoiding reward hacking,” “scalable over-
sight,” “safe exploration,” and “robustness to distributional
shift” are all specific properties researchers have identified
that should be possessed by value-aligned AI systems
(Amodei et al. 2016). Decomposing value alignment into
more basic constituents carries the additional benefit that
test suites can be designed to verify that agents possess
those properties in simulated environments (Leike et al.
2017). Although AI systems today are not powerful enough
for value mis-alignment to have particularly negative
consequences, the simple frameworks researchers have
designed to date are a promising starting point to evolve
into substantially more intricate environments for ensuring
the safety of future AI systems.

We have previously argued that research in affective
neuroscience and related disciplines aimed at grounding
human values in neuropsychology may provide important
conceptual foundations for understanding value alignment
in AI systems. We use neuropsychology in the broadest
possible sense of referring to efforts aimed at correlating
psychological function with underlying neural architecture.
There are several practical benefits that might emerge from



such a research program, i.e. one aimed at anthropomorphic
design. Having more detailed prior information about
human values may allow a sophisticated AI system to learn
from fewer examples. Similarly, it may enable practical
implementations of AI safety techniques that would other-
wise be computationally intractable (Sarma and Hay 2017;
Sarma, Hay, and Safron 2018).

In this brief position paper, we describe a bottom-up ap-
proach to understanding AI architectures that dovetails with
both the neuropsychology and test suite based approaches
to ensuring value alignment described above. This program
is aimed at building realistic biophysical simulations of
simple nervous systems which incorporate biomechanics
in a simulated environment. Because of key architectural
commonalities in the brain plans of vertebrates, and even
some invertebrates, we believe that this research is a natural
complement to the neuropsychology-based approach to
value alignment we have described previously. Our strong
intuition is that parallel pursuit of these goals will not only
lead to fundamental advances in AI algorithms, but also
architectural insights into ensuring value alignment.

The contributions of this manuscript are two-fold: (i) We
introduce a set of research objectives in neuroscience that
are well positioned to give rise to significant advances in
AI and which have received little attention by the AI safety
community. (ii) We suggest two existing approaches to AI
safety that may integrate with this research paradigm: a
neuropsychology-based approach to value alignment and
test suites for agent-based AI systems in simulated environ-
ments. We emphasize at the outset that the perspective we
take here is largely descriptive. Although we have provided
a novel framing, much of the research we discuss here is ac-
tively ongoing in a diverse set of communities in the biolog-
ical sciences. Our objective in this position paper, therefore,
is to call attention to a potential path to powerful AI systems
which can be entirely justified on their intrinsic value for the
biological sciences and which has received little attention
by the safety community. It is essential, therefore, as this re-
search progresses at an increasing pace, for parallel steps to
be taken to ensure the safety of the resulting systems.

Integrative Biological Simulation
Claim 1: Simple organisms show complex behavior that
continues to be difficult for modern AI systems. Neuronal
simulations in virtual environments will allow these
biological architectures to be used for AI research.

Integrative biological simulations refer to computational
platforms in which diverse, process-specific models, often
operating at different scales, are combined into a global,
composite model (Sarma and Faundez 2017). Examples
include OpenWorm, an internationally coordinated open-
science project working towards a realistic biophysical
simulation of the nematode Caenorhabditis elegans,
Neurokernel, a project with some parallels to OpenWorm
aimed at simulating Drosophila melanogaster, Virtual
Lamprey, a computational platform for understanding

vision and locomotion in the lamprey, BlueBrain, an effort
to build a detailed model of the rat cortical micro-column,
and the Human Brain Project (HBP), an ambitious suc-
cessor to BlueBrain which aims to extend this platform
to an entire human cerebral cortex (Sarma et al. 2018;
Givon and Lazar 2016; Sarvestani et al. 2013;
Markram et al. 2015; Amunts et al. 2016). Such plat-
forms may serve as points of integration for data and
computational models. The result is a shared structure that
can be used by an entire community of researchers to test
novel hypotheses, create a tighter feedback loop between
experimental and theoretical research, and ensure the
reproducibility and robustness of the underlying research
output.

In the AI community, awareness of these research
programs has primarily been informed by the efforts of
BlueBrain and HBP to simulate large regions of mam-
malian cortical tissue. We are sympathetic in many ways
to the aims of these projects. However, we believe that an
under-appreciated set of approaches complementing their
work consists of using analogous software infrastructure to
develop simulations of organisms far below the complexity
of mammals or vertebrates. C. elegans, with only 302
neurons, shows simple behavior of learning and memory.
Drosophila melanogaster, despite only having 105 neurons
and no comparable structure to a cerebral cortex, has
sophisticated spatial navigation abilities easily rivaling
the best autonomous vehicles with a minuscule fraction
of the power consumption. The zebrafish Danio rerio has
on the order of 107 neurons and has been a model system
in neuroscience for several decades. Moreover, recent
efforts to perform whole-brain functional imaging in the
larval zebrafish may make this a particularly attractive
target for future integrative simulation platforms (Ahrens
et al. 2013). Although much of this research has been
motivated by neuroscientific aims and connections to
the study of human disease processes, the implications
for AI research are significant. Well-engineered software
platforms which allow for rapid iteration on existing
architectures without the constraints of biological realism
will allow AI researchers to test novel hypotheses in
embodied organisms in simulated environments [see related
work in the animat community (Strannegård et al. 2017;
Wilson 1991)]. Real-time visualization of nervous system
activity will allow for a deeper understanding of how AI
algorithms such as backpropagation, belief propagation, or
reinforcement learning may approximate what is observed
in nature.

Coupling nervous system activity to drive a simulated
body is a tractable approach with organisms such as C.
elegans and Drosophila. In OpenWorm, for example,
the Boyle-Cohen model of neuromuscular coupling al-
lows for the output of connectome dynamics to drive
the activation of body wall muscles and a simulated
body (Boyle and Cohen 2008; Gleeson et al. 2018;
Palyanov, Khayrulin, and Larson 2018). Similar models
are likely achievable with Drosophila as well. Indeed,



the Neurorobotics Platform of HBP is working towards a
general platform for interfacing realistic neural network
simulations with robotic bodies (Falotico et al. 2017;
Oberts and Sanders 2016). The incorporation of biome-
chanics into these simulations can be justified on biological
grounds. For instance, understanding the effects of
anti-psychotic or anti-epileptic medications in model
organisms is simplified if researchers can observe changes
in behavioral patterns, rather than having to interpret high-
dimensional data streams of neuronal activity. However,
there are reasons to think that sensorimotor integration may
be particularly valuable from a purely AI perspective.

As others have argued, despite the significant advances
arising from the use of deep representations in neural net-
works, current AI systems continue to lack many of the qual-
ities of fluid intelligence observed in human beings, partic-
ularly in the ability to learn concepts from a relatively small
number of examples. One hypothesis is that, unlike mod-
ern deep learning systems, human concepts are grounded
in rich sensorimotor experience. Despite significant work
in transfer learning and domain adaptation, modern systems
are largely restricted in their domain of application. The lack
of behavior-based concept representation may be a limiting
factor in current state-of-the-art systems (Hay et al. 2018;
Krichmar 2018; Falotico et al. 2017). Simulations of simple,
embodied organisms with realistic virtual environments may
provide platforms for AI research aimed at understanding
the interplay between concept representation and embodi-
ment. Moreover, used in a modular or hierarchical fashion,
contemporary techniques such a deep learning may prove to
be powerful components of future iterations of these plat-
forms.

Neuropsychology and Value Alignment
Claim 2: Value-alignment research may benefit from
insights in neuropsychology and comparative neu-
roanatomy.

We have argued previously for an approach to value
alignment which grounds an understanding of human
values in neuropsychology (Sarma and Hay 2017;
Sarma, Hay, and Safron 2018). In this section, we re-
produce the broad outlines of this framework before
discussing how these parallel research tracks may come
to intersect. Our approach is loosely based on research in
affective neuroscience, which aims to categorize emotional
universals in the mammalian class and correlate them with
an underlying neurological substrate (Panksepp 1998). We
use a broad interpretation of the term neuropsychology to
denote research aimed at correlating psychological behavior
with underlying neural architecture; other related and
possibly relevant fields of research include contemplative
neuroscience, neuropsychoanalysis, biological anthropol-
ogy, and comparative neuroanatomy, to name just a few.

It is possible that values and motivations are fundamen-
tally grounded in emotions for human beings. If our emo-
tional substrate is shared with other mammals, or even more

broadly with other vertebrates and animals, it suggests that
our value systems can be decomposed in ways that inform
neuroscience-based AI architectures. For example, one pos-
sible (non-exclusive) decomposition of human values is the
following:

1. Internal reward systems shared by all mammals: In the
taxonomy of affective neuroscience, these include play,
panic/grief, fear, rage, seeking, lust, and care. This may
also include curiosity and the acquisition of skills.

2. Internal reward systems with human-specific elabora-
tions: For example, uniquely human social behaviors such
as family membership, group affiliation, story telling, and
gift giving.

3. Products of human deliberation/cognition on our val-
ues: The many complex features of value systems pro-
duced by several millennia of human social and cultural
evolution; likely mediated by cultural inheritance.

An alternate version which we have previously suggested
is to view human values as consisting of 1) mammalian val-
ues 2) human cognition and 3) several millennia of human
social and cultural evolution (Sarma and Hay 2017). De-
compositions such as these might allow AI systems to be-
gin with a more nuanced understanding of human values
that is then refined over time through observation, hypoth-
esis generation, and human interaction. For an agent that
is actively interacting with the world during the learning
process, a more informative prior may allow a system to
learn from fewer examples, directly translating into a re-
duced risk of adverse outcomes. Likewise, consider that our
values and culture are instilled in children by selective ex-
posure to carefully chosen environments. A neuropsycho-
logical understanding of human values may allow us to
make similarly strategic choices for AI systems in order to
minimize the time required to achieve strong guarantees of
value alignment (Evans, Stuhlmüller, and Goodman 2016;
Christiano et al. 2017). Moreover, systems with human-
inspired architectures may lead to natural avenues for ad-
dressing issues of transparency and intelligibility of AI de-
cision making (Wortham, Theodorou, and Bryson 2017;
Wachter, Mittelstadt, and Floridi 2006).

Synthesis
Claim 3: Significant synergy may be achieved by coupling
the two research programs described above.

Thus far, we have discussed organisms which lie very far
apart on the evolutionary tree. C. elegans and Drosophila
possess only 102 - 105 neurons and the zebrafish Danio
rerio roughly 107 neurons, whereas mammalian brains
range from 108 neurons in the brown rat to 1010 neurons
in human neocortex. However, by the time we reach
Drosophila we are already confronting a brain with many
high-level architectural features which higher animals
share, such as two lobes and distinct functional processing
regions. Moreover, insects share many neurochemical
motivational systems with vertebrates and even higher
mammals (Panksepp 1998). Proceeding up the evolutionary



tree a little further, sophisticated brain centers involved in
motor coordination, such as the basal ganglia, are known to
be conserved across vertebrates (including zebrafish), and
may have homologous structures in arthropods (Grillner
and Robertson 2016). In other words, viewed as platforms
for research into value-aligned AI systems, there may be
clues even from invertebrates and simple vertebrates for
how the insights from top-down, neuropsychology-based
approaches may be used to design AI systems that possess
far greater levels of transparency, intelligibility, and goal
structure stability than we see in nature or in our current AI
technologies. We believe that a healthy level of interaction
between the otherwise disparate communities pursuing
these lines of research is the most fruitful way to uncover
such clues and to establish clear research directions which
lie at the intersection of the two approaches. Moreover,
BlueBrain/HBP are already tackling the substantially more
difficult challenge of simulating mammalian brains. The
success of these projects will only complement insights
that arise from approaches oriented towards simulation of
simple organisms.

Another point of intersection between integrative biolog-
ical simulation and current research in AI safety is to ex-
tend the concept of test suites for RL agents to the virtual
environments of simulated organisms (Leike et al. 2017).
As we discussed above, test suites have emerged in the AI
safety community as a way to operationalize value align-
ment into practical, albeit long-term, development strategies
for AI systems. By decomposing value alignment into spe-
cific sub-problems, simulated environments can be created
to assess the degree to which artificial agents solve specific
tasks while adhering to global safety constraints. Problems
such as safe interruptibility, avoiding negative side effects,
reward gaming, distributional shift, and others should be
adaptable to virtual biological organisms. For example, to
what degree do we see variation in susceptibility to reward
hacking (i.e. addictive behaviors) in the animal kingdom?
Lifting biological constraints, can we augment simulated ar-
chitectures with modules to reduce the risk of such behav-
ior?

Discussion and Future Directions
We reiterate that the perspective taken here is largely a
descriptive one, as many of the topics we have discussed
are actively being pursued by researchers in the biological
and psychological sciences. The novel contribution of
this manuscript is to frame this research in the context of
AI safety. Therefore, in arguing that these two research
agendas be “coupled,” our intent is to promote community
interaction and not necessarily dual-pronged approaches
within individual research groups. Given the relative infancy
of these ideas, we suspect that much discussion will be
necessary before identifying concrete points of overlap.

For the integrative simulation projects, we encourage
interested researchers to consult the publications of the re-
spective research groups to find concrete points of entry. For

those attracted to expanding the repertoire of simple organ-
isms that have such platforms, there are many commonalities
in the necessary software infrastructure, with tools such as
NEURON for simulating Hodgkin-Huxley type models,
BluePyOpt for extracting kinetic parameters for experi-
mental data, and NetPyNE/Bionet for specifying network
models (Hines and Carnevale 1997; Van Geit et al. 2016;
Gratiy et al. 2018). Aside from the connectome, an area
where there are relevant differences between these organ-
isms is in the gene expression of ion channels. Efforts
such as ChannelPedia, NeuroMLDB, ModelDB, and Open
Source Brain, all share the goal of enabling storage and
re-use of neuroscience data and models (Ranjan et al. 2011;
Gleeson et al. 2012). Expanding the scope of these resources
to include ion channel data and models for a variety of
species would be a key enabler of this research agenda. We
suspect that there is literature on comparative neuroanatomy
that will give us insights into promising directions to pursue
on the lower part of the evolutionary tree.

With regards to the top-down approach to value-
alignment, as we emphasized in our previous manuscript,
a key obstacle is the widespread concern of re-
producibility issues in the biological and psycho-
logical literature (Sarma, Hay, and Safron 2018;
Sarma 2017). Therefore, we are of the conviction that
the most immediate next step is to create a community-
driven replication effort aimed at developing a more robust
body of knowledge with which to base future research. To
that end, we have created a project using the Open Science
Framework where we are currently collecting suggestions
for candidate studies which would be of high value to either
directly replicate or validate through some other means.1 We
are particularly interested in using iterated expert elicitation
methods such as RAND Corporation’s Delphi protocol to
encourage consensus building among researchers (Brown
1968).

Finally, regarding the development of test suites for sim-
ulated organisms, we have no illusions as to the difficulty
of the challenge. Understanding how to translate the highly
simplified models of current AI safety frameworks to the
complex neural networks of real organisms in realistic phys-
ical environments will be a substantial undertaking. How-
ever, we believe that such a synthesis is both necessary and
desirable, as it may provide insight into hybrid approaches
which take advantage of both modern AI and simulated bi-
ology to build sophisticated value-aligned systems.
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