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Abstract. One of the most popular and effective methods of information 

security is cryptographic, that can be realized in software as well as in hardware 

tools. Hardware cryptographic devices are oriented on confidentiality ensuring 

put some actual problems must be solved. For the purpose to raise the 

performance of computing devices productivity, it is necessary to use number 

systems without the disadvantages of the radix numeration system. This is due 

to the fact that while performing on multi-digit numbers arithmetic operations 

represented in the positional system, it becomes necessary to take into account 

inter-bit transfers that far slows down the computation speed and complicates 

the calculator structure. The new ways search to improve the computing devices 

performance led researchers to an objective conclusion that in this direction of 

the positional number system all possibilities have been exhausted. In order to 

boost productivity of computing devices, it is necessary to use number systems 

without such disadvantages. 

Keywords: Information Security, Cryptosystem, FPGA, Polynomials, Modular 
Multiplication. 

1. Introduction 

Topical tendencies of computer equipment and system development require the 

elaboration of high-performance computing devices, including information security. 

By information and communication networks and the integrating devices 

development the need for creating efficient cryptographic transformations hardware 

solutions will grow. For example, hardware cryptographic devices are few times 

faster than software cryptographic tools. But hardware tools have some problems that 

must be solved to provide efficient confidentiality ensuring. 



2. Modern Approaches and Problem Definition 

There are tasks leading to calculations when the integer values variables far exceed the 

maximum range of typical computing devices, defined by the hardware-supported 

machine word length [1, 2]. The hardware implementation deemed to be efficient from 

the point of view of processing speed and capabilities, solving such issues by traditional 

approaches is near impossible [3, 4]. 

For example, concerning ECC or RSA cryptosystems, the main difficulty in 

cryptographic transformations is first of all due to the need to perform sequential 

modular multiplication by multi-digit numbers [5]. In such cryptosystem 

implementation, an important task is to ensure effective modular multiplication [6]. 

It should not be overlooked, that most of the modern computing equipment operates in a 

radix numeration system. For multi-digit numbers arithmetic operations represented in the 

traditional positional system, a need to take into account inter-bit transfers arises, that 

significantly slows down the computation speed and complicates the calculator structure. 

Consequently, relevant researches devoted for searching new ways to improve the 

computing devices performance are topical. The studies focused on the use of non-

traditional methods of coding numerical information and the corresponding parallel 

variants of computer arithmetic are of great importance. 

The value of each numeric character (number) in the designation of a number depends 

on its position or digit in the traditional radix numeration system. However, besides this, 

there are also so-called “non - radix numeration system”, one of which is the “residue 

number system” (RNS) [7]. RNS application is an efficient way of large data 

calculations. Particularly, the RNS application allows to increase the operations speed 

due to the lack of transfer when adding, dividing a large block of input data into smaller 

sub-blocks and parallel processing. 

The residue number system is a data representation system in computational arithmetic, 

where integer is denoted by a set of smaller numbers. 

In the residue number system, a positive integer is represented as a sequence of residues 

or deductions: 

1 2, ,( ., )na aA a     (1) 

From dividing to set positive integers 
1 2, , , np p p , that are called as system basis. 

  i  numbers are derived in such a way: 
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where  / iA p  means whole part from dividing A  by 
ip . From (2) it follows, that 

number i -bit 
i  of number A  is the least positive remainder of the dividing A  by 

ip  

and 
i ip  . In this case, the digits formation of each bit is carried out independently of 

each other. In accordance with the Chinese theorem on remainder number 

representation A  in the form (1) will be unique if the numbers are 
ip  pairwise simple. 

The range volume of representable numbers in this case is equals to 
1 2, ,..., nP p p p . 

In this case, similarly to the radix numeration system, the range of representable 



numbers grows as a product of bases, and the digit bits of numbers grows as the sum of 

the digit capacity of the same bases. 

The main privileges that make it possible to effectively use modular arithmetic in some 

fields of computing technology are: a high level of natural parallelism at the number 

system level, that is related to the absence of digits transfer in addition and 

multiplication, as well as the absence of error propagation. In contrast to the radix 

numeration system, all vector elements are equivalent, and an error in one of them leads 

only to a dynamic range reduction. This fact allows you to design devices of high fall-

over protection and error correction [8]. 

These features ensure good advantages for RNS over the radix number system at 

modular operations of addition, subtraction and multiplication. This is especially true if 

multi-digit numbers act as operands. 

Strategic pathway in RNS application in computing is the development of cryptographic 

information security tools. The research team headed by R.G. Biyashev proposed 

modular encryption and digital signature generation algorithms based on the 

nonpositional polynomial number system (NPNS) [9-11]. The purpose of research is the 

development, research and implementation of information security cryptographic 

algorithms, developed on the basis of non-positional polynomial number systems, in 

information and communication systems and networks for various purposes. The block 

symmetric encryption algorithms developed by them are built on the basis of this 

approach and are the research results analyzing the possibility of using the non-

positional encryption algorithm in practice [12]. Also in this direction there are 

important works devoted to parallel computation [13-14] as well as papers [15-16]. 

Taking into account the above stated, the development of computation hardware for the 

NPNS is an urgent task, the solution of which will provide opportunities for creating 

efficient cryptosystems hardware implementations based on polynomial RNS. 

3. Results and Discussion 

Nowadays, the residual numbers system (RNS) is often applied for the development 

of efficient and high-performance special-purpose processes. RNS is widely applied 

in cryptography. For example, modular arithmetic allows to create an effective 

cryptographic systems hardware implementation. The non-positional number systems 

application allows us to accelerate slow computations in asymmetric encryption 

algorithms and increase reliability. 

The developed non-positional encryption systems, as a cryptographic strength 

criterion, applies not the key length, but the cryptographic strength of the 

cryptoalgorithms themselves. The use of non-positional polynomial number systems 

(NPNS) also makes possible to increase the algorithms efficiency, as in accordance 

with NPNS rules, all arithmetic operations can be performed in parallel using the 

modules of the NPNS bases. 

For the implementation of the developed algorithms in the form of modules combined 

into a cryptographic security system (CSS) works on program efficiency are carried 

out. As well as, work is being carried out to build software and hardware and 

hardware implementations of cryptographic information security symmetric 

algorithms based on the NPNS. 



As hardware-software and hardware implementation has the best speed 

characteristics, the cryptographic algorithm integrity is guaranteed and allows to 

optimize many of the mathematical operations adopted in encryption algorithms. For 

developed algorithms software and hardware implementation, parts of the procedures 

are implemented in hardware. 

The basic device for non-positional polynomial number systems is a device for 

multiplying polynomials modulo an irreducible polynomial, where data encryption 

and decryption routine calculations are performed. 

In this research, we consider an approach to polynomials multiplying ( )A x  and ( )B x  

modulo an irreducible polynomial ( ),P x  that is,  ( ) ( ) mod ( ),A x B x P x  where 

deg ( ),A x deg ( ) deg ( ).B x P x  

In each multiplication process step, the partial remainder 
ir  is calculated by the 

former partial remainder shaper by adding modulo two double the previous partial 

remainder 
12 ir , with the result of the logical multiplication of the polynomial ( )A x  

(multiplicand) by the next high bit of the polynomial ( )B x  – multiplier modulo 

irreducible polynomial ( ).P x  

Then the i -th partial remainder is determined by the formula: 

1(2 ( ) )mod ( ),i i ir r A x b P x    where 
ib  is the i -th high bit of the binary image of 

the polynomial ( ),B x  ( 0,1 ).ib   A  is the binary image of the polynomial ( ).A x  P  

is binary image of the irreducible polynomial ( ).P x  

The considered multiplier functional diagram is shown in Fig.1.  

The device includes RgA  for binary image storing of the polynomial ( )A x  

(multiplicative), shifting the RgB  register for the binary image of the polynomial 

storing ( )B x  (multiplier), the RgR  register for storing the binary image of an 

irreducible polynomial (module), adder AD1, where modulo 2 sum up the doubled 

previous remainder 
12 ir  with the multiplicand ( )A x  with 

1 1ib   , forming 

1 12 ( )i i iC r b A x    . Modulo-two adder (AD2), together with a multiplexer (MS), 

modifies 
iC  modulo ( ).P x  Register RgR  serves to store intermediate remainders. 

Additionally, the multiplier contains a subtracting timing pulse (COUNT), where, at 

the end of the operation, the “End of Operation” signal is generated. T Trigger, that 

allow the passage of timing pulses into the circuit. 

We consider the multiplier operation. By “START” signal, the binary ( ),A x  ( )B x  

and ( )P x  polynomials coefficients are received by the blocks of the I1, I2, I3 

diagrams, respectively, in the registers ( )RgA x  and ( ),RgB x  ( ).RgP x  Besides this, 

by “START” signal, the binary code (k) of the multiplier digits number is received in 

the TP count. The “Start” signal prior to reaching at the single trigger input T is 

delayed on the DL.1 delay line. The delay on LZ.1 is determined by the total delay 

time on ( ),RgA x  I6, AD1, AD2, MS and the recording time of the remainder in the 

RgR  register and the delay time is shifted by Shf (L1). 

 



 
 

Fig. 1 Functional multiplier diagram of polynomials irreducible polynomials modulo 

 

Upon the “Start” signal is reached the trigger input T and translates it into a single 

state, that allows the first timing pulse TP1 to pass from the output of the I4 diagram. 

At this point in the RgR  register, the partial remainder is 
0 0r C , with 

1 1ir  , since 

( ) deg ( ).egA x P x  

The first timing signal ( )RgB x  is shifted to the left by one digit, while in the high 

order ( )RgB x  the value of the next coefficient of the polynomial 
2( ) iB x b   is fixed, 

provided to the control inputs of the I6 diagrams, and to the other inputs of the 

polynomial ( )A x  values coefficients. If, at the same time, 
2 1,ib    then the 

polynomial coefficients are provided to the right-hand inputs of the AD1 adder. TSI at 

the time of the ( )RgB x  shift is delayed by the delay line DL.2 and is provided to the 



control inputs of diagram I7, and the information inputs are supplied by the remainder 

from the outputs of the Shf diagrams(L1) (L1) 
12 ir .  

From I7 output , the doubled remainder is provided to the left inputs of the AD1 

adder. When 
2 1,ib    the output of this adder is 

1 12 ( )iC r A x  . 

If 
2 0,ib    

1 02C r . Next, the C1 value is provided to the left inputs of the adder 

modulo 2 (AD2). Moreover, if 
1 ( ),C P x  then the multiplexer (MS) outputs the 

value 
1C  and is written to the RgR  register forming the value 

1r . 

If 
1 ( ),C P x  then the MS multiplexer outputs the result 

1 ( )C P x , shaping also the 

value 
1r . Further, the remainder 

1r  is shifted one digit to the left by the Shf shifter (L1). 

At this point, the I4 diagram output of the receives the TP2 timing  pulse shifting the 

contents of the ( )RgB x  register. AD 1, ( )RgA x  inputs are provided depending on the 

value of 
3,ib 

 and the second inputs are provided with the bits of the residual 
1r  

multiplied by two. AD1 output, the C2 value is formed and with the help of the adder 

AD2 and the multiplexer MS, 
2C  is modulo, shaping the remainder 

2 .r  

It is noteworthy that when each timing pulse reaches, a unit is subtracted from the TP 

count. Upon 1n   timing signal reaches the RgR  register, the result of multiplying 

the polynomials modulo the irreducible polynomial is generated and the TPC is set to 

“0” and the counter generates a “end of operation” signal that sets the trigger T to the 

zero position, preventing the next timing signal from passing output diagram I4. At 

the time of last remainder shaping signal "end of operation" are delayed on the delay 

line DL.3. After that, the result is given to the outputs by the diagram I8. 

If to consider an example of multiplying polynomials modulo an irreducible 

polynomial in the multiplier diagram shown in Figure 1. 

Let 4( ) 1,A x x x    4 2( ) 1,B x x x    5 2( ) 1.P x x x    

Binary representations of polynomials are presented below (see Table 1): 

100112;A  10,012;B   1001012.P   

Table 1. Example of multiplying 

№ RgR  bits  AD1 AD2 

1 2 3 4 

Start 4 1b   

010011

000000
010011

A

A






 

0

1

010011

( ) 100101

010011

C

P x

r






 

ТP1 3 0b   
1 12 100110C r   

1

2

100110

( ) 100101

000011

C

P x

r






 



ТP 2 2 1b   

2 22

000110

010011
010101

C r A  

  

2

3

010101

( ) 100101

010101

C

P x

r






 

3 ( )as C P x  

ТP 3 1 0b   
3 32 0 101010C r    

3

4

101010

( ) 100101

001111

C

P x

r






 

ТP 4 0 1b   

4 42

011110

010011
001101

C r A  

  

4

5

001101

( ) 100101

001101

C

P x

r






 

 

Checking: 4 4 2 3 2( 1) ( 1) ( 1),x x x x x x         accordingly binary display of this 

polinomial – 
201101 .  

This algorithm was tested on Nexys 4 Artix-7 FPGA Board. Figure 2 contains 

diagram for encoding and decoding the number A in hexadecimal.  

 

 
Fig. 2 The timing diagram of the algorithm for an 8-bit number 

 
Table 2. The number of resources used in encoding and decoding as a percentage 

Slice Logic 

Utilization 

% of the FPGA 

resource used 

when encoding 

and decoding  

4-bit code 

% of the FPGA 

resource used 

when encoding 

and decoding  

8-bit code 

% of the FPGA 

resource used 

when encoding 

and decoding  

12-bit code 

% of the FPGA 

resource used 

when encoding 

and decoding  

24-bit code 

Number of 

Slice Registers 
0.02% 0.1% 0.39% 1.25% 

Number of 

Slice LUTs 
0.05% 0.33% 1.48% 4.9% 

Number of 

bonded IOBs 
7% 13% 19% 36% 

Number of 

BUFG/BUFG

CTRLs 

3% 3% 3% 3% 



Table 2 shows the number of resources used in encoding and decoding processes in 

percents. 

4. Conclusions 

The precondition research for is the growing need to create efficient hardware 

solutions for cryptographic transformations and the difficulties that arise in using the 

radix numeration system. 

As was stated above, the basic privileges of nonpositional number system applying is 

the absence of transfer of digits in the operations of addition and multiplication, and, 

consequently, the parallel operations possibility on each of the bases of the system, 

which significantly speeds up the calculation process. It stands to mention that most 

modern general-purpose processors are not able to effectively perform nonpositional 

number system calculations.  

For the most effective implementation of computing devices based on the residual 

number system, it is required to develop non-standard circuit solutions that effectively 

perform calculations in a nonpositional number system. 
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