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Abstract. The task of selecting the optimal strategy in the interval game with 

nature is considered; in particular, the situation when in the interactive dialogue 

of an analyst and decision support system there are cases of objective ambiguity 

caused, on the one hand, by interval uncertainty of data, and on the other hand – 

by the chosen model of the task formalization. The method for ranking quasi-

optimal alternatives in interval game models against nature is proposed, which 

enables comparing interval alternatives in cases of classical interval ambiguity. 

In this case, the function of the analyst preferences is used with respect to the 

values of the criterion that help determine the indicators for the quantitative 

ranking of alternatives. By selecting a specific type of the preference function, 

the researcher artificially converts the primary uncertainty of the data into the 

uncertainty of the preference function form, which nevertheless enables avoid-

ing the ambiguity in the “fuzzy” areas of quasi-optimal alternatives. 

Keywords: Playing  Against  Nature, Optimal  Strategy, Interval  Data. 

1 Introduction 

The formalization of the decision-making task is one of the key stages of the man-

agement cycle and the efficient control of organizational and technical systems large-
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ly depends on the relevance and correctness of the management cycle. [1]. In the case 

of an antagonistic situation, the section of applied mathematics known as “game theo-

ry” is used to solve such tasks. [2, 3]. Numerous methods of classical game theory are 

successfully implemented in modern decision support system (DSS) [4], in particular, 

decision-making techniques under complete ambiguity and risk. And classical and 

derived criteria [5], as well as modified ones [6–8] are used for selecting alternatives.  

The efficiency of these criteria is ensured when the initial data of the decision-

making task is absolutely correct. However, when there are various kinds of uncer-

tainties in the initial data, the problem of adapting the criteria arises as well as organ-

izing their final values for the pool of alternatives. 

There are different approaches to solve similar tasks in the context of various data, 

e.g. interval [9, 10], fuzzy [11], stochastic [12]. In this case, with some sets of initial 

data, a situation may arise when alternatives are considered incomparable [13], that is, 

there are “fuzzy” areas of quasi-optimal alternatives and the only best one cannot be 

selected within them. 

This leads to the situation when within the interactive dialogue between an analyst 

and DSS there are cases of the objective ambiguity that is caused on the one hand, by 

interval uncertainty of data, and on the other hand – by the chosen model of the task 

formalization.  

Thus, the topical scientific and practical task is to develop techniques and means 

for avoiding the ambiguity in the “fuzzy” areas of quasi-optimal alternatives accord-

ing to the analyst request.  

2 Problem statement 

Consider the classical deterministic decision-making task under complete uncertainty 

according to [8], which can be presented as the matrix whose lines correspond to de-

cision variants and columns – to factors. At the intersection of the columns and lines, 

gains ije  are located, they correspond to decisions iE  under appropriate conditions 

jF  (see Table 1). 

Table 1. Decision efficiency matrix eij 

 1F  
2F  3F  … mF  

1E  11e  12e  
13e  … 1me  

2E  21e  22e  
23e  … 2me  

3E  31e  32e  
33e  … 3me  

… … … … … … 

nE  1ne  2ne  
3ne  … nme  



 

A set of optimal variants 
0E  consists of the variants 

0iE , which belongs to the set of 

all variants E  and the value of the 
0iZ  criterion which is maximal among all its val-

ues 
iZ : 

  0 0 0 0i i i i
i

E E | E E Z max Z .     (1) 

Let one of the classical or derived criteria be used as  
0iZ  criterion [8]: 

 maximin (Wald)  

   MM ij
i j

Z max min e  (2) 
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 Savage 
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 gambler  

   AG ij
i j

Z max max e ; (6) 

 Hurwitz  
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 Hodge-Lehman  
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 Germier  
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 BL(MM)-criterion  
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 product-criterion  
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When gains are presented as an interval   

 ij ij ije e , e      
, (12) 

the values of the selected criterion for each alternative can be calculated according to 

(2)(12) as intervals 

  i i iZ Z , Z 
  . (13) 

The basis for considering the estimates in the interval form is formed by the following 

circumstances [14]: 

1. in the process of short-term prediction, estimates in the interval form can be syn-

thesized in a natural way, that is, as a result of fulfilling a prediction task; 

2. results of measuring the parameters of the system, direct or indirect, performed 

with errors (strictly speaking, results of all measurements), can be represented in 

the interval form; 

3. if there is at least one model parameter in the interval form in a model, all parame-

ters of the model must be reduced to the interval form as the least complex form of 

description of parametric uncertainty in order to observe data homogeneity; 

4. interval models are more preferable than the probabilistic-statistical ones in the 

case of making one-moment single decisions; 

5. the apparatus of interval analysis proved its effectiveness in solving different scien-

tific and practical tasks; 

6. interval algorithms typically do not require specialized tools for software imple-

mentation. 

We imply by interval  z z, z 
   a closed limited subset R  of the form 

 a, a x R | a x a     
  , which can be described by the following characteristics: 



 

z,  in f [z] is the left end of interval [z]; z,  sup[z] is the right end of interval [z]; 

 
2

z z
mid z


  is the middle (median) of interval [z];  wid z z z   is the width of 

interval [z]. 

For the two intervals  z z, z 
   and  y y, y 

   in classical interval arithmetic 

    z , y IR ,  the following operations were assigned: 

    z y z y, z y ;    
   (14) 

    z y z y, z y ;    
   (15) 

        z y min z y,z y,z y,z y , max z y,z y,z y,z y ;  
 

 (16) 

       1 1z y z y , y ,  
    0 y .  (17) 

Interval arithmetic operations have the following properties: 

              z y x z y x ;      (18) 

              z y x z y x ;      (19) 

        z y z y ;    (20) 

        z y z y ;    (21) 

               z y x z x y x .       (22) 

The distance between two intervals    z , y IR  is determined by magnitude  

            dist z , y max z y , z y z , y     (23) 

and have the following properties: 

      0dist z , y ;  (24) 

      0dist z , y ,  when    z y ;  (25) 

          dist z , y dist z , y ;  (26) 



 

               dist z , x dist z , y dist y , x .   (27) 

The key difference between classical interval arithmetic and interval analysis is in the 

following. In classic interval arithmetic, the distribution law is not observed, there are 

no inverse elements, similar terms cannot be reduced within its frameworks. This 

leads to that the technique of symbol transformations is lost during formalization of 

operations with intervals. 

The main objective of interval analysis, by contrast, is not automation of compu-

ting, but rather finding the region of possible result values, taking into consideration 

structures of functions and data, assigned in symbolic form. 

Within this approach, interval magnitudes are considered at the intermediate stages 

of calculations and analysis. Only at the last stage of decision-making, if necessary, 

they are transformed into pointwise solutions. It will make it possible to give the pos-

sibility to save completeness of information on the set of possible solutions up to the 

last moment. 

The specific algorithmic implementation of operations with interval values 
ije    

does not play a decisive role in this case, although it can be the subject of the specific 

studies to narrow final intervals artificially. 

According to the rules of classical interval analysis [15], a set (13) can be unam-

biguously ranked only when intervals   iZ  do not intersect 

            k l k k l l k kZ Z Z Z Z Z Z Z       . (28) 

Otherwise, there is a “weak” inequality: 

            k l k k l l k kZ Z Z Z Z Z Z Z       , (29) 

that is, the intervals are considered incomparable in the context of the classical para-

digm of interval analysis. 

 

The formulation of the research task. In the situation described by formula (29), i.e. 

when a group of intersecting interval values appears, among which it is impossible to 

choose a larger value, it is necessary to develop a method for overcoming the uncer-

tainty that can be used by a direct request from the analyst. 

3 Solution  

The variant of formalizing interval comparison proposed in [15], which is reduced to 

determining the reliability of hypotheses about the actual location of real numbers 

within the corresponding intervals, cannot be used as a quantitative measure of the 

ratio between these numbers [14]. The other way is proposed in [13] and is linked to 

the correction of the interval logic which, however, fails in some particular cases [14]. 



 

Another option for lax formalization of the problem of comparing interval numbers 

is to use the magnitudes of the distance between interval numbers as a comparison 

measure (23). In this case, it becomes fundamentally possible to construct and analyze 

the graph with interval numbers in vertices, however lax compliance with distribution 

logic makes practical application of this approach difficult. 

Let us use the method of formalizing the interval comparison proposed in [14], in 

particular, let us introduce a monotonically increasing function that is not negative on 

the whole real axis (see Fig. 1). 

 

Fig. 1. An example of the function of the decision maker's preferences regarding the values of 

the criterion 

When a specific  type of function  u Z  is selected, the indicator can be calculated for 

each alternative as follows: 

  
1

Z

*

Z

u u Z dZ
Z Z



 , (30) 

it is numerically equal to the height of a rectangle equivalent in area to a certain inte-

gral of the function  u Z  within the interval of the criterion value (see Fig. 2). 
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Fig. 2. Graphical interpretation of the characteristic indicator of the criterion interval value 

Using indicators (30) calculated for every alternative, a set (13) can be ranked quanti-

tatively. 

The shape of the function  u Z  (for example  u Z Z ,   2u Z Z ,   3u Z Z ) 

determines the analyst's preferences for the interval value of the criterion. For exam-

ple, when  u Z Z , interval alternatives with equal midpoints are interpreted as 

equivalent, while   2u Z Z  preference will be given to a wider interval alternative. 

By selecting a specific type of function  u Z , the researcher artificially converts 

the initial ambiguity of data into the ambiguity of the preference function form, 

which, nevertheless, enables avoiding the ambiguity in “fuzzy” arear of quasi-optimal 

alternatives.  

3.1 Example  

The Table 2 represents an interval matrix of the game with nature. 

Table 2. The decision efficiency interval matrix example 

 1F  2F  3F  4F  

1E   5 5 5, .   15 16 5, .   11 1, .   5 5 5, .  

2E   6 6 6, .   12 13 2, .   19 20 9, .   2 2 2, .  

3E   10 11,   14 15 4, .   0 0 5, .   6 6 6, .  

4E   11 1, .   15 16 5, .   4 4 4, .   6 6 6, .  

5E   12 13 2, .   1 9 2 3. , .   5 5 5, .   16 17 6, .  

The alternatives estimates obtained according to the maximin criterion are presented 

in Table 3. 

u

Z

 u Z

0

*u

Z Z



 

Table 3. Simulation results 

 1Z  
1

*u  

 u Z Z  

2

*u  

  2u Z Z  

3

*u  

  3u Z Z  

1E   11 1, .  1,05 1,103 1,1603 

2E   2 2 2, .  2,1 4,413 9,282 

3E   0 0 5, .  0,25 0,083 0,0313 

4E   11 1, .  1,05 1,103 1,1603 

5E   1 9 2 3. , .  2,1 4,423 9,345 

Obviously, by the maximin criterion, two alternatives are quasioptimal – 
2E  and 

5E , 

whose estimates are incomparable in the paradigm of classical interval analysis. The 

calculation of the indicator 
*u  according to (30) for different forms of the preference 

function allows to make an unequivocal reasonable choice of the only optimal alterna-

tive – 
5E . 

3.2 The critical analysis of results  

The proposed technique for ranking alternatives has the following features.   

1. The developed method cannot and should not be considered as the only or “best” 

one within the given task. However, the fact that this technique is rather subjective 

(while selecting the function of preference) does not violate the logic of the deci-

sion-making process. The analyst can work with the uncertainty until he makes 

sure that the only optimal solution according to the selected criterion cannot be ob-

tained. 

2. The proposed technique is algebraically simple and does not contain operations 

that can lead to the artificial broadening of intervals. However, the researcher, that 

is formalizing the decision-making task and selecting nontrivial criterion, should 

take into consideration the fact that operations with interval data (especially with 

intervals containing zero) can dramatically extend the criterion final interval crite-

rion. That is why the proposed technique (as the interval analysis as a whole) is ef-

ficient only for interval data of small width or for sparse interval matrices. 

3. The interactive mode of operation of an analyst and DSS should remain dominant 

with respect to automatic modes in the context of decision-making tasks; the pro-

posed technique should be used according to the analyst request.  

4 Conclusions 

1. The method is proposed for ranking quasi-optimal alternatives in interval game 

models against nature, which enables comparing interval alternatives in cases of 

classical interval ambiguity. 



 

2. Recommendations on the practical implementation of the proposed method were 

compiled. Specifically, recommendations for parametric setting of preference func-

tions depending on the location of interval estimates were formulated. 

3. The algorithm that implements the proposed method is simple and its result is 

clear, which is important in the process of making managerial decisions. 
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