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Abstract. The method of statistical spline functions is considered for problems 
of predicting the state of complex technical objects using the example of power 
transmission lines. The choice of parameters of spline fragments for building an 
adequate mathematical model is analyzed. Based on the experimental data, a 
short-term spline forecast of heating of overhead power lines has been created. 
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1 Introduction 

The basic idea of using the mathematical apparatus of statistical spline functions for 
processing the spatial characteristics of a field is that some numerical characteristics 
of physical processes change during the observation process (meteorological fields, 
airspace in the vicinity of energy facilities, navigation space, etc.) for any circum-
stances [1, 2, 3]. 

Regular observations of the history of gradual changes in these parameters over 
time provide an opportunity to obtain information on the trends of further changes in 
the studied parameters and to predict the behavior of the field at certain points [4]. For 
example, using the spline function algorithm, it can monitor and predict the tempera-
ture at a particular point in the airspace [5]. Such a problem arises during temperature 
control equipment of overhead power lines (OPL) using thermal imaging equipment 
installed on the unmanned aerial vehicles (UAV) [6, 7]. 

Using the spline functions, the problem of predict ting electrical equipment failures 
is also solved. In this case, the main idea of predicting failures is that some numerical 
characteristics of physical processes occurring in certain nodes of electrical equip-
ment change during the occurrence or development of faults and defects, which al-
lows to identify them [8, 9]. Observations of their gradual change in time provide 
information on the development trends of the defect and provide a prediction of the 
possible moment of failure [10, 11]. 

In work the forecasting of values of temperature in certain points of an arrange-
ment of the equipment of the OPL will be considered. Due to a significant tempera-



ture increase, failures of individual blocks of OPL are possible. So, the sharp heating 
of metal wires of OPL can lead to sagging and short circuit on the earth. The tempera-
ture factor may contribute to the occurrence of a breakdown or overlap of insulators 
of OPL. It is also possible breakdown of insulators due to contamination of their sur-
face, or aging of the materials from which they are made. In addition, due to various 
reasons, accumulation of microdefects can occur in the insulator material, which con-
tributes to their breakdown [12, 13, 14]. 

The listed defects of equipment of OPL in the course of their operation can lead to 
the emergence of so-called gradual failures. Accidental failures caused by unpredict-
able factors (for example, the overlap of insulation of OPL by birds or animals) will 
not be considered. 

2 Features of spline functions 

2.1 Mathematical model 

To predict the possible failure of a selected node, you additionally need to have statis-
tics on the values of the monitored parameter for a certain period of time, which is 
called the observation interval. 

Let some functional dependence be given on the segment 

 ,y f x A ,  ,x a b , (1) 

where A is the deterministic vector of unknown real numeric parameters entering 
linearly in y and do not depend on x. 

At given points  ,ix a b , 1,i n , random uncorrelated values of the function y 

are observed, which we denote as  , 1,iy i n . For definiteness, we assume that 

these observations are distributed according to the normal law, and 
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where  1 2, , , rA a a a   and σ are unknown parameters, 

 , 1, ; 0,i jX x i n j r   is a rectangular matrix of deterministic coefficients, 

functionally dependent from xi and, as a rule, is called the planning matrix. It should 
also be noted that the dependence of these coefficients from xi is not necessarily lin-
ear.  

If we assume that Y and A are column vectors, which will be provided below, then 
(2) can be written in vector form: M Y X A , 2DY I . Here, M and D are the 

expectation and variance operators, and I is the n-th unit matrix order. 
The paper considers the problem of constructing a statistical estimate of the un-

known parameters  , 1,ja j r  from the results of observations  , 1,iy i n . In 

this case, an arbitrary choice of elements of the planning matrix X is allowed. If noth-
ing is assumed about the distribution of observation errors or observations 



 , 1,iy i n , then as a result of solving this problem the largest, what can we ex-

pect,  is the construction of point estimates for elements A. Under the assumption that 
the distribution law of observations is normal, we can obtain a confidence interval for 
the estimated parameters. 

Considering that in the task set the question of introducing the planning matrix is 
solved in an arbitrary way, we specify this task by refining the choice of the planning 
matrix X. At the same time, we construct statistical estimates of the A parameters 
using the least squares method, which in the case of normally distributed yi leads to 
the same result as maximum likelihood estimation. 

Concretization in the choice of the planning matrix, first of all, is connected with 
the choice of the upcoming functions. The task was traditionally solved in the class of 
polynomials. But polynomial approximations have several disadvantages, the most 
significant of which is that the sequence of interpolation polynomials does not always 
converge to the interpolated function. Therefore, in many problems, the more natural 
and convenient approximation apparatus turned out to be splines, with the help of 
which we will solve the problem posed. 

Splines are functions that are “glued together” from pieces of various functions in a 
specific pattern. Polynomial splines “stick together” from pieces of various polynomi-
als in such a way as to ensure the necessary smoothness of the resulting spline. The 
simplest example of a polynomial spline is a broken line. 

Let the grid be set on the segment  ,a b , , ,a b R a b   (partition): 

0 1 1:n n na x x x x b       , (3) 

where n N . 

Let also mP  is the set of polynomials of degree not higher than , 0m m  , and 
     ,k kC C a b is the set of functions continuous on  ,a b  that have a continuous 

k-th derivative, k Z  ; R   is the set of positive numbers; N is the set of natural 

numbers; Z   is the set of positive integers. 

The function    , ,m m k nS x S x   is called a polynomial spline of degree m of 

defect k (1 k m  ) with nodes (3), if 

  m mS x P ,  1,i ix x x  , 0, 1i r  , 

    ,m k
mS x a bC . 

The points  ix  are called spline nodes, the  1m k  -th derivative of  mS x  

can be discontinuous on the segment  ,a b . Basically, it takes k = 1. There is a repre-

sentation (with a fixed grid n ): 
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where    max 0,r r
s sx x x x     is a Peano’s core. 



The coefficients sa  and ,r sa  can take arbitrary values from R; the set 

 , ,m k nS x   with a fixed n  is linear with dimension 1m nk  . Therefore, for an 

unambiguous definition of a spline, it is necessary to specify 1m nk   independent 

conditions. For a linear spline this is 2n  , that is, for the statistics obtained, the 

number of parameters that need to be estimated is found from condition 2r n  . 

Thus, under the conditions of the formulated problem, it is necessary on the seg-

ment  ,a b  for given r to find a grid   r
jx   such that the spline 

   1 ,k
kS x a b C , 0,1, ,k    constructed on the grid r  provides the minimum 

(in terms of standard quadratic deviations) statistical estimate of the vector A, that is, 
we assume that 
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The equations written in the matrix form  
* *X X A X Y  (6) 

are called normal. They are obtained by minimizing the sum of squared differences 
between observations and their mathematical expectations: 
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As the estimated parameters of the spline, the ja  ordinates of the nodes of the grid 

r  are chosen, whose estimates are now determined by solving the normal equations 

(6) in the matrix form 

  1
* *A X X X Y

 . (8) 

The planning matrix generally has the following form 
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This matrix is rectangular, it has n rows and r+1 columns. The components of the 

vectors  , 1,jk j r  characterize the number of observations that fall in the j-th 

interval, 
1

r

j
j

k n


 . It is assumed that 2n r  . 

Based on (9), we obtain the matrix in the form 
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where 
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(11) 
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and ix  are the elements of the source data (experimental points), 
1

j

j m
m

S k


  ,  

1 ,j r , 0 0, rs s n  . The matrix C is rectangular    1 1r r   . 

The above relations are obtained by directly multiplying the matrices  X   and X 

with (9) taken into account. 
Let us briefly discuss some properties of the matrix C. 

1. The sum of the diagonal elements of the matrix C is equal to the sum of the squares 
of all the elements of the planning matrix X, that is, 
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2. The rectangular matrix C has all sums of elements in the rows equal to 1. 
3. The matrix C (and 1C  ) is only a function of the sums ix  and 2

ix , which 

are taken over all intervals and do not change if the individual ix  change their val-

ues in such a way that these sums remain unchanged. 
The determinant of the matrix C is denoted by 1rC C  , where the index 1r   

is equal to the number of rows or columns of the matrix C. 
If the determinants 1rC   and rC  are calculated, then the determinant 1rC   is 

found by the formula 

2
1 1r r r r r r rC c C c C    at 2, 3,r    (13) 

The recurrence formula (13) can be obtained by direct calculation, by decomposing 
the C row (or column) in 1r   minors. 

Thus, if for generalization we denote 1 00C c , then to calculate the determinant 

of the matrix C, we obtain the following recurrence relations 

0 1 00
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 1,j r . (14) 



It can construct recurrent formulas for finding the elements of the inverse matrix C. 
Let us briefly discuss the construction of these formulas. The determinant 1rC   is 

calculated by the recurrent formula (14). 
The algebraic complement of the element minc which located on the main diagonal 

is equal to the multiplication of two determinants similar in structure to the determi-
nant of the matrix and calculated by recurrent formulas (14), which in this case take 
the form 
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(15) 

where jC  is the determinant of the matrix obtained with C by crossing out the first 

1r j  g rows and first 1r j   columns in it. 

The recurrence formulas (15) allow to find the corresponding determinants of the 

matrices r mC   moving in the direction of the main diagonal from the periphery 

inward towards the center of the matrix. These formulas can also be rewritten in an-
other form, using the movement from the middle to the periphery, namely, taking into 
account (14) we have 
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and now jC  is the determinant of the matrix obtained by crossing out the first rows 

1j   and columns in the C matrix and 1r m   last rows and columns, and jC  is 

the determinant of the matrix obtained from the matrix C by crossing out 1m   first 

rows and columns and 1r j   last rows and columns, jC  and jC  are the main 

minors of the matrix. 
It should be noted that the final results of calculations by the recurrence relation 

(15) and (16) for a fixed matrix are the same, and the intermediate ones may differ. 
Thus, the algebraic complement of the element of the matrix C, standing on the 

main diagonal, is determined by the ratio 

1j j j rC C C  . (17) 

The ratio for calculating the algebraic complements of the elements of the matrix C 
that are not on the main diagonal is calculated by the ratio 
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Denote by H the matrix, which is determined by the expression 
 H X Y . (19) 

where  X   is the matrix transposed with respect to the planning matrix, and Y (ma-

trix-column) is the output of the observations. 
The elements of the matrix H are defined as follows. 
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(20) 

Then the estimates of the ordinates of the points of connection of the linear parts of 
the spline (the elements of the A matrix-column) are determined by the formula 

 1 , 0 ,i j i ja C h i r  . (21) 

The accuracy of approximation of the desired dependence using the selected spline 
is estimated by the sum of the squares of the deviations of the ordinates of the obser-
vation points from the found dependence 

   
1

1 1 2

1 1 1

j

j

sr
j u j j j u

u
j u s j j

a x x a x x
d y

x x


 

   

   
  

  
 

 

 
. (22) 

The confidence interval for the found estimates of ja  is calculated by the formula 

   1
1

j
j j j

d
I a C

n r 
 
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 . (23) 

where   is a value that satisfies the relation  1 1n rt      P , if the random 

variable 1n rt    is distributed according to Student's law with 1n r   degrees of free-

dom; d is the sum of the squares of the deviations of the observations iy s from the 

values of the resulting spline at the corresponding points. 
 The prediction of the confidence interval for the values of the function  x t  at the 

point 1rx   is carried out by enumerating all the splines and choosing one that mini-

mizes this interval at the prediction point. In this case, the spline itself, in the mean-
square sense, is closer to the points, and is observed experimentally. 

The relation (23) allows to build confidence intervals in each node of the spline, 
and on the whole interval - a confidence corridor. 



To obtain a forecast using a statistical spline, an additional node is introduced to 
the set of nodes of the spline, the abscissa of which corresponds to the forecast inter-
val. Using a computer search method, a grid is selected that satisfies equation (8) and 
at the same time minimizes it on the set of possible non-uniform grids and the width 
of the confidence interval in the forecast node. 

As a result, the expected value and the confidence interval for the selected con-
trolled parameter at the end of the forecast interval will be obtained. The boundaries 
of the confidence corridor are formed by linear interpolation of the upper and lower 
boundaries of the confidence intervals in all nodes of the resulting spline, including 
the forecast node. 

2.2 Experimental results 

Based on the considered spline forecast method, algorithms are built and a com-
puter program is developed that implements this method. It is a computer program 
that is the main part of the proposed method, which makes it possible to carry out a 
short-term forecast for determining the time interval in which the temperature of the 
OPL can reach critical values. All the basic information about this program, practical 
issues of its application are set out in the work, as well as in special documentation. 

The application of the proposed method for constructing a forecast will be consid-
ered on a specific example. 

For the implementation of such a forecast, it was necessary, first of all, to obtain 
experimental statistical data on the temperature state of the wires of OPL. In addition, 
the initial data for the program are: 

 the number of temperature measurements 11n   (in our case); 

 the number of hours of the forecast 3forn  ; 

 the number of intervals, interpolates spline 5r  ; 

 the number of intervals of the time interval, on which the temperature is measured 
(the breakdown is performed in order to find the optimal interpolation spline), 

10breakn  ; 

 confidence probability of estimating the prediction of the length of the time inter-
val to reach the critical temperature of the power lines, 0.95P  . 

As a result of the calculation of the program we obtain the data that are presented 
in Table 1 and in Fig. 1. 

Table 1. Experimental data 

Hours 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0 
to, C 40.5 39.5 40.5 45 47.5 47.5 50.0 49.0 51.0 55.0 57.0 

 
In the top line of the Table 1 shows the hours in which the temperature measure-

ment of power lines was carried out. The bottom line contains the corresponding tem-
perature values. 



The graph presented in Fig. 1 is a spline approximation in the form of a channel 
consisting of six sections. The spline docking points at the upper boundary of the 
channel are designated 1u - 7u (these points are denoted by the symbol Δ), and at the 
lower boundary 1d - 7d (the symbol is used to designate these points). In the main line 
of approximation, the notation □ is selected for the designation of docking points. 

The width of the channel is determined by the adopted confidence probability 
P=0.95. Sections 1 - 6 of the graph characterize the observation interval ΔTobserv, and 
sections 6 - 7 characterize the forecast interval ΔTforecast. The forecast was carried out 
at 3:00 ahead regarding to14:00 hours, the last point from the observation interval. As 
can be seen from the graph, with an increase in the time interval of the forecast, its 
upper and lower limits expand, that is, the probability of the forecast decreases with 
increasing time. 

The statistical spline (Fig. 1) is based on the results of observation of the values of 
the temperature of wires in OPL, which is in operation. Temperature measurement 
was carried out on the time interval 9 14observT    every 0.5 hours using a thermal 

imager mounted on the UAV. The quantitative values of the measured temperature, 
given in the bottom line of the table, are shown on the graph as black dots located on 
the observation interval ΔTobserv. 

 

Fig. 1. Prediction using a statistical spline based on observations of temperature values of OPL 

A spline was built (Fig. 1), divided into two sections, namely, the section where in-
terpolation of the data on the measured temperature of the power transmission lines 
over the time interval 9 14observT    and section 14 17forecastT    was carried 

out with the given probability (P = 0.95). The predicted value of the time interval 

crT  where the temperature of OPL can reach a critical level is determined by the 



length of the time interval between the points of intersection of the temperature limit 
line with the upper tup and lower td boundaries of the constructed spline. The threshold 
temperature value line tlim=70oC is constructed parallel to the x-axis in accordance 
with the existing regulatory documents on the operation of OPL. In fig. 1 the pre-
dicted length crT  is indicated by a black line with arrows. 

In order to verify the performance of the proposed method for predicting the possi-
ble values of the temperature of power lines, an experimental measurement of the 
temperature of these wires in the time period was carried out using the UAV, which 
corresponds to the forecast interval forecastT . The data of the results of these meas-

urements (6 points denoted by ○) is plotted on a specified interval forecastT  of the 

graph. Almost all (except for one point, the temperature value, which was measured at 
T=1700), experimental data were obtained that did not exceed the upper and lower 
limits of the constructed spline forecast. This confirms the efficiency of the proposed 
method for predicting the values of the time interval in which the wires of OPL can 
reach unacceptable temperature values. 

Based on the constructed spline forecast, the time interval when the power trans-
mission lines can reach the maximum permissible temperature value of 70 °C is be-
tween 3:00 pm and 4:45 pm with a confidence level of P = 0.95. It should also be 
emphasized once again that the achievement of such a temperature can occur only 
under constant conditions of operation of OPL. 

During constructing a short-term spline forecast, it was assumed that the heating of 
the wires was caused by the random nature of changes in the load of OPL and the 
invariance of other (primarily meteorological) conditions during the entire observa-
tion interval. 

3 Conclusions 

It has been experimentally confirmed that using the method of statistical spline func-
tions in combination with new information technologies implemented using UAV and 
maintaining unchanged meteorological conditions, allows a short-term forecasting of 
the time interval during which the OPL can reach critical temperatures with a given 
probability. 
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