
Software Configuration Diagnosis – A Survey of Existing
Methods and Open Challenges

Artur Andrzejak1 and Gerhard Friedrich2 and Franz Wotawa3

Abstract. As software systems become more complex and feature-
rich, configuration mechanisms are needed to adapt them to differ-
ent execution environments and usage profiles. As a consequence,
failures due to erroneous configuration settings are becoming more
common, calling for effective mechanisms for diagnosis, repair, and
prevention of such issues. In this paper, we survey approaches for di-
agnosing software configuration errors, methods for debugging these
errors, and techniques for testing against such issues. In addition, we
outline current challenges of isolating and fixing faults in configu-
ration settings, including improving fault localization, handling the
case of multi-stack systems, and configuration verification at run-
time.

1 Introduction
Tackling software configuration errors is recognized as an important
research problem which has been investigated by many groups from
academia and industry, e.g., see [51]. In a recent study [52], the au-
thors report empirical findings on the impact of configuration errors
in practice. In particular, a study of over 500 real-world configura-
tion issues revealed that this type of problems constituted the largest
percentage (31%) of high-severity support requests. Moreover, a sig-
nificant portion of these issues (16% to 47%) rendered systems fully
unavailable or caused severe performance degradation. Also other
studies [30] and incident reports [5] confirm that detecting and cor-
recting configuration errors in software is of a great importance for
practical applications.

In this paper, we focus on providing an overview of current re-
search in the area of software configuration diagnosis comprising
fault detection, fault localization, and correction. Besides discussing
research articles dealing with software configure errors, we further
discuss open issues and challenges that are worth being tackled in fu-
ture research activities. While the excellent survey [51] has a broader
scope and also includes aspects such as configuration-free/easy-to-
configure systems, hardening against configuration errors, automat-
ing deployment and monitoring etc., we consider in this paper pri-
marily diagnosis aspects. We also cover the most recent state-of-
the-art work like diagnosing cross-stack configuration errors [32]. In
summary, this survey attempts to offer a compact and focused intro-
duction to this research area, thus serving as a good starting point for
further contributions.

Although, there has been work also dealing with configurations
and configuration errors for systems comprising hardware and soft-
1 Heidelberg University, Germany, email: artur.andrzejak@informatik.uni-

heidelberg.de
2 University Klagenfurt, Austria, email: Gerhard.Friedrich@aau.at
3 TU Graz, Institute for Software Technology, Austria, email:

wotawa@ist.tugraz.at

ware, we focus on methods and tools that have been developed within
the area of software configuration. Dealing with software configura-
tion only allows for extracting and straightforwardly using informa-
tion from programs, which would be hardly obtained when consid-
ering hardware. As a consequence, there are many approaches that
work exclusively in the software configuration domain. Neverthe-
less, there are also approaches that can be generalized to serve di-
agnosis of system configuration as well. Especially, when it comes
to large software comprising million lines of source code and also to
cases where source code is not available, approaches have to follow
a more black-box oriented approach. This approach also enables di-
agnosis in case of hardware or systems in general where hard- and
software is investigated.

In more detail, given a program, its configuration parameters (or
settings), and an execution environment, a software configuration er-
ror comes forward when the parameters assume incorrect values. The
configuration parameters might specify multiple aspects of system
behavior, including adaptation to execution environment (paths, net-
work settings, ..), functionality (enabled/disabled components, log-
ging, ...), performance and resource policies (cache sizes, number
of threads, ..), security settings, and others. Consequently, erroneous
configuration settings can cause failures of multiple types: complete
crashes, partially disabled functionality, performance issues, inap-
propriate resource usage, or security threads. A frequent scenario of
a configuration error are parameter values which do not fit to the spe-
cific execution environment. For example, we specified a path to a
working directory of the application but the user executing the pro-
gram do not have write access to this directory, causing the program
to crash (or at least to terminate with an exception).

In the context of this survey, we consider the configuration error
diagnosis problem in its most general form: detecting the root causes,
i.e. isolating the configuration parameters with inappropriate values,
and providing means for repair in terms of identifying correct val-
ues or value ranges for these parameters (or adapting the execution
environment). This definition implies that we do not target diagno-
sis of ”traditional” software bugs, since we assume that a repair is
possible without code changes. Note that it might be difficult to de-
cide whether a failure should be attributed to a configuration problem
or a software bug, and this challenge remains one of the open issues
(see Section 3). For example, if a failure-triggering sequence of state-
ments in a faulty program is executed only because of a certain pa-
rameter setting, the subsequent failure might appear to be caused by
a configuration error.

We organize this paper as follows: We first discuss in Section 2
previous research works dealing with software configuration diagno-
sis. In the following Section 3 we present open research challenges
that have not been tackled so far. We discuss threats to validity in



2
Sec. 4. Finally, we summarize the content and the findings of this
paper (Section 5).

2 Previous Work on Software Configuration
Diagnosis

In this section, we discuss research work that has been published in
the area of software configuration diagnosis. We obtained the papers
searching relevant digital libraries from IEEE and ACM. We further
focussed on the most recent work in this area not older than 10 years.
Hence, we do not claim the survey to comprise all papers in the con-
text of software configuration errors (for a more comprehensive col-
lection see [51]). However, the presented papers are intended to give
an overview of the current research directions in software configura-
tion diagnosis and methods and techniques used for this purpose.

In order to present the discussed papers in an accessible way, we
classify the paper accordingly to the following categories: (i) diag-
nosing single-layer configuration errors, (ii) diagnosing cross-stack
configuration errors, (iii) diagnosing using configuration knowledge,
and (iv) other aspects of software configuration diagnosis. Single-
layer configuration errors are errors found in one-component ap-
plications like MySQL, Hive, or Spark. Typically, such applica-
tions have one common configuration file/database and are devel-
oped as an integral project. Cross-stack configuration errors occur in
multi-component applications or software stacks like LAMP (Linux,
Apache Web Server, MySQL, PHP, Wordpress/Drupal), J2EE, or
MEAN.

The rational behind these categories is the following. Most previ-
ous work is available for diagnosing single-layer configuration errors
and this case offers an opportunity for an overview of existing diag-
nosis approaches. Diagnosis of cross-stack configuration errors pose
additional challenges. In some cases, the source code of stack com-
ponents might not be available, precluding usage of general program
analysis techniques. More frequently, cross-stack configuration er-
rors are frequently caused by a mismatch between the configuration
settings within separate components [32, 33]. To diagnose such is-
sues, knowledge about the interactions between the components is
needed.

In case of the availability of formal knowledge about configura-
tions, i.e., configuration rules or constraints, diagnosis can be per-
formed using this knowledge. Such formal knowledge bases may be
applicable for single-layer or cross-stack applications.

Finally, there are other aspects that cannot be assigned to one of
the former categories, for example testing configurable systems or
optimization of software based on configuration parameters.

2.1 Diagnosing Single-Layer Configuration Errors

Single-layer programs are typically written in a single programming
language and often the source code is available. Hence, static and dy-
namic program analysis techniques can be applied to obtain a map-
ping from configuration options to code regions. This information
can be exploited for localizing the root cause behind configuration
errors. Consequently, a lot of approaches for diagnosis configuration
errors in such programs have been proposed.

Linking configuration options and code regions. Approaches in
this group attempt to find a correspondence between a configuration
option and code regions impacted by this option. Frequently, such
techniques exploit static [43] or dynamic program slicing [14]. In
program slicing, one attempts to find the set of all code locations
which might influence a target statement (so-called seed), or all code
locations which might be influenced by a seed statement. Hence,
there approaches are mainly applicable in the software configuration
setting and may not be generalizable to deal with hardware configu-
ration diagnosis.

ConfAnalyzer [29] builds a map from each program point to the
options that might cause an error at that point by static data-flow
analysis. For diagnosis, it treats a configuration option as the root
cause if its value flows into the crashing point. The approach does
not require from users to install or use additional tools, but it can use
logs and stack traces to reduce the rate of false positives.

ConfDiagnoser [57, 56] uses static analysis, dynamic profiling,
and statistical analysis to link the undesired behavior that are repre-
sented by predicates to configuration options. When these predicates
indicate behavior deviating from the one known for correct profiles,
ConfDiagnoser lists the relevant configuration options as suspects.

Work [58] presents a technique and a tool to troubleshoot con-
figuration errors caused by software evolution. The approach uses
dynamic profiling, execution trace comparison, and static analysis to
link the undesired behavior to its root cause - a configuration option
which needs to be changed in the new software version.

ConfDoctor [7] is an approach based on static analysis to diag-
nose configuration defects. It does not require users to execute an
instrumented program or to reproduce errors, which is an essential
advantage compared to previous approaches. The only run-time in-
formation required is the stack trace of a failure. An evaluation on
JChord, Randoop, Hadoop, and Hbase shows that the approach could
successfully diagnose 27 out of 29 errors, with 20 of them ranked
first.

Authors of [25] propose a lightweight dynamic analysis technique
that automatically discovers a program’s interactions, i.e., logical for-
mulae that give developers information about how a system’s config-
uration option settings map to particular code coverage. It is evalu-
ated on 29 programs spanning five languages and could find precise
interactions based on a very small fraction of the number of possible
configurations.

Data flow analysis. ConfAid [3] applies dynamic information flow
analysis techniques to track tokens from specified “configuration
sources” and analyze dependencies between the tokens and the er-
ror symptoms, pinpointing which tokens are root causes.

Sherlog [53] uses static analysis to infer control and data infor-
mation in case of a failure. It analyses source code by exploiting in-
formation from run-time logs and computes what must or may have
happened during the failed run. One deficiency of this tool is that it
may require guidance from developers about which function should
be symbolically executed.

Paper [17] introduces Lotrack, an extended static taint analysis ap-
proach and tool to automatically track configuration options. It de-
rives a configuration map that explains for each code fragment under
which configurations it may be executed.



3
Supervised learning approaches. Relatively few authors propose

to use machine learning approaches based on supervised learning
(i.e. mainly classification). This can be explained by the fact that it is
difficult to obtain or generate training data with appropriate structure
and in sufficient amount. Similarly to the challenges of mutation test-
ing, if training samples are generated, faults injected in the configu-
ration files might not trigger a failure or have unrealistic properties.
Also, since a configuration file might contain hundreds of options,
a training set is likely to containt only few faulty cases per option,
giving rise to the unbalanced class problem.

Authors of [41] use machine learning to predict whether a configu-
ration error is responsible for a failure and if yes, what is the category
of the error. To obtain training data, faults are injected into configu-
ration files and the resulting error category is manually labeled.

Work [38] exploits statistical decision tree analysis to determine
possible misconfigurations in data center environments. The authors
further improve the accuracy of this approach via a pattern modifica-
tion method.

Replay-based techniques. One category of well-known tools [44,
37, 20] are the replay-based diagnosis techniques. They treat the sys-
tem as a black box to automatically run the system with possible
configurations values without damaging the rest of the system until
fixing the misconfiguration. This class of techniques relies on having
a working configuration. Otherwise, it can not be applied. Besides,
they require users with more domain knowledge.

Signature-based approaches. Another family of tools mine a large
amount of configuration data from different instances to infer rules
about options and use these rules to identify software misconfigura-
tions.

EnCore [55] and CODE [54] belong to this category of work. En-
Core takes into account the interaction between the configuration set-
tings and the executing environment, as well as the correlations be-
tween configuration entries. It learns configuration rules from a given
set of sample configurations and pinpoints configuration anomalies
based on these rules.

Analogously, some tools such as Strider [42] or PeerPressure [40]
adopt statistical techniques to compare values of configuration op-
tions in a problematic system with those in other systems to infer the
root cause of a failure. All these techniques require substantial effort
to collect the baseline data.

2.2 Diagnosing cross-stack configuration errors

Configuration options in multi-layer architectures (e.g., LAMP,
J2EE, or MEAN “software stacks”) might easily contradict each
other or be hard to trace to each other. Therefore, configuration error
diagnosis in such architectures is particularly challenging [51]. On
the other hand, so far there are very few research approaches or tools
targeting this scenario [33].

Sayagh and Adams [32] conducted an empirical study on multi-
layer configuration options across Wordpress (WP) plugins, WP, and
the PHP engine. They discover a large and increasing number of con-
figuration options used by WP and its plugins. In addition, over 85%
of these options are used by at least two plugins at the same time.

Sayagh et al. [33] perform a qualitative analysis of over 1,000 con-
figuration errors to understand their impact and complexity. Based
on this data they develop a slicing-based approach to identify error-
inducing configuration options in heterogeneous software stacks. So
far it is the only approach which attempts to provide a complete, end-
to-end process for diagnosing cross-stack configuration errors.

Work [4] focuses on finding configuration inconsistencies between
layers in complex, multi-component software. The proposed tech-
nique (based on static analysis) can handle software that is written
in multiple programming languages and has a complex preference
structure.

In [31] the authors target the identification of configuration depen-
dencies in multi-tiered enterprise applications. It provides a method
for analyzing existing deployments to infer the configuration depen-
dencies in a probabilistic sense. This yields rank-ordered list of de-
pendencies so that administrators can consult it and systematically
identify the true dependencies.

Authors of [12] attempt to quantify the challenges that config-
urability of complex, multi-component systems creates for software
testing and debugging. It analyzes a highly-configurable industrial
application and two open source applications. They notice that all
three applications consist of multiple programming languages, lim-
iting the applicability of static analysis. Furthermore, they find out
that there many access points and methods to modify configurations,
and that the configuration state of an application on failure cannot be
determined only from persistent data.

2.3 Rules, Constraints and Fixing their Violations
Once configuration knowledge can be described using constraints or
rules they can be used for diagnosis as well. The use of such knowl-
edge is neither restricted to single-layer nor cross-stack applications
in general. Hence, methods and techniques based on rules and con-
straints, which can also be seen as models of the applications, would
provide a more general account to solve the software configuration
error problem. In this section, we distinguish methods for learning
knowledge, fixing violations, and inconsistency detection between
different software artifacts.

Learning constraints and rules. Several existing approaches ex-
tract configuration models [42, 40, 54, 50, 55] and leverage them for
configuration debugging, mainly via detecting value anomalies and
rule violations.

The categories of extracted data constituting the models typically
include the primitive and semantic data types of configuration op-
tions (e.g., integer, file path, port number, URL), the value ranges of
options (minimum and maximum integer values or a list of accept-
able values), the control dependencies (i.e., usage of parameter Q
relies on the setting of another parameter P ), and value relationships
(e.g., value of parameter S should be greater than that of parameter
T ). EnCore [55] additionally considers the properties of the execu-
tion environment as a part of their models.

CODE [54] takes a unique approach and uses dynamic execution
information as the model content, namely sequences of (Windows)
registry accesses and derived rules. Using these rules for efficient
filtering of even large lists of events, CODE can detect not only con-
figuration errors but also deviant program executions. It requires no



4
source code, application-specific semantics, or heavyweight program
analysis.

SPEX [50] analyzes source code to infer configuration option con-
straints and use these constraints to diagnose software misconfigura-
tions, to expose misconfiguration vulnerabilities, and to detect error-
prone configuration design and handling.

Build-time configuration settings. Another category of work ad-
dresses configurations and their constraints used at compilation and
build time. Such configurations determine whether certain product
features (e.g. logging, debugging) are activated, or even which soft-
ware components are included in the shipped product. The later as-
pect is relevant e.g., for software product lines.

Works [22], [23] propose a static analysis approach to extract
(build-time) configuration constraints from C code. Despite of its
simplicity, it has high precision (77% - 93% in the studied systems)
and can recover 28% of existing constraints. A further study of the
authors reveals that configuration constraints enforce correct runtime
behavior, improve users’ configuration experience, and prevent cor-
ner cases.

Fixing violations of configuration constraints. The problem of
fixing a configuration that violates one or more constraints is ad-
dressed in [47, 48]. The authors introduce to this purpose the concept
of a range fix, which specifies the options to change the ranges of val-
ues for these options. They also design and evaluate an algorithm that
automatically generates range fixes for a violated constraint. Empiri-
cal studies shows that the range fix approach provides mostly simple
yet complete sets of fixes and has a moderate running time in the
order of seconds.

Configurable software (e.g., Linux OS, eCos) can have very high
number of options (variables) and constraints. E.g., Linux has over
6,000 variables and 10,000 constraints; eCos has over 1,000 variables
and 1,000 constraints. Such systems typically use variability model-
ing languages and configuration tools (called configurators). Exam-
ples of variability languages include Linux Kconfig, eCos CDL, and
feature models. With variability modeling languages and configura-
tors, errors can be detected early, but users still have to resolve the
errors, which is also not an easy task: the constraints in variability
models can be very complex and highly interconnected. Therefore,
researchers have proposed automated approaches that suggest a list
of fixes for an error. A fix is a set of changes that, when performed
on the configuration, resolve the current error. However, the recom-
mended fixes in these approaches are sometimes large in number and
size. For example, fix lists for eCos configurations contain up to nine
fixes, and some fixes change up to nine variables.

In this context, work [39] proposes a method to reduce the size
and complexity of error fixes by introducing a concept of dynamic
priorities. The basic idea is to first generate one fix and then to grad-
ually reach the desirable state based on user feedback. To this end,
the approach (1) automatically translates user feedback into a set of
implicit priority levels on variables, using five priority assignment
and adjustment strategies and (2) efficiently identifies potentially de-
sirable fixes that change only the variables with low priorities.

Detecting inconsistencies between code, documentation, and
configuration files. Configuration options are widely used for cus-

tomizing the behavior and initial settings of software applications,
server processes, and operating systems. Their distinctive property
is that each option is processed, defined, and described in different
parts of a software project - namely in code, in configuration file, and
in documentation. This creates a challenge for maintaining project
consistency as it evolves. It also promotes inconsistencies leading to
misconfiguration issues in production scenarios.

Confalyzer [30] uses static analysis to extract a list of configura-
tion option from source code and from associated options documen-
tation. Confalyzer first marks configuration APIs in the configura-
tion classes. Then it identifies calls to these APIs in the program by
building a call graph and obtains option names by reading values of
parameters of these calls.

PrefFinder [11] proposed by Jin et al., uses static analysis and dy-
namic analysis techniques to extract configuration options and stores
them in a database for query and use.

The SCIC approach [4] exploits Confalyzer to implement the func-
tionality of extracting configuration options in the key-value model
and the tree-structured model.

Work [6] proposes an approach for detection of inconsistencies
between source code and documentation based on static analysis.
It identifies source code locations where options are read and for
each such location retrieves the name of the option. Inconsistencies
are then detected by comparing the results against the option names
listed in documentation.

2.4 Other Aspects

There are other papers dealing with diagnosis of software configura-
tion errors not falling into the previous categories like testing, end-
user support and performance optimization, which we discuss in this
subsection.

Testing of highly configurable systems. Paper [18] presents an
initial study on the potential of using statistical testing techniques for
improving the efficiency of test selection for configurable software.
The study aims to answer whether statistical testing can reduce the
effort of localizing the most critical software faults, seen from user
perspective.

Authors of [19] analyze program traces to characterize and iden-
tify where interactions occur on control flow and data. They find that
the essential configuration complexity of these programs is indeed
much lower than the combinatorial explosion of the configuration
space indicates.

Work [36] proposes S-SPLat, a technique that combines heuristic
sampling with symbolic search to explore enormous space of config-
urations for testing of software product lines.

A more general approach for testing configurable systems includ-
ing software is combinatorial testing [15, 16]. There the underlying
assumption is that it is not necessarily one configuration parameter
that reveals a fault but a certain combination of parameters. Combi-
natorial testing assures to compute all combinations for any arbitrary
subset of configuration parameters of arity k. In the context of com-
binatorial testing, the resulting test suite is said being of strength k.
There are many algorithms and tools for combinatorial testing [13].
For a survey on combinatorial testing we refer the interested user
to [26].



5
Configuration and debugging support for end-users. A tech-

nique to detect inadequate (i.e., missing or ambiguous) diagnostic
messages for configuration errors issued by a configurable software
system is proposed in [59]. It injects configuration errors and uses
natural language processing to analyze the resulting diagnostic mes-
sages. It then identifies messages which might be unhelpful in diag-
nosis or even negatively impact this process.

Authors of [49] study configuration settings of real-world users
from multiple projects and reveal patterns of unnecessary complex-
ity in configuration design. The authors also provide a few guidelines
to reduce the configuration space. Finally, the existing configuration
navigation methods are studied in terms of their effectiveness in deal-
ing with the over-designed configuration.

Work [28] introduces ConfSeer, a system which recommends to
users suitable knowledge base articles which are likely to describe
user’s current configuration problem and its fix. To this end, Conf-
Seer takes the snapshots of configuration files from a user machine
as input, then extracts the configuration parameter names and value
settings from the snapshots and matches them against a large set of
KB articles. If a match is found, ConfSeer pinpoints the configuration
error with its matching KB article. The described system powers the
recommendation engine behind Microsoft Operations Management
Suite.

Optimizing performance via configuration settings. In [24], a
rank-based approach to efficient creation of performance models is
introduced. Such models can be exploited for finding an optimally
performing configuration of a software system.

Authors of [10] conducted an empirical study on four popular soft-
ware systems by varying software configurations and environmental
conditions, to identify the key knowledge pieces that can be exploited
for transfer learning for constructing performance models of config-
urable software systems.

Paper [35] proposes a multi-objective evolutionary algorithm to
find the optimal solutions and addresses the configuration optimiza-
tion problem for software product lines.

Finally, the work described in [27] employs random sampling and
recursive search in a configuration space to find optimally performing
configurations for an anticipated workload in software product lines.

2.5 Survey Summary

There are lots of papers dealing with configuration diagnosis of sin-
gle layer applications often employing program analysis techniques
but also making use of machine learning or replay methods. In case
of more complicated applications comprising interacting and con-
figurable software components there have been less papers dealing
with concrete solutions. One approach that can be used in both cases
of software is to make use of formalized knowledge about config-
urations, i.e., the configuration parameters, their domains, and rules
specifying limitations and relationships among parameters. It would
be interesting to investigate whether classical approaches to diagno-
sis of knowledge-bases like [8, 45, 9, 34] can also be successfully
applied for configuration diagnosis. Other aspects, discussed in this
section include testing configurations, end-user support, and perfor-
mance optimization.

3 Challenges in Configuration Diagnosis
Based on the survey of papers presented in the previous section, we
are able to identify several still open challenges. A general challenge
that immediately arises is to distinguish whether an application fail-
ure is due to a fault in the configuration setup or code defect in the
program. This is a common problem when applying configuration
debugging tools, which usually assumes a certain cause. If we want
to come up with a general approach for software configuration di-
agnosis, we have to adapt diagnosis to identify the underlying root
cause.

A method that is able to separate these causes would take the cur-
rent configuration, the program, the description of the execution en-
vironment, and the passing/failing tests as input. Based on these in-
puts the possible causes of a failure are provided as output. In order to
come up with such an approach, it is necessary to have a close look at
various configuration diagnosis problems, given consequently raise
to the another challenge, i.e., providing an open repository of various
configuration diagnosis problems that can be accessed by researchers
in this field.

Such a general repository for software configuration diagnosis
should include a larger set of different programs from single-layer
to cross-stack applications together with configuration errors com-
ing from different sources, test suites, and ideally also configuration
knowledge bases. The repository should cover programs of different
sizes and from different domains capturing currently available soft-
ware to allow comparing different configuration diagnosis methods
and techniques.

Besides these two general challenges, there are other challenges
that are more specific to the applications (single-layer versus cross-
stack) or the tasks to be tackled (i.e., fault localization and repair
versus fault detection). In the following, we illustrate some of these
more specific challenges in detail.

Diagnosis of single-layer applications Despite the fact that there
have been various methods already published in this domain, there
are still some open issues.

• Transfer techniques from functional fault localization: In case of
software debugging, there are various methods available going be-
yond program analysis including spectrum-based fault localiza-
tion [1, 2] among others. In this approach, code regions are ranked
(essentially) according to the number of times there are executed
by passing or by failing tests (intuition: if a code line is executed
primarily by failing tests, it is more likely to contribute to a fail-
ure). For a detailed look at current debugging techniques we re-
fer the interested reader to Wong et al.’s survey [46]. In particu-
lar spectrum-based fault localization offers superior performance
compared to static and dynamic program analysis applied to de-
bugging. The open research question that is, whether spectrum-
based fault localization can be efficiently used for software con-
figuration diagnosis as well.

• Study and exploit the trade-off between the type of data from users
required for diagnosis (as well as the effort of obtaining this data,
e.g., via instrumentation) and the achieved accuracy. The research
goals that would go into this direction include:

– For each type of diagnosis data (from static analysis to diag-
nosis data dynamically created from instrumentation and also



6
for combinations) understand and quantify the degree of likely
penalties (e.g., in terms of accuracy) of using only this data for
diagnosis. Specifically, characterize error types which can be
or cannot be diagnosed for each type of diagnosis data (when
using state-of-the art debugging approaches).

– For each “class” of diagnosis data, attempt to improve the cor-
responding state-of-the art diagnosis methods in terms of types
of errors they are able to debug. This can be done e.g., by an
in-depth analysis why they fail for some error types and by pro-
viding substrates/replacements for the missing diagnosis data.

Diagnosing of cross-stack configuration errors In the case of
cross-stack applications, there is not so much work available. Impor-
tant open research challenges include:

• Exploit work on consistency checking to detect potential incon-
sistencies between different stack layers.

• Leverage existing work on extraction of rules and constraints to
model dependencies between layers. Then use the techniques for
discovery and fixing of constraint violations to diagnose (and pos-
sibly repair) cross-stack configuration errors.

• As a further application of extracted rules, configurator-like tools
(as used for configuring operating systems) could be used for safe
configuration of cross-stack systems.

• Create models of expected behavior (given a current global con-
figuration) of each layer from the perspective of each layer. Di-
vergences in the behavior might indicate potential configuration
inconsistencies or errors. For example, given the current config-
uration of a database-layer (specifying n1 database connections),
also the PHP-layer should allow n1 database connections. How-
ever, if the expected behavior of PHP-layer, based on its own con-
figuration, allows only n2 < n1 database-connections, then an
inconsistency between these two behavioral models is indicated.

It is worth noting that it is quite important which dependencies
or interaction between layers can be observed or recorded. More-
over, in the context of these challenges the application of model-
based approaches for diagnosing (configuration) knowledge-base,
e.g., [8, 45, 9, 34], might be worth being considered.

Testing-related challenges and goals In case of testing, we are
interested in detecting faults caused by configuration settings. There
the motivation is to improve testing approaches specifically for de-
tecting faults in system configurations ideally during software devel-
opment. To clarify the meaning of “software testing” in context of
configuration (errors) we should consider that an application failure
in this context does not necessarily imply that there is a defect in
code (as in traditional testing). Such a failure rather indicates that:

• There is a mismatch between the state of the application environ-
ment (operating system, file system, hardware, location of input
data, libraries, network properties, remote components, etc.) and
the configuration settings. This implies that a test for this type of
error must take into consideration the environment.

• There is an inconsistency between configuration values, either
within a single layer or between layers in a multi-layer applica-
tion. The corresponding tests might be independent of the appli-

cation environment, but are probably more comprehensive if this
is also taken into account.

Consequently, this discussion gives rise to the following goals:

• Attempt automated test generation that considers the state of the
application environment and the configuration settings (maybe
implicitly). Such tests would adapt to environment changes and
target only the above-mentioned mismatch between environment
and configuration. In order to avoid confusion with the meaning of
traditional testing, we might call this “configuration verification”
step instead of testing.

• Generate tests that verify only the consistency of configurations
between layers of a multi-stack system. In this case a test failure
should indicate only an inconsistency, not a lack of adaptation to
the production environment. For example, a test could only verify
the consistency of configurations across layers, not execute the
whole application.

• Generate tests which verify the correctness of application’s be-
havior independently of the configuration settings. For example,
an application should produce the same behavior independently
of the exact path to input/output/libraries, number of used threads
(in some range), used compiler (or its flags) etc.

• Generate tests that improve the outcome of fault localization.
There it would be necessary to identify those tests that can dis-
tinguish different computed root causes (see e.g., [21]).

4 Threats to Validity
Several threats to validity of this paper exist. The main one is the risk
of omitting important contributions to this field. To mitigate this risk,
we have created lists of relevant works using several processes de-
scribed below. We then merged and pruned the results according to
the rank of the publishing venue and originality (i.e. works proposing
a novel or distinctive approach were included even if published in a
workshop). In the first literature collection process, we searched for
publications containing the word ”configuration” that were published
in selected high-quality venues (ICSE, ASE, ISSTA, FSE, ISSRE,
ICSME, ICPC, IEEE Trans. Software Eng., and some others) in the
last five years; for each found publication, we verified via abstract
whether a publication indeed targets configuration error (diagnosis).
In the second process, we read the related work sections of the pre-
viously identified works, and created a list of papers discussed there,
which are of relevance (here, also less prestigious venues were con-
sidered). Finally, we screened the survey [51] for checking that no
important contribution was omitted.

Another threat to validity is the possibility to misinterpret any of
the discussed papers (e.g. due to different understanding of terms),
and state here inaccurate claims. To reduce this risk, we have studied
each described contribution in a depth sufficient to avoid a misinter-
pretation. Besides of this, information from related work section to
verify our interpretation was used where available.

5 Conclusion
In this paper, we presented a survey on methods and techniques used
for detecting, localizing, and correcting faults in the context of soft-
ware configurations. We distinguished the different cases of software



7
configuration diagnosis for single-layer and cross-stack applications
as well as methods used in case of available configuration knowledge
and further aspects. From the survey we were able to identify some
still open challenges and research questions including distinguish-
ing different variants of potential root causes, the lack of repositories
of application-cases for validating and comparing research results as
well as the need for new fault localization and testing methods.

The motivation for this paper is to provide a solid basis for fu-
ture research in this area and to identify some important challenges
in software configuration diagnosis worth being tackled. We also in-
dicated some relationships with work on diagnosis of configuration
knowledge bases and other approaches of software debugging that
might stimulate this field. Because of the growing interest in provid-
ing programs comprising a stack of other programs that themselves
can be configured, we see a growing need for research in this area.

REFERENCES
[1] Rui Abreu, Peter Zoeteweij, Rob Golsteijn, and Arjan J. C. van

Gemund, ‘A practical evaluation of spectrum-based fault localization’,
Journal of Systems and Software, 82(11), 1780–1792, (2009).

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund, ‘Spectrum-
based multiple fault localization’, in ASE 2009, 24th IEEE/ACM In-
ternational Conference on Automated Software Engineering, Auckland,
New Zealand, November 16-20, 2009, pp. 88–99. IEEE Computer So-
ciety, (2009).

[3] Mona Attariyan and Jason Flinn, ‘Automating Configuration Trou-
bleshooting with Dynamic Information Flow Analysis’, in 9th USENIX
Conference on Operating Systems Design and Implementation, pp. 1–
11, Vancouver, BC, Canada, (2010). USENIX Association.

[4] Farnaz Behrang, Myra B. Cohen, and Alessandro Orso, ‘Users Be-
ware: Preference Inconsistencies Ahead’, in 2015 10th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2015, pp. 295–
306, New York, NY, USA, (2015). ACM.

[5] Jon Brodkin. Why Gmail Went Down: Google Misconfigured Load
Balancing Servers. https://goo.gl/Hdga7H. Accessed: 5 June
2018.

[6] Z. Dong, A. Andrzejak, D. Lo, and D. Costa, ‘ORPLocator: Identify-
ing Read Points of Configuration Options via Static Analysis’, in 2016
IEEE 27th International Symposium on Software Reliability Engineer-
ing (ISSRE), pp. 185–195, (October 2016).

[7] Z. Dong, A. Andrzejak, and K. Shao, ‘Practical and accurate pinpoint-
ing of configuration errors using static analysis’, in 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME),
pp. 171–180, (September 2015).

[8] A Felfernig, G Friedrich, D Jannach, and M Stumptner, ‘Consistency-
based diagnosis of configuration knowledge bases’, Artificial Intelli-
gence, 152(2), 213–234, (2004).

[9] A. Felfernig, M. Schubert, and C. Zehentner, ‘An efficient diagnosis al-
gorithm for inconsistent constraint sets’, Artificial Intelligence for En-
gineering Design, Analysis and Manufacturing, 26(1), 53–62, (2 2012).

[10] Pooyan Jamshidi, Norbert Siegmund, Miguel Velez, Christian Kästner,
Akshay Patel, and Yuvraj Agarwal, ‘Transfer Learning for Performance
Modeling of Configurable Systems: An Exploratory Analysis’, in 32Nd
IEEE/ACM International Conference on Automated Software Engineer-
ing, ASE 2017, pp. 497–508, Piscataway, NJ, USA, (2017). IEEE Press.

[11] Dongpu Jin, Myra B. Cohen, Xiao Qu, and Brian Robinson,
‘PrefFinder: Getting the Right Preference in Configurable Software
Systems’, in 29th ACM/IEEE International Conference on Automated
Software Engineering, ASE ’14, pp. 151–162, New York, NY, USA,
(2014). ACM.

[12] Dongpu Jin, Xiao Qu, Myra B. Cohen, and Brian Robinson, ‘Config-
urations Everywhere: Implications for Testing and Debugging in Prac-
tice’, in Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pp. 215–224, New
York, NY, USA, (2014). ACM.

[13] Sunint Kaur Khalsa and Yvan Labiche, ‘An orchestrated survey of
available algorithms and tools for combinatorial testing’, in 25th Inter-
national Symposium on Software Reliability Engineering, pp. 323–334,
(2015).

[14] Bogdan Korel and Janusz Laski, ‘Dynamic Program Slicing’, Informa-
tion Processing Letters, 29, 155–163, (1988).

[15] D. R. Kuhn, R. N. Kacker, and Y. Lei, ‘Combinatorial testing’, in En-
cyclopedia of Software Engineering, ed., Phillip A. Laplante, Taylor &
Francis, (2012).

[16] D. Richard Kuhn, Renee Bryce, Feng Duan, Laleh Sh. Ghandehari,
Yu Lei, and Raghu N. Kacker, ‘Combinatorial testing: Theory and prac-
tice’, in Advances in Computers, volume 99, 1–66, Elsevier, (2015).

[17] Max Lillack, Christian Kästner, and Eric Bodden, ‘Tracking Load-time
Configuration Options’, in 29th ACM/IEEE International Conference
on Automated Software Engineering, ASE ’14, pp. 445–456, New York,
NY, USA, (2014). ACM.

[18] Dusica Marijan, ‘Improving Configurable Software Testing with Statis-
tical Test Selection’, in International Workshop on Formal Methods for
Analysis of Business Systems, ForMABS 2016, pp. 5–8, New York, NY,
USA, (2016). ACM.

[19] J. Meinicke, C. P. Wong, C. Kästner, T. Thüm, and G. Saake, ‘On
essential configuration complexity: Measuring interactions in highly-
configurable systems’, in 2016 31st IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 483–494,
(September 2016).

[20] James Mickens, Martin Szummer, and Dushyanth Narayanan, ‘Snitch:
Interactive Decision Trees for Troubleshooting Misconfigurations’, in
2Nd USENIX Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques, pp. 8:1–8:6, Cambridge, MA, (2007).
USENIX Association.

[21] Nica Mihai, Nica Simona, and Wotawa Franz, ‘On the use of mutations
and testing for debugging’, Software: Practice and Experience, 43(9),
1121–1142, (2013).

[22] S. Nadi, T. Berger, C. Kästner, and K. Czarnecki, ‘Where Do Configura-
tion Constraints Stem From? An Extraction Approach and an Empirical
Study’, IEEE Transactions on Software Engineering, 41(8), 820–841,
(August 2015).

[23] Sarah Nadi, Thorsten Berger, Christian Kästner, and Krzysztof Czar-
necki, ‘Mining Configuration Constraints: Static Analyses and Empiri-
cal Results’, in 36th International Conference on Software Engineering,
ICSE 2014, pp. 140–151, New York, NY, USA, (2014). ACM.

[24] Vivek Nair, Tim Menzies, Norbert Siegmund, and Sven Apel, ‘Using
Bad Learners to Find Good Configurations’, in 2017 11th Joint Meeting
on Foundations of Software Engineering, ESEC/FSE 2017, pp. 257–
267, New York, NY, USA, (2017). ACM.

[25] ThanhVu Nguyen, Ugur Koc, Javran Cheng, Jeffrey S. Foster, and
Adam A. Porter, ‘iGen: Dynamic Interaction Inference for Configurable
Software’, in 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016, pp. 655–665, New
York, NY, USA, (2016). ACM.

[26] Changhai Nie and Hareton Leung, ‘A survey of combinatorial testing’,
ACM Computing Surveys, 43(2), (January 2011).

[27] Jeho Oh, Don Batory, Margaret Myers, and Norbert Siegmund, ‘Find-
ing Near-optimal Configurations in Product Lines by Random Sam-
pling’, in 2017 11th Joint Meeting on Foundations of Software Engi-
neering, ESEC/FSE 2017, pp. 61–71, New York, NY, USA, (2017).
ACM.

[28] Rahul Potharaju, Joseph Chan, Luhui Hu, Cristina Nita-Rotaru, Ming-
shi Wang, Liyuan Zhang, and Navendu Jain, ‘ConfSeer: Leveraging
Customer Support Knowledge Bases for Automated Misconfiguration
Detection’, Proc. VLDB Endow., 8(12), 1828–1839, (August 2015).

[29] Ariel Rabkin and Randy Katz, ‘Precomputing Possible Configuration
Error Diagnoses’, in 2011 26th IEEE/ACM International Conference
on Automated Software Engineering, pp. 193–202, Washington, DC,
USA, (2011). IEEE Computer Society.

[30] Ariel Rabkin and Randy Katz, ‘Static Extraction of Program Config-
uration Options’, in 33rd International Conference on Software Engi-
neering, ICSE ’11, pp. 131–140, New York, NY, USA, (2011). ACM.



8
[31] Vinod Ramachandran, Manish Gupta, Manish Sethi, and Soudip Roy

Chowdhury, Determining Configuration Parameter Dependencies via
Analysis of Configuration Data from Multi-tiered Enterprise Appli-
cations’, in 6th International Conference on Autonomic Computing,
ICAC ’09, pp. 169–178, New York, NY, USA, (2009). ACM.

[32] M. Sayagh and B. Adams, ‘Multi-layer software configuration: Em-
pirical study on wordpress’, in 2015 IEEE 15th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp.
31–40, (September 2015).

[33] Mohammed Sayagh, Noureddine Kerzazi, and Bram Adams, ‘On
Cross-stack Configuration Errors’, in 39th International Conference on
Software Engineering, ICSE ’17, pp. 255–265, Piscataway, NJ, USA,
(2017). IEEE Press.

[34] Kostyantyn Shchekotykhin, Gerhard Friedrich, Patrick Rodler, and
Philipp Fleiss, ‘Sequential diagnosis of high cardinality faults in
knowledge-bases by direct diagnosis generation’, in ECAI ’14, pp. 813–
818, (2014).

[35] K. Shi, ‘Combining Evolutionary Algorithms with Constraint Solving
for Configuration Optimization’, in 2017 IEEE International Confer-
ence on Software Maintenance and Evolution (ICSME), pp. 665–669,
(September 2017).

[36] S. Souto, M. D’Amorim, and R. Gheyi, ‘Balancing Soundness and
Efficiency for Practical Testing of Configurable Systems’, in 2017
IEEE/ACM 39th International Conference on Software Engineering
(ICSE), pp. 632–642, (May 2017).

[37] Ya-Yunn Su, Mona Attariyan, and Jason Flinn, ‘AutoBash: Improving
Configuration Management with Operating System Causality Analy-
sis’, in Proceedings of Twenty-first ACM SIGOPS Symposium on Oper-
ating Systems Principles, pp. 237–250, Stevenson, Washington, USA,
(2007). ACM.

[38] T. Uchiumi, S. Kikuchi, and Y. Matsumoto, ‘Misconfiguration detection
for cloud datacenters using decision tree analysis’, in Network Opera-
tions and Management Symposium (APNOMS), 2012 14th Asia-Pacific,
pp. 1–4, (September 2012).

[39] Bo Wang, Leonardo Passos, Yingfei Xiong, Krzysztof Czarnecki,
Haiyan Zhao, and Wei Zhang, ‘SmartFixer: Fixing Software Config-
urations Based on Dynamic Priorities’, in 17th International Software
Product Line Conference, SPLC ’13, pp. 82–90, New York, NY, USA,
(2013). ACM.

[40] Helen J. Wang, John C. Platt, Yu Chen, Ruyun Zhang, and Yi-min
Wang, ‘Automatic Misconfiguration Troubleshooting with PeerPres-
sure’, in In OSDI, pp. 245–258, (2004).

[41] Mengliao Wang, Xiaoyu Shi, and K. Wong, ‘Capturing Expert Knowl-
edge for Automated Configuration Fault Diagnosis’, in 2011 IEEE
19th International Conference on Program Comprehension (ICPC), pp.
205–208, (June 2011).

[42] Yi-min Wang, Chad Verbowski, John Dunagan, Yu Chen, Helen J.
Wang, and Chun Yuan, ‘STRIDER: A Black-box, State-based Ap-
proach to Change and Configuration Management and Support’, in In
Usenix LISA, pp. 159–172, (2003).

[43] Mark Weiser, ‘Program slicing’, IEEE Transactions on Software Engi-
neering, 10(4), 352–357, (July 1984).

[44] Andrew Whitaker, Richard S. Cox, and Steven D. Gribble, ‘Configu-
ration Debugging As Search: Finding the Needle in the Haystack’, in
6th Conference on Symposium on Opearting Systems Design & Imple-
mentation - Volume 6, pp. 6–6, San Francisco, CA, (2004). USENIX
Association.

[45] Jules White, David Benavides, Douglas C. Schmidt, Pablo Trinidad,
Brian Dougherty, and Antonio Ruiz Cortés, ‘Automated diagnosis of
feature model configurations’, Journal of Systems and Software, 83(7),
1094–1107, (2010).

[46] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa,
‘A survey on software fault localization’, IEEE Trans. Software Eng.,
42(8), 707–740, (2016).

[47] Y. Xiong, H. Zhang, A. Hubaux, S. She, J. Wang, and K. Czarnecki,
‘Range Fixes: Interactive Error Resolution for Software Configuration’,
IEEE Transactions on Software Engineering, 41(6), 603–619, (June
2015).

[48] Yingfei Xiong, Arnaud Hubaux, Steven She, and Krzysztof Czarnecki,
‘Generating Range Fixes for Software Configuration’, in 34th Inter-
national Conference on Software Engineering, ICSE ’12, pp. 58–68,
Piscataway, NJ, USA, (2012). IEEE Press.

[49] Tianyin Xu, Long Jin, Xuepeng Fan, Yuanyuan Zhou, Shankar Pasu-
pathy, and Rukma Talwadker, ‘Hey, You Have Given Me Too Many
Knobs!: Understanding and Dealing with Over-designed Configuration
in System Software’, in 2015 10th Joint Meeting on Foundations of
Software Engineering, ESEC/FSE 2015, pp. 307–319, New York, NY,
USA, (2015). ACM.

[50] Tianyin Xu, Jiaqi Zhang, Peng Huang, Jing Zheng, Tianwei Sheng,
Ding Yuan, Yuanyuan Zhou, and Shankar Pasupathy, ‘Do Not Blame
Users for Misconfigurations’, in Twenty-Fourth ACM Symposium on
Operating Systems Principles, pp. 244–259, Farminton, Pennsylvania,
(2013). ACM.

[51] Tianyin Xu and Yuanyuan Zhou, ‘Systems Approaches to Tackling
Configuration Errors: A Survey’, ACM Comput. Surv., 47(4), 70:1–
70:41, (July 2015).

[52] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.
Bairavasundaram, and Shankar Pasupathy, ‘An Empirical Study on
Configuration Errors in Commercial and Open Source Systems’, in
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP
’11, pp. 159–172, New York, NY, USA, (2011). ACM.

[53] Ding Yuan, Haohui Mai, Weiwei Xiong, Lin Tan, Yuanyuan Zhou, and
Shankar Pasupathy, ‘SherLog: Error Diagnosis by Connecting Clues
from Run-time Logs’, in Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems, ASPLOS
XV, pp. 143–154, New York, NY, USA, (2010). ACM.

[54] Ding Yuan, Yinglian Xie, Rina Panigrahy, Junfeng Yang, Chad Ver-
bowski, and Arunvijay Kumar, ‘Context-based Online Configuration-
error Detection’, in 2011 USENIX Conference on USENIX Annual
Technical Conference, pp. 28–28, Portland, OR, (2011). USENIX As-
sociation.

[55] Jiaqi Zhang, Lakshminarayanan Renganarayana, Xiaolan Zhang, Niyu
Ge, Vasanth Bala, Tianyin Xu, and Yuanyuan Zhou, ‘EnCore: Exploit-
ing System Environment and Correlation Information for Misconfig-
uration Detection’, in 19th International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 687–
700, Salt Lake City, Utah, USA, (2014). ACM.

[56] Sai Zhang, ‘ConfDiagnoser: An Automated Configuration Error Di-
agnosis Tool for Java Software’, in 2013 International Conference on
Software Engineering, ICSE ’13, pp. 1438–1440, Piscataway, NJ, USA,
(2013). IEEE Press.

[57] Sai Zhang and Michael D. Ernst, ‘Automated diagnosis of software con-
figuration errors’, in ICSE’13, 34th International Conference on Soft-
ware Engineering, San Francisco, CA, USA, (May 2013).

[58] Sai Zhang and Michael D. Ernst, ‘Which Configuration Option Should
I Change?’, in 36th International Conference on Software Engineering,
ICSE 2014, pp. 152–163, New York, NY, USA, (2014). ACM.

[59] Sai Zhang and Michael D. Ernst, ‘Proactive Detection of Inadequate
Diagnostic Messages for Software Configuration Errors’, in Int. Symp.
on Software Testing and Analysis (ISSTA), pp. 12–23, NY, USA, (2015).
ACM.


