
Fully Convolutional Networks for Text Classification

 Jacob Anderson

Sentim LLC
Columbus, OH, USA

papers@sentimllc.com

Abstract

English. In this work I propose a new way
of using fully convolutional networks for
classification while allowing for input of
any size. I additionally propose two mod-
ifications on the idea of attention and the
benefits and detriments of using the mod-
ifications. Finally, I show suboptimal re-
sults on the ITAmoji 2018 tweet to emoji
task and provide a discussion about why
that might be the case as well as a pro-
posed fix to further improve results.

Italian. In questo lavoro viene presentato
un nuovo approccio all'uso di fully convo-
lutional network per la classificazione,
adattabile a dati di input di qualsiasi di-
mensione. In aggiunta vengono proposte
due modifiche basate sull'uso di meccani-
smi di attention, valutandone benefici e
svantaggi. Infine, sono presentati i risul-
tati della partecipazione al Task ITAmoji
2018 relativo alla predizione di emoji as-
sociate al testo di tweets, discutendo il
perché delle performance non ottimali del
sistema sviluppato e proponendo possibili
migliorie.

1 Introduction

The dominant approach in many natural lan-
guage tasks is to use recurrent neural networks or
convolutional neural networks (CNN) (Conneau
et al., 2017). For classification tasks, recurrent
neural networks have a natural advantage because
of their ability to take in any size input and output
a fixed size output. This ability allows for greater
generalization as no data is removed nor added in
order for the inputs to match in length. While con-
volutional neural networks can also support input
of any size, they lack the ability to generate a fixed

size output from any sized input. In text classifi-
cation tasks, this often means that the input is
fixed in size in order for the output to also have a
fixed size.

Other recent work in language understanding
and translation uses a concept called attention. At-
tention is particularly useful for language under-
standing tasks as it creates a mechanism for relat-
ing different position of a single sequence to each
other (Vaswani et al., 2017).

In this work I propose a new way of using fully
convolutional networks for classification to allow
for any sized input length without adding or re-
moving data. I also propose two modifications on
attention and then discuss the benefits and detri-
ments of using the modified versions as compared
to the unmodified version.

2 Model Description

The overall architecture of my fully convolutional
network design is shown in Figure 1. My model
begins with a character embedding where each
character in the input maps to a vector of size 16.
I then first apply a causal convolution with 128
filters of size 3. After which, I apply a stack of 9
layers of residual dilated convolutions with skip
connections, each of which use 128 filters of size
7. The size of 7 here was chosen by inspection, as
it converged faster than size 3 or 5 while not con-
suming too much memory. Additionally, the dila-
tion rate of each layer of the stack doubles for
every layer, so the first layer has rate 1, then the
second layer has rate 2, then rate 4, and so on.

All of the skip connections are combined with
a summation immediately followed by a ReLU to
increase nonlinearity. Finally, the output of the
network was computed using a convolution with
25 filters each of size 1, followed by a global max
pool operation. The global max pool operation re-
duces the 3D tensor of size (batch size, input
length, 25) to (batch size, 25) in order to match the
expected output.

I implemented all code using a combination of
Tensorflow (Abadi et al., 2016) and Keras (Chol-
let, 2015). During training I used softmax cross-
entropy loss with an l2 regularization penalty with
a scale of .0001. I further reduced overfitting by
adding spatial dropout (Tompson et al., 2015)
with a drop probability of 10% in the residual di-
lated convolution layers.

Figure 1: Model Architecture

1 They have since changed this limitation to 13 GB.

2.1 Hardware Limitations

At the time of creating the models in this paper, I
was limited to only a Google Colab GPU, which
comes with a runtime restriction of 12 hours per
day and a half a GB of GPU memory1. While it is
possible to continue training again after the re-
striction is reset, in order to maximize GPU usage,
I tried to design each iteration of the model so that
it would finish training within a 12 hour time pe-
riod.

2.2 Residual Block

A residual connection is any connection which
maps the input of one layer to the output of a layer
further down in the network. Residual connec-
tions decrease training error, increase accuracy,
and increase training speed (He et al., 2015).

2.3 Dilated Convolution

A dilated convolution is a convolution where the
filter is applied over a larger area by skipping in-
put values according to a dilation rate. This rate
usually exponentially scales with the numbers of
layers of the network, so you would look at every
input for the first layer and then every other input
for the second, and then every fourth and so on
(van den Oord, 2016).

In this paper, I use dilated convolutions similar
to Wavenet (van den Oord, 2016), where each
convolution has both residual and skip connec-
tions. However, instead of the gated activation
function from the Wavenet paper, I used local re-
sponse normalization followed by a ReLU func-
tion. This activation function was proposed by
Krizhevsky, Sutskever, and Hinton (2012), and I
used it because I found this method to achieve
equal results but faster convergence.

2.4 Residual Dilated Convolution

A residual dilated convolution is a dilated convo-
lution with a residual connection. First, I take a
dilated convolution on the input and a linear pro-
jection on the input. The dilated convolution and
the linear projection are added together and then
outputted. The dilated convolution also outputs as
a skip connection, which is eventually summed to-
gether with every other skip connection later in
the network.

Figure 2: Residual Dilated Convolution

2.5 Skip Connections

In this paper, I also use the idea of skip connec-
tions from Long, Shelhamer, and Darrell (2015).
Skip connections simply connect previous layers
with the layer right before the output in order to
fuse local and global information from across the
network. In this work, the connections are all
fused together with a summation followed by a
ReLU activation to increase nonlinearity.

2.6 Attention and Self-Attention

Attention can be described as mapping a query
and a set of key value pairs to an output (Vaswani
et al., 2017). Specifically, when I say attention or
‘normal’ attention, I am referring to Scaled Dot-
Product Attention. Scaled Dot-Product Attention
is computed as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 345

6

789
:𝑉		 (1)

Where Q, K, and V are matrices representing the
queries, keys, and values respectively (Vaswani
et al., 2017).

 Self-Attention then is where Q, K, and V all
come from the same source vector after a linear
projection. This allows each position in the vector
to attend to every other position in the same vec-
tor.

2.7 Simplified and Local Attention

Simplified and local attention can both be thought
of as trying to reinforce the mapping of a key to
value pair by extracting extra information from
the key. I compute a linear transformation fol-
lowed by a softmax to get the weights on the val-
ues. These weights and the initial values are mul-
tiplied together element-wise in order to highlight
which of the values are the most important for

solving the problem. Simplified attention can also
be thought of as reinforcing a one-to-one corre-
spondence between the key and the value.

Figure 3: Simplified Attention

Local attention is like simplified attention ex-

cept instead of performing a linear projection on
the keys, local attention performs a convolutional
projection on the keys. This allows for the net-
work to use local information in the keys to attend
to the values.

2.8 Multi-Head Attention

In multi-head attention, attention is performed
multiple times on different projections of the input
(Vaswani et al., 2017). In this paper, I either use
one or eight heads in every experiment with atten-
tion, in order to get the best results and to compare
the different methods accurately.

2.9 Model Modifications for Attention

In this paper, I tested seven different models, six
of which extend the base model using some type
of attention. In the models with attention, self-at-
tention is used right after the final convolution and
right before the global pooling operation.

2.10 Global Max Pooling

While CNN’s support input of any size, they lack
the ability to generate a fixed size input and in-
stead output a tensor that is proportional in size to
the input size. In order for the output of the net-
work to have a fixed size of 25, I use max pooling
(Scherer et al., 2010) along the time dimension of
the last convolutional layer. I perform the max
pooling globally, which simply means that I take
the maximum value of the whole time dimension
instead of from a sliding window of the time di-
mension.

3 Experiment and Results

In this section, I go over the ITAmoji task descrip-
tion and limitations, as well as my results on the
task.

3.1 ITAmoji Task

This model was initially designed for the ITAmoji
task in EVALITA 2018 (Ronzano et al., 2018).
The goal of this task is to predict which of 25 emo-
jis (shown in Table 1) is most likely to be in a
given Italian tweet. The provided dataset is
250,000 Italian tweets with one emoji label per
tweet, and no additional data is allowed for train-
ing the models. However, it is allowed to use ad-
ditional data to train unsupervised systems like
word embeddings. All results in the coming sub-
sections were tested on the dataset of 25,000 Ital-
ian tweets provided by the organizers.

Emoji Label %
Sam-
ples

red heart 20.28

face with tears of joy 19.86

smiling face with heart eyes 9.45

 kiss mark 1.12

 winking face 5.35

smiling face with smiling
eyes

5.13

 beaming face with smiling
eyes

4.11

 grinning face 3.54

face blowing a kiss 3.34

smiling face with sunglasses 2.80

thumbs up 2.57

 rolling on the floor laughing 2.18

thinking face 2.16

 blue heart 2.02

 winking face with tongue 1.93

 face screaming in fear 1.78

 flexed biceps 1.67

face savoring food 1.55

 grinning face with sweat 1.52

2 Due to an off-by-one error in the conversion from net-

work output to emoji, the official results for the no attention
network are much worse than in actuality.

 loudly crying face 1.49

 top arrow 1.39

 two hearts 1.36

sun 1.28

rose 1.06

sparkles 1.06

Table 1: Each of the 25 different emojis used in
the ITAmoji task, their labels, and the correspond-
ing percent of samples in the test dataset.

3.2 Results

Table 2 shows my official results from the
ITAmoji competition, as well as the first and sec-
ond group scores. Table 3 shows the best result
(evaluated after the competition was complete)
according to the macro f1 score of the seven dif-
ferent models I trained during the competition. It
also shows the micro f1 score at the same run of
the best macro f1 score for comparison. Table 4
shows the upper and lower bounds of the f1 scores
after the scores have stopped increasing and have
plateaued.

Model Macro F1 Micro F1
1st Place Group 0.365 0.477
2nd Place Group 0.232 0.401
Run 3: Simplified
Attention

0.106 0.294

Run 2: 1 Head Atten-
tion

0.102 0.313

Run 1: No Attention2 0.019 0.064
Table 2: Official results from the ITAmoji com-
petition, as compared to the first and second place
groups.

Model Macro F1 Micro F1
8 Head Attention 0.113 0.316
1 Head Attention 0.105 0.339
Local Attention 0.106 0.341
8 Head Local 0.106 0.337
Simplified Attention 0.106 0.341
8 Head Simplified 0.109 0.308
No Attention 0.11 0.319

Table 3: The best results from the different models
on the dataset, run after the competition was over.

Model Macro F1 Micro F1
8 Head Attention [.10, .11] [.30, .36]
1 Head Attention [.09, .11] [.30, .36]
Local Attention [.10, .11] [.30, .35]
8 Head Local [.10, .11] [.34, .36]
Simplified Attention [.10, .11] [.32, .36]
8 Head Simplified [.10, .11] [.31, .36]
No Attention [.10, .11] [.30, .36]

Table 4: The upper and lower bounds of the f1
scores of the different model types after the scores
have plateaued in training and start oscillating.

While 8 head attention did outperform the 8

head local and simplified models, it’s interesting
to note that that isn’t the case for the 1 head ver-
sions. Additionally, the bounds for the scores sig-
nificantly overlap so there is no statistically sig-
nificant gains for one method over the other. This
result, along with my comparatively worse scores
is probably because the max pooling at the end of
my model was throwing away too much infor-
mation in order to make the size consistent.

4 Discussion

In the upcoming sections, I discuss a possible
problem with the design of my models and pro-
pose a few solutions for that problem. I further
discuss the two new modifications on attention
that I proposed and their possible uses.

4.1 Loss of Information While Pooling

For the problem of throwing away too much in-
formation during the pooling or downsampling
phase, there are three main approaches that could
be explored, each with their positives and nega-
tives.

 The first approach is to just fix the size of the
input and use fully connected layers or similar ap-
proaches to find the correct output. This is the cur-
rent approach by most researchers, and has shown
good results. The main negative here is that the
input size must be fixed, and fixing the input size
could mean throwing away or adding information
that isn’t naturally there.

The second approach is to use a recurrent neu-
ral network neuron like an LSTM or a GRU with
size equal to the output size to parse the result and
output singular values for the final sequence. This
would probably lead to better results but is going
to be slower than the other approaches.

 The last approach is to use convolutional lay-
ers with a large kernel size and stride (e.g. stride
equal to the size of the kernel). This would allow
the network to shrink the output size naturally,

and would be faster than using an LSTM. The is-
sue here is that in order to maintain the property
that the network can have any input size, pooling
or some other method of downsampling has to be
used, potentially throwing away useful data.

4.2 Potential Uses of Simplified and Local
Attention

While the original idea behind simplifying atten-
tion in such a manner as presented in this paper
was to reduce computational cost and encourage
easier learning by enforcing a softmax distribu-
tion of data, there didn’t seem to be any benefit in
doing so. In most cases the computational cost of
a couple of matrix multiplications versus an ele-
ment-wise product is negligible, so it would usu-
ally be better to just apply normal attention in
those cases as it already covers the case of simpli-
fied attention in its implementation.

Similar to simplified attention, it doesn’t neces-
sarily make sense to use local attention instead of
normal attention for small input sizes. Instead, it
might make sense to switch out the linear projec-
tion on the queries and keys in normal attention
with a convolutional projection but otherwise per-
form the scaled-dot product attention normally.
This could be potentially useful if the problem be-
ing approached needs to map patterns to values in-
stead of mapping values to values. One could of
course extend this even further by also performing
a convolutional projection on the values in order
to map local patterns to other local patterns, and
so on.

On the other hand, the local attention suggested
in this paper could be useful in neural nets used
for images and other large data, where it might not
make sense to attend over the whole input. This is
especially true in the initial layers of such neural
networks where the neurons are only looking at a
small section of the input in the first place. Be-
yond the smaller memory demands compared to
normal attention, local attention could be useful in
these layers because it provides a method to natu-
rally figure out which patterns are important at
these early layers.

Of course an alternative to local attention is to
just take small patches of the image and apply the
original formulation of scaled-dot product atten-
tion to get similar results. This idea was originally
suggested as future work in Vaswani et al. (2017).

5 Conclusion

In this work I present simplified and local atten-
tion and test the methods in comparison to similar

models with normal attention and without any
kind of attention at all. I also introduced a new
strategy for classifying data with fully convolu-
tional networks with any sized input.

The new model design was not without its own
flaws, as it showed poor results for all modifica-
tions of the method. The poor results were proba-
bly due to the final pooling layer throwing away
too much information. A better method would be
to use LSTMs or specially designed convolutions
in order to shrink the output to the correct size.

Future work will include further explorations of
simplified and local attention to really get a grasp
of what tasks they are good at and where, if any-
where, they show better efficiency or results than
normal attention. In the future I will also further
explore the new strategy for classification on any
sized input with fully convolutional model and see
what I can change and update in order to improve
the results of the model.

References
Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A.,

Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard,
M. and Kudlur, M., 2016, November. Tensorflow: a
system for large-scale machine learning. In OSDI
(Vol. 16, pp. 265-283).

Conneau, A., Schwenk, H., Barrault, L. and Lecun, Y.,
2016. Very deep convolutional networks for text
classification. arXiv preprint arXiv:1606.01781.

Chollet, F., 2015. Keras.

He, K., Zhang, X., Ren, S. and Sun, J., 2016. Deep re-
sidual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition (pp. 770-778).

Krizhevsky, A., Sutskever, I. and Hinton, G.E., 2012.
Imagenet classification with deep convolutional
neural networks. In Advances in neural information
processing systems (pp. 1097-1105).

Long, J., Shelhamer, E. and Darrell, T., 2015. Fully
convolutional networks for semantic segmentation.
In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 3431-3440).

Ronzano, Francesco and Barbieri, Francesco and
Wahyu Pamungkas, Endang and Patti, Viviana and
Chiusaroli, Francesca. 2018. Overview of the
EVALITA 2018 Italian Emoji Prediction
(ITAMoji). Proceedings of Fifth Italian Conference
on Computational Linguistics (CLiC-it 2018) &
Sixth Evaluation Campaign of Natural Language
Processing and Speech Tools for Italian. Final
Workshop (EVALITA 2018).

Scherer, D., Müller, A. and Behnke, S., 2010. Evalua-
tion of pooling operations in convolutional architec-
tures for object recognition. In Artificial Neural Net-
works–ICANN 2010 (pp. 92-101). Springer, Berlin,
Heidelberg.

Tompson, J., Goroshin, R., Jain, A., LeCun, Y. and
Bregler, C., 2015. Efficient object localization using
convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition (pp. 648-656).

Van Den Oord, A., Dieleman, S., Zen, H., Simonyan,
K., Vinyals, O., Graves, A., Kalchbrenner, N., Sen-
ior, A.W. and Kavukcuoglu, K., 2016, September.
WaveNet: A generative model for raw audio. In
SSW (p. 125).

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin,
I., 2017. Attention is all you need. In Advances in
Neural Information Processing Systems (pp. 5998-
6008).

Zhang, X., Zhao, J. and LeCun, Y., 2015. Character-
level convolutional networks for text classification.
In Advances in neural information processing sys-
tems (pp. 649-657).

