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Abstract. The article presents a hierarchical fuzzy rule base for intelligent sup-

port of decision making about cause of structural crack of stone building. Ac-

cording to civil engineering practice the causes of structural cracks are classi-

fied by the followings diagnoses: static overload; dynamic overload; especial 

overload; defects of basis and foundation; temperature influence; breach of 

technological process during the building. Source information needed for 

decision making is the data of visual investigation of building, icluding simple 

measuremnts. For decision making we take into account 42 input attributes. The 

hierarchical system ties 9 fuzzy knowledge bases, which contain 151 rules in to-

tal. Cause detection of the crack is carrying out by max-min fuzzy inference 

with hierarchical knowledge base. Learning of fuzzy rules by genetic algo-

rithms provided a good matching between real causes of cracks and modeling 

results. 
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1 Introduction 

Instant and correct diagnosis of the stone construction cracks makes further investiga-

tions, design and reconstruction of buildings successful. The task of diagnosis may be 

solved correctly by high qualification engineers with huge experience. The number of 

such experts is lacking, hence the creation of decision making model for diagnosis of 

structural cracks of buildings is necessity. 

One of the most promising ways to processing uncertain expert information is fuzzy 

sets theory [12]. Application of fuzzy sets for diagnosis of building constructions was 

started in 1982 [6]. It used a fuzzy inference for assessment of structural damages 

after an earthquake. Later, articles showed the successful applications of fuzzy infer-

ence for diagnosis the cracks in reinforced concrete structures [3], for assessment of 

building damage and safety after an earthquake [4], for damage identification in Ti-

moshenko beam-type structures with cracks [2], and for concrete bridge damage di-

agnosis and prediction which aims to provide bridge designers with valuable infor-

mation about the impacts of design factors on bridge deterioration [13]. In building 



diagnosis also is accepted and other kind of a fuzzy information processing, for ex-

ample, a fuzzy signature rule base for hierarchical decision making on renovating or 

replacing the historical buildings [9], and fuzzy integrals and fuzzy arithmetic for 

seismic resilience assessment of bridges [1]. 

This paper presents a hierarchical fuzzy rule base and corresponding technology 

for decision making support about the cause of stone construction crack of building. 

The used approach to fuzzy diagnosis model design is based on a conception of crea-

tion and learning the hierarchical fuzzy rule base. The general conception of identifi-

cation of multifactor dependences with hierarchical fuzzy rule base is described in 

article [9]. The conception consists of carrying out the following stages: 1) description 

of decision making process in form of inference tree; 2) presentation of input attrib-

utes in linguistic variable form; 3) formalisation of linguistic terms by fuzzy sets; 

4) formalisation of expert nature language expressions about “attributes – diagnosis” 

relationship by fuzzy rule bases; 5) learning the hierarchical fuzzy rule base by genet-

ic optimization.  

2 Formalisation of the Diagnosis Problem 

According to civil engineering practice different causes of structural cracks of stone 

building are classified by the followings diagnoses:  

d1 – static overload;  

d2 – dynamic overload;  

d3 – especial overload;  

d4 – defects of basis and foundation;  

d5 – temperature influence;  

d6 – breach of technological process during the building.  

The suggested classification accords to maximal depth of diagnosis, which can be 

got for case of visual investigation of the building. The input attributes are as follows:  

x1 – construction type;  

x2 – work condition;  

x3 – thickness of horizontal junctures;  

x4 – defects of junctures filling;  

x5 – defects of bandaging system;  

x6 – unforeseen holes;  

x7 – defects of reinforcing;  

x8 – curve of construction;  

x9 – deflection from vertical line;  

x10 – moistening of brickwork;  

x11 – peeling of brickwork;  

x12 – weathering of brickwork;  

x13 – leaching of brickwork;  

x14 – crumbling of brickwork;  

x15 – crack location;  

x16 – crack direction;  

x17 – opening of crack;  



x18 – crack width;  

x19 – crack length;  

x20 – consequences of fair;  

x21 – information about earthquakes, explosions; 

x22 – presence of dynamic load;  

x23 – splitting under straight;  

x24 – crack depth;  

x25 – displacement of breast-wall;  

x26 – damage of water-supply system;  

x27 – quality of drains;  

x28 – presence of loose soils;  

x29 – presence of water in cellar;  

x30 – presence of capacitevy construction close;  

x31 – presence of new adjacent buildings;  

x32 – displacement of straight, beam;  

x33 – necessity of sedimentary juncture;  

x34 – presence of sedimentary juncture;  

x35 – presence of additional loads;  

x36 – presence of mechanical damages;  

x37 – quality of cushions under beams;  

x38 – insufficient size of beans bearing place;  

x39 – necessity of temperature juncture;  

x40 – presence of temperature juncture;  

x41 – execution of works on winter;  

x42 – using of heterogeneous materials. 

Creation of the diagnostic model for crack cause detection is reduced to finding out 

the mapping of this form: 

 
1 2 42 1 2 3 4 5 6( , , ..., ) { , , , , , }X x x x D d d d d d d   ,  

where X denotes a vector of the input attributes and D denotes a cause of the crack. 

3 Fuzzy Inference Tree 

Hierarchical interconnection between input attributes (X) and cause of crack (D) is 

represented in the form of a fuzzy inference tree (Figure 1). Graph vertices are inter-

preted in the following way: the squares – possible causes of the crack; the circles – 

input attributes; the double circles – fuzzy rule bases. Enlarged attributes, to which 

edges correspond, as going out of nonterminal vertices are interpreted as followings: 

y1 – state of construction; 

y2 – destruction of brickwork;  

y3 – extra support for some cause;  

y4 – support for basis and foundation defects;  

y5 – possibility of static overload;  

y6 – demand to temperature juncture;  



y7 – support for of crack connected with breach of technological processes;  

y8 – demand to sedimentary juncture. 

The hierarchical structure of decision process makes the diagnostic model more in-

terpretable and more compact. The hierarchical structure reflects expert knowledge 

and information from a lot of special books and articles about crack dynamics.  

 

 

Fig. 1. Fuzzy inference tree 

4 Fuzzy Rules 

The attributes are represented as linguistic variables. The following 117 terms are 

used for linguistic assessment of input attributes: 

x1 – {deaf wall (DW), wall with pilaster (WP), pier (P), deaf partition (DP), pier 

with aperture (PA), wall with aperture (WA)}; 

x2 – {holding (H), self-holding (SH), non-holding (NH)}; 

x3 – {normal (N), excessive (E), very excessive (VE)}; 

x4, x7, x9 – x14 – {absence (A), minor (M), significant (S)}; 

x5, x6 , x8, x20 – x23, x25, x26, x29, x31, x32, x35, x36, x38 – {absence (A), present (P)}; 



x15 – {across whole wall (AW), between walls (B), borders of wall (BW), from 

monolithic inclusion (MI), at supports (S), top of construction (TC), free field (FF), 

bottom of construction (BC)}; 

x16 – {vertical (V), oblique (O), horizontal (H)}; 

x17 – {up, slanting (S), down (D)}; 

x18 – {hair (H), small (S), average (A), large (L), very large (VL)}; 

x19 – {short (S), average (A), long (L), very long (VL)}; 

x24 – {one-sided (OS), through (T)}; 

x27 – {low (L), excellent (E)}; 

x28, x30, x41, x42 – {absence (A), uncertainly (U), present (P)}; 

x33, x39 – {unnecessary (UN), necessary (N)}; 

x34, x40 – {absence (A), low quality (LQ), quality (Q)}; 

x37 – {low (L), high (H)}. 

The following 24 terms are used for linguistic assessment of enlarged attributes:  

y1 – {normal (N), weak (W), very weak (VW)}; 

y2 – {absence (A), medium (M), heavy (H)};  

y3 – {absence (A), static overload (SO), dynamic overload (DO), especial overload 

(EO), defects of basis and foundation (BF), temperature influence (T), breach of tech-

nological process of building (TP)}; 

y4 – {absence (A), low (L), high (H)}; 

y5, y7 – {absence (A), present (P)}; 

y6, y8 – {observed (O), ignored (I)}. 

Formalisation of linguistic terms of input attributes is carried with bell-shaped 

membership function with 2 parameters: b – core of the fuzzy set and c –

concentration of membership curve. 

Natural language expert expressions, which tie up the attributes and output varia-

ble, are formalised in fuzzy rule base form. Tables 1 – 9 show some fragments of the 

rule bases. In the tables the symbol "–" is equal to membership function “Do not 

care” [5]. We use 49 rules in D-base, 31 rules in y1-base, 15 rules in y2-base, 16 rules 

in y3-base, 20 rules in y4-base, 6 rules in y5-base, 4 rules in y6-base, 6 rules in y7-base, 

and 4 rules in y8-base. Total number of rules of all the bases is 151.  

Table 1. Fragment of fuzzy rule base about diagnoses 

x1 x2 y1 x15 x16 x17 x18 x19 y3 D 

– H – S – up – – SO d1 

WP H W S O up H – A d1 

– – VW AW O – – – SO d1 

WA H W AW O S H VL DO d2 

– – – BW V up H – DO d2 

DW H – B O up – – EO d3 

– H – S V up A L EO d3 

WA H – AW V up L VL A d4 

– – VW AW O – – – BF d4 



x1 x2 y1 x15 x16 x17 x18 x19 y3 D 

– SH W B V up H – A d4 

DW H – BC V D L – BF d4 

– – – TC V up – – BF d4 

– – – TC V up – – BF d4 

DW – W BC O – – – BF d4 

DP NH W AW H S A VL BF d4 

– SH N TP O up S L T d5 

WA SH – FF O S H – T d5 

P H – MI O up H A TP d6 

PA NH VW TC O up S A TP d6 

Table 2. Fragment of fuzzy rule base about enlarged attribute y1 

x3  x4 x5 x6 y2 x7 x8 x9 x10 y1 

N A A A A A A A A N 

N Н P A A A A A A W 

VE Н A A A A A A A W 

N M A A M A A A M W 

VE – P P – – – – – VW 

E S P – – S P – S VW 

– S – – – M P M – VW 

Table 3. Fragment of fuzzy rule base about enlarged attribute y2 

x11 x12 x13 x14 y2 

A A A A A 

S A A A M 

A A A M M 

S M M – H 

M M M M H 

S S S S H 

Table 4. Fragment of fuzzy rule base about enlarged attribute y3 

y4 y5 x20 x21 x22 x23 x24 y6 y7 y3 

A A A A A A OS O A A 

– P – – – – – – – SO 

– – – – P – – – – DO 

– – – P – – – – – EO 

H –  – – – – – – BF 

L A P A A P T O A BF 

– – – – – – – I – T 

– – – – – – – – P TP 



Table 5. Fragment of fuzzy rule base about enlarged attribute y4 

x25 x26 y8 x27 x28 x29 x30 x31 x32 y4 

A A O E A A A A A A 

A A O E A A P A A L 

P – – – – – – – – H 

– P – – – – – – – H 

– – I – – – – – – H 

– – – L – – – – – H 

– – – – P P – – – H 

– – – – U P – – – H 

– – – – – P P – P H 

– – – – – – – P P H 

Table 6. Fuzzy rule base about enlarged attribute y5 

x35 x36 x37 x38 y5 

A A A A A 

P – – – P 

– P – – P 

– – P – P 

– – – P P 

P P P P P 

Table 7. Fuzzy rule base about enlarged attribute y6 

x39 x40 y6 

N Q O 

UN – O 

N A I 

N LQ I 

Table 8. Fuzzy rule base about enlarged attribute y7 

x41 x42 y7 

P – P 

– P P 

A A A 

Table 9. Fuzzy rule base about enlarged attribute y8 

x33 x34 y8 

UN – O 

N Q O 

N A I 

N LQ I 



5 Decision Making 

Decision making about diagnosis is carried out according to the following algorithm: 

1. Fix the input attributes of the diagnosis object. 

2. Make up a fuzzification i.e. find input attributes membership degrees to linguis-

tic terms and present results in form of bifuzzy sets. Adjective “bifuzzy” [7] empha-

sizes that fuzzy set support consists of fuzzy sets. In our case, support of the bifuzzy 

set equals the term-set. 

3. Make up a fuzzy inference for all fuzzy rule bases.  

4. Choose the decision from set {d1, d2, d3, d4, d5, d6} with the maximum member-

ship degree. 

During the fuzzification the membership degrees of input attributes to terms from 

rule base are calculated taking into account crisp and fuzzy values. For crisp source 

data, membership degree is calculated by the substitution of the current value of the 

input attribute into membership function. It is possible to use the linguistic values for 

input attributes. In this case the linguistic values is taken from the term-set of relevant 

variable. Hence, the linguistic value became equals to some fuzzy set. For fuzzy 

source data, the membership degree of one fuzzy set (the value of an input attribute) 

to another fuzzy set (a term from a rule base) must be calculated. According to [10], 

the membership degree equals the height of intersection of these fuzzy sets (Figure 2). 

If the both fuzzy sets are represented bell-shaped membership functions with coeffi-

cients (b1, c1) and (b2, c2), then the height of their intersection may be calculated by 

following fast formulae:  

2
1 2

2 1

1

1 min

height

b b

c c


 

  
 

. 

 

Fig. 2. Calculation of membership degree of fuzzy set A  to fuzzy set B  

Fuzzy inference is carried according to tree from Figure 1. Operations fuzzifica-

tion – defuzzification are not employed for enlarged attributes (Figure 3). The result 

of fuzzy inference on the lower level in form of fuzzy set is passed directly into infer-

ence machine at higher level. Fuzzy output value at lower hierarchical level is consid-

ered as input fuzzy value at higher hierarchical level. In this case, membership func-

tions for terms of the conjuncted variables (enlarged attributes) are unnecessary. We 

have selected the following inference options: minimum as t-norm and single winner 

rule [5] as aggregation. 



 

Fig. 3. Hierarchical fuzzy inference 

6 Learning the Hierarchical Fuzzy Rule Base 

Learning is the process of finding out such values of model parameters which provide 

shortest distance between results of modeling and experimental data. The tuning pa-

rameters are membership functions coefficients (b and c) and weight factors of fuzzy 

rules. The total number of these parameters is 2*117+151=385. For reducing the 

learning complexity we will not change weight factors for 23 absolutely-reliable 

rules. According to interpretability saving scheme in [11] we will not change coeffi-

cients b for membership functions extreme terms such as Low and High. There are 

2*42=84 extreme terms for input attributes x1 – x42. Hence, total number of the tuning 

parameters becomes equal to 385–23–84=278. The quantity of the tuning parameters 

is large, because of for solving this nonlinear optimization task we employed genetic 

algorithms. For overfitting prevention we setup the narrow changing bounds of mem-

bership functions coefficients. 

After learning, the misclassification rate is about 4.5%. There are 4 wrong inferred 

decisions out 89 testing cases. Note, that for these 4 cases the inferred decision with 

the second rank is correct.  



7 Conclusions 

We described the hierarchical fuzzy rule base for decision making support about 

cause of structural crack of stone building. Different causes of structural cracks are 

classified by the followings diagnoses: static overload; dynamic overload; especial 

overload; defects of basis and foundation; temperature influence; breach of 

technological process during the building. For decision making we use 42 input 

attributes. The hierarchical system ties 9 fuzzy knowledge bases, which contain 151 

rules. The hierarchical structure of decision making process makes the diagnostic 

model more interpretable and more compact. Learning of fuzzy rules by genetic algo-

rithms provided a good concordance between real causes of cracks and modeling 

results with misclassification rate at level of 4.5%. The design of our inferring model 

for stone construction crack diagnosis suggests a general approach to expert systems 

design in other diagnostic fields. 
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