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Abstract. The general multimodal network equilibrium problem with elastic
balanced demand is studied. This problem is a combination of trip distribution,
modal split and trip assignment problems. The problem is approached from an
asymmetric network equilibrium point of view with side constraints. The bal-
ances for travel demand are taken as side constraints. These balances do not
guarantee that the problem’s solution will satisfy the user equilibrium condi-
tions. It is shown that the obtained solution is equilibrium traffic pattern in
terms of the generalized travel costs which is constructed with the use of dual
variables for demand balance constraints. The economical interpretation of dual
variables from the city infrastructure extension point of view is proposed. By
calculating of the dual values we know whether or not a city area is suitable for
growing. It is established that if the travel costs are co-coercive then the set of
shortest routes in terms of generalized travel costs is the same for every solution
of the studied problem.

Keywords: multimodal network equilibrium problem, elastic balanced demand,
variational inequality, generalized travel costs.

1 Introduction

Transportation processes have been studied, modelled and thoroughly analysed for
almost a century by now. During this time a large amount of knowledge concerning
various aspects of transportation systems was accumulated. An essential part of it is
the equilibrium theory of network flows [1–3] initiated by the studies in the economics
of transportation by M.J. Beckmann, C.B. McGuire, C.B. Winsten in 1955 [4]. This
theory is one of the objective tools for efficiency estimation of transportation planning
projects. It is usually used to forecast a traffic pattern in congestion urban networks.

Forecast modelling of traffic patterns consists of solving the following four prob-
lems [2]:
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1) trip generation (it is to determine the number of trips originating and terminating
in different zones of the area under study );

2) trip distribution (it is to determine the travel demand between origin and destination
zones);

3) modal split (it is to determine the portion of the total number of trips made between
an origin and destination using different transport modes);

4) trip assignment (it is to allocate the origin-destination trips to routes in the net-
work).

There are special mathematical models for each of these problems. The problems are
considered sequentially in a top-down sequential process. The output from one problem
is the input to the next one.

The traffic pattern is forecasted at the fourth step. The basic assumption con-
cerning the way the network users choose their routes is usually formulated as so-
called Wardrop’s first behavioral principle: drivers use only routes with minimal travel
costs [5]. This principle is also called user equilibrium. Therefore the trip assignment
problem is based on the so-called network equilibrium model.

In order to achieve an agreement between solutions of four considered problems
and obtain an adequate modelling results it is necessary to introduce a ”feedback”
mechanism into the computational procedures. So the process has to be repeated many
times, however, the convergence is not guaranteed.

The current network equilibrium theory allows us to substitute all four steps men-
tioned above or only several of them with the solution of a single problem. In this case,
the basis is the network equilibrium model, which combined with other models (trip
generation, trip distribution, modal split) (for example, the most cited papers [6–9])
Such substitution improves the calibration of calculations and leads to more adequate
results of traffic modelling.

All forecast traffic flow models can be divided into two classes. Based on the as-
sumption that travel cost structures are either separable or symmetric, the models of
the first class are formulated as convex optimization programs. In scientific literature
this class of models gains a lot of attention. But, in order to capture such supplementary
flow relationships as interactions among vehicles on different roads, turning priorities
in junctions and etc., the traditional modelling strategy is to modify the travel cost
functions. This strategy often leads to the nonseparable and asymmetric travel cost
functions [10–12]. In this case we deal with the models of second class which were
formulated as variational inequalities [9], [14, 13].

In this paper we consider a forecast traffic flow problem which is in fact a combina-
tion of trip distribution, modal split and trip assignment problems. We assume that the
trip assignment problem is based on the network equilibrium model with nonseparable
and asymmetric travel cost functions. Unlike most papers in this field we do not specify
the structure (gravity, entropy, logit etc.) of the models for the trip distribution and
modal split problems. We consider the general form of the travel disutility function
which is the measure of the perceived loss to the network users. Also we assume that
the number of trips originating and terminating in different zones is known. It means
that the travel demand has to satisfy balance constraints. As the result we have ob-
tained a general multimodal network equilibrium problem with elastic demand in the
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form of a variational inequality [15] with an additional set of balance constraints for
demand. We have called this problem as the general multimodal network equilibrium
problem with elastic balanced demand (GMNEP with EBD).

As is known the introduction of additional constraints into the network equilibrium
problem does not guarantee that the obtained solution will satisfy the user equilibrium
conditions. This topic has been considered in detail in [16] for a network equilibrium
problem with fixed demand with an additional convex set of inequalities. The purpose
of our research is to give equilibrium characterizations of a solution of the GMNEP with
EBD and to explore an influence of the demand balance constraints on the equilibrium
traffic pattern.

We note that the model presented in this paper is inspired from the project of cre-
ating of a cloud service for interactive modelling of transportation flows in the growing
city infrastructure. This service is designed for rapid assessment of the network load
level as a result of various modifications of network elements and changes in the ar-
rangement and designation of urban objects. The main characteristics of urban objects
from the service point of view are the number of trips originating and terminating in it.
These data identify the right parts of demand balance constraints. Therefore in order
to change the city infrastructure responsibly it is very important and useful to know
how does the demand balance constraints affect the traffic pattern.

In this paper is shown that the solution of the GMNEP with EBD may be inter-
preted as a generalization of network equilibrium in terms of generalized travel costs
which are constructed with the use of dual variables for demand balance constraints.
The economical interpretation of dual variables from the city infrastructure extension
point of view is proposed. By calculating the dual values we know whether or not a
city area is suitable for growing. It is established that if the travel costs are co-coercive
then the set of shortest routes in terms of generalized travel costs is the same for every
solution of the GMNEP with EBD.

2 General Multimodal Network Equilibrium Problem with

Elastic Demand

We describe the transportation network as a connected directed graph Γ (N ,L), where
N is the set of nodes and L is the set of directed links in the network. Each link
corresponds to a real road segment with no intersections. Each node represents a point
that divides road segments. Roads with a two-sided traffic have paired links going in
both directions.

To study the flow-generating factors we distinguish two subsets of N : the first
subset O ⊆ N contains nodes that generate flows, while the second subset D ⊆ N
contains nodes that absorb flows. We call elements of the set O origins, and elements
of D destinations. We assume that the network flows differ by modes of transportation.
Denote by M the set of the considered modes.

Travel demand is the crucial information for the transportation planning. The so
called OD-matix denoted by ρ = (ρmij : m ∈ M, (i, j) ∈ O × D) is the quantita-
tive characteristic of the travel demand where the element ρmij gives the number of
potential users of the mode m travelling between the OD-pair (i, j) ∈ O ×D).
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In practice travellers choose a destination node taking into account economical
factors. The travel disutility is a measure of the perceived loss to the travellers in an
OD-pair and the intention to undertake the trip decreases with an increasing disutility.
Let umij be the travel disutility associated with traveling by the mode m ∈ M between
the OD-pair (i, j) ∈ O×D. We arrange the travel disutilities into a vector u = (umij :
m ∈ M, (i, j) ∈ O ×D).

We adopt the assumption of ”elastic demands” according to which the travel de-
mands are determined by travel disutilities. We consider the most general situation
where the demand associated with any mode and any OD-pair may depend on the
disutilities associated with all modes and all OD-pairs in the network: ρmij = ρmij(u).
We also assume that, conversely, travel demands uniquely determine travel disutilities,
i.e. the functions ρmij(u) are invertible: umij = umij(ρ).

Network users traveling between flow-generating pairs choose one or another route.
Denote by Pij the set of alternative routes by which the flow outgoing from origin i

reaches destination j. Let xmp be the flow of the modem on the route p. We arrange the
route flows into a vector x = (xmp : m ∈ M, p ∈ Pij , (i, j) ∈ O × D). Traditionally,
flow variables in transportation problems must be non-negative and satisfy the flow
conservation equations

∑

p∈Pij

xmp = ρmij , m ∈ M, (i, j) ∈ O ×D. (1)

Let Xρ = {(x, ρ) ≥ 0 : (1) holds}. The vector (x, ρ) ∈ Xρ determines the feasible
traffic pattern in the network Γ .

The user of the mode m on the route p undergoes a travel cost Fmp (time, fuel,
money, car amortization, road wear, etc.). We assume that the route travel cost asso-
ciated with any mode on any route may depend on flows by all modes on all routes:
Fmp = Fmp(x). We arrange the route travel costs into a mapping F (x) = (Fmp(x) :
m ∈ M, p ∈ Pij , (i, j) ∈ O ×D).

Definition 1 ([15]). The vector (x∗, ρ∗) ∈ Xρ is called equilibrium traffic pattern if
for every mode m ∈ M, every OD-pair (i, j) ∈ O ×D, and every route p ∈ Pij

Fmp(x
∗)

{

= umij(ρ
∗), if x∗

mp > 0,
≥ umij(ρ

∗), if x∗
mp = 0.

(2)

In general case the equilibrium conditions (2) can be rewritten in a more convenient
form.

Theorem 1 ([15]). The vector (x∗, ρ∗) ∈ Xρ is an equilibrium traffic pattern if and
only if it is a solution of the following variational inequality

F (x∗)(x− x∗)− u(ρ∗)(ρ− ρ∗) ≥ 0, (x, ρ) ∈ Xρ. (3)

The issues of existence and uniqueness of solutions of the variational inequality (3)
are studied in details in [17].

Further on we will assume that the mapping F (x) and u(ρ) are positive.
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Note that any solution (x∗, ρ∗) of the problem (3) can be defined as

(x∗, ρ∗) = argmin{F (x∗)x− u(ρ∗)ρ : (x, ρ) ∈ Xρ}.

It means that F (x∗)x∗ = u(ρ∗)ρ∗. Therefore any equilibrium traffic pattern provides
a minimum of the total system travel cost under assumption that the network users
choose the least cost routes for the trips.

3 Elastic Balanced Demand

We assume that the total number of trips by the mode m ∈ M generated by the origin
i ∈ O, denoted omi, and absorbed by the destination j ∈ D, denoted as dmj , are known.
Then the travel demand have to satisfy the following balance constraints

∑

j∈D

ρmij = omi, m ∈ M, i ∈ O,

∑

i∈O

ρmij = dmj , m ∈ M, j ∈ D.
(4)

Further on we will assume that the balances
∑

i∈O

omi =
∑

j∈D

dmj = ηm (5)

are fulfilled for every mode m ∈ M. Let Θρ = {ρ ≥ 0 : (4) holds}. It is easy to see
that the set Ω = Xρ

⋂

Θρ is nonempty and compact.
We define the general multimodal network equilibrium problem with elastic bal-

anced demand as the problem of finding a traffic pattern (x∗, ρ∗) ∈ Ω such that

F (x∗)(x− x∗)− u(ρ∗)(ρ− ρ∗) ≥ 0, (x, ρ) ∈ Ω. (6)

The existence of at least one solution of (6) follows from the standard theory of vari-
ational inequalities under the only assumption that the functions Fmp(x) and umij(ρ)
are continuous [17].

The variational inequalities (3) and (6) differ from each other in feasible sets only.
But as it will be shown by the next example the solution of (6) does not always satisfy
the equilibrium conditions (2).

Consider the unimodal network shown on the Fig. 1. Let O = {1} and D = {2, 3}.
There are two routes for each of OD-pairs: P12 = {1 → 2, 1 → 3 → 2}, P13 =
{1 → 3, 1 → 2 → 3}. Let x = (x12, x132, x13, x123) is the route flow vector and
F (x) = (F12 = f12, F132 = f13+f32, F13 = f13, F123 = f12+f23) is the route travel cost
mapping for the respective routes. Let f12 = y12+3, f13 = y13+2, f23 = y23, f32 = y32,
where ykl is link flow on the link (k, l). Let u(ρ) = (uij = ln 100

ρij
: (i, j) ∈ {(1, 2), (1, 3)}

is the travel disutility mapping.
The solution of problem (3) for this network is

x∗ = (1.158, 0.406, 2.346, 0), F (x∗) = (4.158, 4.158, 3.752, 4.158),
ρ∗ = (1.564, 2.346), u(ρ∗) = (4.158, 3.752).
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3
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f13
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2

f23 = y23
f32 = y32

Fig. 1. Network example

Define the total number of trips generated by the origin A as o = 4 and absorbed
by the destination B and C as d1 = 2 and d2 = 2, respectively. Then the solution of
the problem (6) is

x∗ = (1 1
3 ,

2
3 , 2, 0), F (x∗) = (4 1

3 , 4
1
3 , 3

2
3 , 4

1
3 ), u(ρ∗) = (3.912, 3.912).

We see that the traffic pattern (x∗, ρ∗) does not satisfy the equilibrium conditions (2):

F (x∗)− u(ρ∗) = (0.421, 0.421, −0.245, 0.421).

Furthermore the difference between travel costs and travel disutility for routes actually
used can be positive as well as negative.

The purpose of this paper is to explain what kind of solution we obtain by solving
the problem (6). For this we substitute the flow conservation equations (1) into the
balance constraints (4) and eliminate ρ from the consideration. As the result we have
obtained a new linear equation system in variables x only

∑

j∈D

∑

p∈Pij

xmp = omi, m ∈ M, i ∈ O, (7)

∑

i∈O

∑

p∈Pij

xmp = dmj , m ∈ M, j ∈ D. (8)

Also we rewrite the disutilities umij(ρ) as

Umij(x) = umij(
∑

p∈Pij

xmp)

and arrange Umij into a mapping U(x) = {Umij(x) : m ∈ M, (i, j) ∈ O ×D}.
Let ∆ = (δmijp : m ∈ M, (i, j) ∈ O×D, p ∈ Pij) is the incidence matrix between

routes and OD-pairs with |M| ×
⋃

(i,j)∈O×D

|Pij | rows and |M| × |O × D| columns.

Consider the nonempty convex compact setX = {x ≥ 0 : (7), (8) hold} and rewrite
the variational inequality (6) as

(F (x∗)−∆U(x∗))(x− x∗) ≥ 0, x ∈ X. (9)
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We have obtained the variational inequality with classical balance constrainits for a
linear transportation problem. Obviously if the solution of (9) is known then using
the flow conservation equations (1) we always can determine the solution of (6). The
converse is true as well.

4 Equilibrium Characterizations of Solutions

Denote by X∗ the solution set of the problem (9). Further on we will assume that X∗

is nonempty.
First of all we show that any solution of the problem (6) agrees with Wardrop’s

first behavioral principle namely the travel costs of all routes actually used are equal
and minimal for every mode m and every OD-pairs (i, j).

Proposition 1. Let x∗ ∈ X∗. For every mode m ∈ M, every OD-pair (i, j) ∈ O × D
and every route q ∈ Pij if ∗

mq > 0 then Fmq(x
∗) = minp∈Pij

Fmp(x
∗).

Proof. Fix the OD-pair (k, l) ∈ O ×D and the mode n ∈ M and choose two different
routes q, r ∈ Pkl such that x∗

nq > 0. Consider a vector xε such that xε
mp = x∗

mp for all
m 6= n, p 6= q and p 6= r, but xε

nq = x∗
nq − ε and xε

nr = x∗
nr + ε, where ε > 0 such that

xε
nq ≥ 0. Obviously xε ∈ X and it is easy to see that variational inequality (9) reduces

to

ε(Fnr(x
∗)− Fnq(x

∗)) ≥ 0. (10)

Thus for every OD-pair (k, l) ∈ O × D and every mode n ∈ M if the routes q ∈ Pkl

actually used then Fnq(x
∗) = minp∈Pij

Fnp(x
∗). �

Observe that any solution x∗ ∈ X∗ also solves a following linear optimization prob-
lem

(F (x∗)−∆U(x∗))x → min, x ∈ X. (11)

Let λmi and µmj are dual variables for the constraints (7) and (8) respectively. We
arrange the dual variables λmi and µmj into the vectors λ = (λmi : m ∈ M, i ∈ O)
and µ = (µmj : m ∈ M, j ∈ D).

Theorem 2. Every solution x∗ ∈ X∗ is equilibrium traffic pattern in terms of gener-
alized route travel costs be given as

F̄mq(x
∗) = Fmp(x

∗)− (λ∗
mi + µ∗

mj), (12)

where λ∗
mi and µ∗

mj are optimal values of dual variables for the linear optimization
problem (11).

Proof. Based on the standard theorems in the linear optimization duality we have for
every mode m ∈ M, every OD-pair (i, j) ∈ O ×D and every route p ∈ Pij

x∗
mp(Fmp(x

∗)− (λ∗
mi + µ∗

mj)− Umij(x
∗)) = 0,

x∗ ≥ 0, Fmp(x
∗)− (λ∗

mi + µ∗
mj)− Umij(x

∗) ≥ 0.
(13)
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The conditions (13) are equivalent to

F̄mp(x
∗)

{

= Umij(x
∗), if x∗

mp > 0,
≥ Umij(x

∗), if x∗
mp = 0

(14)

so it may be interpreted as the user equilibrium in terms of generalized route travel
costs F̄mp(x). �

The Theorem 2 allows us to call the vector x∗ ∈ X∗ the generalized equilibrium
traffic pattern. We arrange the generalized route travel costs into a mapping F̄ (x) =
(F̄mp(x) : m ∈ M, p ∈ Pij , (i, j) ∈ O ×D).

The rows of the coefficient matrix of the balance constraints (7) and (8) are linearly
dependent therefore the vectors λ∗ and µ∗ are not unique.

Note that if x∗ satisfies the conditions (14) then

x∗ = argmin{(F̄ (x∗)−∆U(x∗))x : x ≥ 0}.

Therefor the demand balance constraints on the one hand (as it is shown in the The-
orem 2) have no effect on the user’s behavior and on the other hand they lead to
the deterioration of the transportation situation( the total system travel cost has in-
creased on the value (λ∗ + µ∗)∆Tx∗). So for every mode m ∈ M and every OD-pair
(i, j) ∈ O ×D the value λ∗

mi + µ∗
mj can be interpreted as:

– if λ∗
mi + µ∗

mj < 0 then the travel demand between the OD-pair (i, j) by the mode
m is too low, therefore the city infrastructure related to the node i or/and j can
be considered as an area for growing: if λ∗

mi < 0 then new objects generation flows
(residential districts) or/and if µ∗

mj < 0 then new objects abserbtion flows (business
centers) can be created;

– if λ∗
mi + µ∗

mj > 0 then the travel demand between the OD-pair (i, j) by the mode
m is too high and, as a consequence, we have the saturation of route links in this
direction therefore it is advisable to take actions to decrease the correspondence
ρ∗mij , due to changes in the infrastructure related to the node i or/and j;

– if λ∗
mi+µ∗

mj = 0 then in current state of the transportation network the equilibrium
travel demand ρmij has formed between the origin i and destination j and any
changes in the infrastructure related to i or j are inadvisable.

For the network example given in Fig. 1 the introduction of the demand balance
constraints leads to the increase of the total system travel cost by 0.352 points. The
causes of such increase are the shortage of travel demand in the pair (1, 2) (λ + µ1 =
−0.245) and the excess of travel demand in the pair (1, 3) (λ + µ2 = 0.421). While
maintaining the balance (5) it is advisable to move some amount of trips from the
destination B to the destination C. The possible changes of the trip generation volumes
are a subject of a separate studies.

We then need to introduce the following concept.

Definition 2. A mapping G : X → R
n on a set X is called:

– co-coercitive (inversely strongly monotone) with constant τ > 0 if for all x, y ∈ X

(G(x) −G(y))(x − y) ≥ τ‖G(x) −G(y)‖2;



412 Natalia Shamray

– strictly monotone if for all x, y ∈ X

(G(x) −G(y))(x − y) > 0.

For co-coercitive mappings the next result is proved.

Lemma 1 ([16]). Consider the variational inequality problem of finding an y∗ ∈ Y

such that

Φ(y∗)(y − y∗) ≥ 0, y ∈ Y, (15)

where Y is a nonempty, closed and convex set in R
n and Φ : Y → R

n is a continuous
and co-coercitive mapping on Y . Then, whenever the variational inequality (15) has a
nonempty set of solutions, the mapping Φ(y) is constant on this set.

By the standard theory of variational inequalities if Φ(y) is a strictly monotone
mapping then the problem (15) has no more than one solution.

Next we will establish some stability properties of the solutions of the general mul-
timodal network equilibrium problem with elastic balanced demand (6).

Theorem 3. Let F (x) and −u(ρ) are co-coercive mappings on Ω. Then

– the set of optimal dual vectors λ∗ and µ∗ is the same for every x∗ ∈ X∗;
– the mapping F̄ (x) is constant on the set X∗.
– the least generalized cost routes are the same for every x∗ ∈ X∗;
– if for x∗ ∈ X∗ the conditions (14) are strictly executed then x∗ is unique solution

of (9) and the set of optimal dual vectors λ∗ and µ∗ is uniquely determined up to
a constant.

Proof. By the Lemma 1 the mappings F (x) and u(ρ) are constants on the setΩ therefor
for every x∗ ∈ X∗ we have F (x∗) − ∆U(x∗) = c∗ where c∗ is some constant vector.
Thus for every x∗ ∈ X∗ the set of optimal dual vectors λ∗ and µ∗ is defined as

(λ∗, µ∗) = argmax{oλ+ dµ : λ+ µ ≤ c∗},

where o = (omi : m ∈ M, i ∈ O) and d = (dmj : m ∈ M, j ∈ D).
Moreover for every x∗ ∈ X∗ and vectors λ∗ and µ∗ satisfying (14) the mapping

F̄ (x) is constant on X∗ and consequently the set of least generalized cost routes are
the same.

Let for x∗ ∈ X∗ the conditions (14) are strictly executed. It means that x∗ is the
unique solution of the linear optimization problem (11) and elements (λ∗, µ∗) of the
set of optimal dual vectors differ by a constant.

To show it by contradiction we assume that there exist x∗, x∗∗ ∈ X∗ such that
x∗ 6= x∗∗. Since F (x∗) − ∆U(x∗) = F (x∗∗) − ∆U(x∗∗) = c∗ then x∗ and x∗∗ are
different solutions of the same problem (11) but it is impossible. �

The co-coercivity assumption in the Theorem 3 may also be replaced by strict
monotonicity assumption on F (x) and −u(ρ) since it implies that the traffic pattern
solution of (6) is unique.
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5 Conclusion

Mathematical equilibrium models are one of the efficient tools to support managerial
decisions in the transportation planing. We believe the general multimodal network
equilibrium problem with elastic balanced demand allows us to achieve more adequate
results of traffic modelling because

1) the solution of this problem integrates three stages of the four-phases iterative pro-
cess of traffic modelling, namely trip distribution, modal split, and route assignment;

2) the information about trip generation is explicitly included into the model in terms
of the demand balance constraints;

3) the fact that the travel costs are considered in this problem as the functions of the
load across the entire network, makes it possible to capture such supplementary
flow relationships as interactions among vehicles on different road links and turning
priorities in junctions and etc.

The use of the general multimodal network equilibrium problems with elastic bal-
anced demand is also justified from a theoretical point of view. Its solution agrees with
the Wardrop’s first behavioral principle and can be interpreted as generalized traffic
equilibrium pattern.

Moreover the economic interpretation of dual variables for the demand balance
constraints can be used for managerial decisions concerning of upgrade projects for the
city infrastructure related to the network. According to the solution of the considered
problem, we can detect which of the originating and terminating zones are poorly
developed, and which overload the transportation network.
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