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Abstract. A recurrent neural network that has been trained to separately model
the language of several documents by unknown authors is used to measure simi-
larity between the documents. It is able to find clues of common authorship even
when the documents are very short and about disparate topics. While it is easy
to make statistically significant predictions regarding authorship, it is difficult to
group documents into definite clusters with high accuracy.

1 Introduction

The most successful entry in the PAN 2015 author identification task [7][2] used a form
of recurrent neural network (RNN) to simultaneously model the language of several
authors. The relative success of each author’s model when presented with an anonymous
text was treated as an indication of true authorship. This technique is reused here, but
with different interpretive steps to suit the different task.

The use of recurrent neural networks for language models is not new, and was most
recently revived by Mikolov [6]. The novelty of [2] was the use of a single recurrent
state that was shared by multiple language models, reducing both overfitting and com-
putational cost. The system produces scores in the form of relative entropies which suit
the attribution problem well because it avoids the problems of high dimensional feature
space, cutting directly to pairwise similarity scores.

While this suited the PAN2015 author identification task[7], and the combination of
language modelling and information theory is clearly useful in uncovering authorship,
the approach may have drawbacks when used for clustering. At its core it produces an
asymmetrical matrix of pair-wise divergence scores. Lacking both symmetry and the
triangle inequality, this matrix cannot be used with clustering algorithms designed for
metric spaces — which is to say most of them.

This paper briefly describes the multi-headed recurrent neural network introduced
in [2], then looks at a method of turning its output into clustering decisions. But first
comes a description of the task, noting in particular the scoring mechanisms which will
come to contort the rest of the work.

1.1 The PAN 2016 author clustering task

For a full description of the competition, see the overview paper [7]. The following
concise definition is taken from the PAN website: !

! http://pan.webis.de/clef16/pan16-web/author-identification.html



Given a collection of (up to 100) documents, identify authorship links and
groups of documents by the same author. All documents are single-authored,
in the same language, and belong to the same genre. However, the topic or text-
length of documents may vary. The number of distinct authors whose docu-
ments are included in the collection is not given.

The task covers three alphabetic languages (English, Greek, and Dutch), with six
problems in each language. As described in the quoted passage, each problem consists
of up to 100 documents. Two forms of answer are required for each problem: a set of
clusters, indicating texts presumed to be by a single author; and a set of weighted links
between text pairs where a higher weight relates to a higher probability that the two texts
are from the same author. These two outputs are scored in different ways. The clustering
are evaluated using the F(BCubed)[1] measure which averages the precision and recall
of each document. The weighted links are scored using mean average precision[5] (or
MAP), which punishes for every false link that is scored higher than a true link. Although
the scores are presented in the form of probabilities, MAP doesn’t actually care about
their relative values, just their rank.

2 The multi-headed recurrent neural network language model

This description is simplified for brevity; for more detail see [2] or [6] for an overview
of RNN based language modelling.

A standard character-level language model will, given an unfinished sequence of text
xr1,Ts,T3,...,T;—1, predict the next character x;. That is, it outputs a probability dis-
tribution over the possible characters p(x;|z;—1, Z;—o2, - . ., x1). Such a model is usually
trained on a corpus of text and the probabilities it emits are based on that text (and of
course its structure and meta-parameters). Given the hypothesis that the writing style of
an author will inevitably be reflected in choices made at the character level (even if that
relationship is very faint), it follows that a language model trained solely on one author’s
work is likely to better predict another text by that author than would a model trained on
the work of another author.

An RNN based language model will usually have a softmax activation for the output
layer z. Where there are k output nodes (corresponding to the set of possible symbols),
softmax for node j is defined as
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o(z); = W

which provides values that can be treated as mutually exclusive probabilities. The multi-
headed RNN language model differs in that it simultaneously models the language of
many documents at once by using multiple softmax groups. Given M documents, there
are M x k output nodes arranged in M independent softmax groups. Each of these
groups is trained primarily on a single text, with some stochastic “leakage” from other
texts which helps regulate the output layer weights, preventing gross overfitting. The
error gradient is back-propagated to the shared hidden layer.



In most regards the network follows the basic structure described by Elman [4],
which is to say it resembles a multi-layer perceptron with a single hidden layer mod-
ified so the hidden state depends in part on the previous iteration’s hidden state.

At each time step ¢, the hidden state h; depends on the hidden state at the previous
time step h:_1 as well as the input vector z; which represents a single character. Where
by, is a bias vector, W, and Wy, are weight matrices, and fj, is a non-linear function,
the update of the hidden state is hy = fr,(Wrphi—1 + Wepay + by). An output vector
Y is derived from the hidden state, with y; = f,,(Whyhs + by). For this work, as in [2],
the “ReSQRT” function is used for f:

fh(x):{\/aﬂrllifxzo

0 otherwise.

The input layer uses a “one-hot” representation of the symbols; there is a node for
each of the NV symbols in the alphabet, and at each time step the node for the current
symbol is set to 1 while the rest are 0.

Fig. 1. The multi-headed RNN language model has multiple sub-models, each making predictions
based primarily on a single unique text. If some aspects of the text’s author’s style is captured by
the sub-model, other texts by the same author are likely to be relatively well predicted by it.

The network is trained using a variant of adagrad[3] and back-propagation through
time (BPTT). Simply described this involves iteratively adjusting the weight matrices
with an individual monotonically decreasing learning rate for each weight.

The recurrent hidden layer can be thought of as modelling the language as a whole,
while the various sub-models pick out aspects of the recurrent state that suit their docu-
ment.



3 Method

3.1 Text preprocessing

In order to simplify the computational task and remove the distorting effect of extremely
rare characters, all the texts were mapped to a smaller character set following the method
described in [2]. The following description is an abbreviated version of a section of that
paper. In addition, in two out of the five runs for each language, rare words were replaced
by special tokens (Section 3.2).

The text is converted into the NFKD unicode normal form, which decomposes ac-
cented letters into the letter followed by the combining accent. Capital letters are further
decomposed into an uppercase marker followed by the corresponding lowercase letter.

Various rare characters that seem largely equivalent are mapped together; for exam-
ple the en-dash (“—") and em-dash (“—") are rare and appear to be used interchangeably
in practice so these are mapped together.

For the Greek text, all Latin characters are mapped to a single token (the letter s) on
the basis that foreign quotations and references appear too rarely for their content to be
valuable and an attempt to model them would be wasteful, but the tendency to use them
might be a useful signal. Following similar logic, all digits in all languages are mapped
to 7. Runs of whitespace are collapsed into a single space.

At the end of this processing, any character with a frequency lower than 1 in 10,000
is discarded. Any characters occurring in a text but not in the resultant alphabet are
ignored—there is no “unknown” token. Alphabet sizes are 45 for English, 47 for Dutch,
and 51 for Greek.

Runs of more than 5 identical characters are truncated at 5. This is mainly aimed at
the Latin stretches in Greek text, where the exact word length is probably not a useful
signal.

3.2 Eliminating low document frequency words

There are always going to be character level patterns in text that are more indicative of
topic or genre than authorial style. Genre is to ostensibly controlled in the PAN corpora,
but topic is not. A content-agnostic language model trained on a text containing topic-
specific words will expect those words to appear frequently.

For example, this is the entirety of a text used in the Dutch review training problems:

Ik heb de Blackberry 9790 Bold nu sinds vijf dagen, en ik
ben zeer tevreden over deze telefoon. Ik was op zoek naar
een telefoon zonder te veel poespas en onzinnige applicaties,
maar die wil snel en gemakkelijk werkt. Het menu werkt snel en
instinctief. Als ik iets wil veranderen, heb ik het zo gevonden.
Tijdens vergaderingen gebruik ik soms de luidspreker; dat werkt
perfect. Ik heb overigens verschillende recensies gelezen over
een slechte batterij, maar mijn blackberry houdt het wel de
hele dag vol. Volgens mij hebben andere smartphones veelal
dezelfde problemen.



The word blackberry doesn’t occur anywhere else in the corpus, yet it accounts for
about 3.5% of this text. A naively trained language model could be forgiven for assuming
that a propensity to write blackberry is a trademark of this author, which is unlikely
in reality.

To counter this for some runs words that occur in only a very few documents (in-
cluding in the controls) are replaced by a rare word token (arbitrarily, the degree sign °).
The following quote is the above review modified according to the rules described with
the words occuring in fewer than 1 percent of documents replaced with ° tokens:

ik heb de ° 7777 '° nu sinds vijf dagen, en ik ben zeer
tevreden over deze telefoon. 'ik was op zoek naar een telefoon
zonder te veel ° en ° °, maar die wil snel en gemakkelijk werkt.
lhet menu werkt snel en °. 'als ik iets wil veranderen, heb ik
het zo gevonden. !tijdens vergaderingen gebruik ik soms de °;
dat werkt perfect. ik heb overigens verschillende ° gelezen
over een slechte batterij, maar mijn ° houdt het wel de hele
dag vol. 'volgens mij hebben andere smartphones ° dezelfde
problemen.

While this clearly removes some topic specific words (Blackberry, Bold, appli-
caties, luidspreker), it also mangles some possibly useful and seemingly ordinary
words and phrases (poespas en onzinnige, veelal).? It is difficult to ascertain
whether this is of net benefit on the small training set, or indeed what the threshold
should be. For each language an ensemble of five models was used; for two of these
the document frequency threshold was used. There are around 300 documents for each
language (see next section) so the lowest effective threshold is in the order of 0.005,
corresponding to the word occurring in a single document.

It would likely be of benefit to take part-of-speech information into account when
discarding words, but that would complicate things and involve tagging software that is
not unavailable for all languages.

3.3 MHRNN set up

Although in both the training and test sets there are six independent problems for each
language, there is (at least in the training set) overlap between the sets with some texts
being in multiple problems. As a result, although the training problem sizes sum to 390,
471, and 330 texts for English, Dutch, and Greek respectively, there are only 201, 278,
and 189 individual texts, also respectively. Numbers for the tests sets are unknown.

All the documents from all the problems in each language were combined into a
single model, along with 80 “control” texts selected at random from the 2013, 2014,
and 2015 PAN training corpora. That means that in the training set for the Greek model
there were 269 (i.e. 189 problem texts + 80 control) softmax groups; for the Dutch 358,
and for the English 281.

Calculating all the problems at once is beneficial in a number of ways. The more
text that the model as a whole sees, the better it can model the target language. More
text allows the hidden layer to be larger, giving it more subtlety. Treating each problem

21 do not speak Dutch and can only guess at the value of these words.



individually with a larger portion of control texts (e.g. 250 control texts per problem)
would possibly work, at great computational cost. On the other hand, the presence of
the other problems may be beneficial as they teach the model more about the genres in
question. Many of the control texts in English (for example) are excerpts from bad 19th
century novels, which differ significantly from the PAN2016 problem texts.

3.4 Interpreting the results

The cross-entropy of each sub-model running against each text is collected in a matrix.
For every problem the relevant sub-set of the matrix (i.e. problem texts evaluated by
problem models) is gathered up. Because some texts are inherently more difficult to
model than others, the problem matrix is adjusted by subtracting the mean score given to
each text by the control models. This gives the problem matrix a mean of approximately
Zero.

The control models were used for this (rather than the models of the problem itself, or
those of other problems) because between them the problems share authors across many
texts. Using these models to normalise scores might skew the matrix if a few authors
dominate. On the other hand, some of the control texts are known to possess peculiar
styles while others could well be by the same authors as the the problem texts (given
that they are from previous competitions and PAN draws corpora from limited pools).
No attempt was made to find out.
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Fig. 2. Extracting normalised relative entropies for a problem (in this case, problem002 in the
training set). The control models are used to normalise the text scores. Darker colours mean more
affinity; the diagonal shows that each model is good at modelling the text it was trained on. Sub-
figure b has been made symmetric and positive (see text).

The matrix is then added to its own transpose for symmetry and made positive and
monotonically increasing by exponentiation. That is given the normalised matrix M is
converted thus M’ = eM+M" The top triangle of M’ is scaled to the range 01 for the
MAP scores. This simple strategy seems to work reasonably well for MAP scores.



3.5 Optimising F(BCubed): the cowardly approach

By definition, the F(BCubed) metric must be above 0.5 when all documents are placed
in their own individual clusters of size one (because this makes the precision of each
document 1, while recall is at worst 1 /N when all documents belong to the same cluster).
On the other hand, placing all documents in a single big cluster will in result in an F-
score less than 0.5 in the fypical case.® This reflects that the fully disconnected solution
states only the a-priori truth that each document is in a cluster with itself, and F(BCubed)
rewards the restraint of that claim.

Therefore, given no other information, the optimal strategy is predict N fully dis-
connected clusters of size 1. It only makes sense to depart from this strategy when the
underlying detection is strong. In this paper, the fully disconnected solution is called the
cowardly strategy, and the rest of this section is devoted to detecting ways in which it
might be bettered.

Figure 3 shows the problem.

F(BCubed) vs link threshold for training F(BCubed) vs link threshold for training
problem 002 (English, 50 documents). problem 018 (Greek, 55 documents).
\. A,
o ; fully disconnected o8] £ T mmmmm e

s «— fully connected =

T 2 3 a 5 08 10 12 14 16 18 2.0 22 2.4

Fig. 3. The x axis is the threshold at which to link two texts, using simple agglomerative clustering.
The y axis is the resultant F(BCubed) score. In the bottom left, all the documents are in one cluster
and all the links are redundant. The flat line at the top right corresponds to the diagonal of the
affinity matrix: these are the thresholds at which documents would link to themselves. In between
is a large cliff. Sometimes there is a little hill at the top of the cliff. The task is to climb the hill
without falling off the cliff. It is completely dark. You don’t know where the cliff is, or whether
there is a hill. Where there is no hill (as with problem002), you are better off sticking to the right.
That is the cowardly strategy which this paper struggles to better. The exact values on both axes
are largely irrelevant.

3.6 Optimising F(BCubed): the cluster-aware approach

3 Typical not only in the sense of a randomly sampled partition, but more importantly this is
empirically true for all the training set problems.



One problem with the simple agglomera-

tive approach is that the a link between two D

documents can cluster together a large num- A o \
ber of other documents that might otherwise \ * E
seem unrelated. This is equivalent to single- B*

linkage in the metric clustering case. Figure 4

attempts to illustrate the problem. As clusters /

get big, the probability of a single link lead-

ing to cataclysmic super-cluster grows, caus- C

ing the cliff in Figure 3.

A modified agglomerative approach was  Fig. 4. Linking B to D seems attractive, but
developed where each link’s score is adjusted it implicitly forms the links A — D, A — E,
to the mean of all the links in the cluster it B — E,C — D, and C — E; and the quality
forms. This approach, which appeared to give of those links needs to be taken into account.
better results, is not described here because it With the cluster-aware approach, the link is

was mistakenly not used in the PAN evalua- scored with the mean of all the links in the
tion. resulting cluster.

3.7 Optimising F(BCubed): the accidental small-cluster steep cliff approach

Due to a foolish programming error, the cluster-aware strategy was replaced by an algo-
rithm was used that effectively punished any link that joined more than two documents
together. That is, the documents were all made to partner up before any of them could
consider larger clusters.

Although this error seems drastic, the algorithm turns out to have some nice features.
Figure 5 shows the modified F(BCubed) curves for the same examples as Figure 3. The
cliff is steeper and the hill, where there is one, is broader and flatter (though lower).
This makes aiming at better-than-cowardly easier using the simple heuristic described
in the next section. Results on the training set using the same heuristic and the intended
algorithm (as in Section 3.6) are in aggregate very similar to those obtained with this
accidental method, though the variance is larger. The intended algorithm appears to
make higher scores achievable in a narrower band of thresholds; outside the band the
scores are worse.

3.8 Optimising F(BCubed): the clusteriness heuristic

The aim of these clustering explorations is to find a method that beats the cowardly
strategy. This appears achievable by using the simple heuristic of finding anchor points
in the F(BCubed) landscape, as shown in Figure 5, and choosing a point between them
according to a fixed ratio. The exact ratio was chosen per language and genre based on
a terrible mixture of greed and fear. In the end a slightly risky coefficient was chosen as
the underlying detection seems quite sound (reflected in significantly better than random
MAP scores on the training set), and if sticking to the cowardly baseline is the best
strategy it is almost certainly going to result in a tie. Thus safety is discarded in pursuit
of a win.



F(BCubed) and number of clusters vs modified F(BCubed) and number of clusters vs modified
link threshold for training problem 002 link threshold for training problem 018
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Fig. 5. The x axis is the threshold at which to link two texts, using an odd algorithm that prefers
documents to form monogamous pairs rather than large clusters. F(BCubed) is shown with blue
x, and the number of clusters is shown with red +, and has been scaled to fit the same y axis (so
1 means N clusters, 1/N means 1 cluster). The number of clusters is known to the clustering
algorithm while the F(BCubed) score is not. The algorithm uses the bottom of the “cluster cliff”
and the median of the diagonal values (that is, the love models have for their own documents) as
anchors, marked as grey dotted line. A threshold is chosen between these points using a predeter-
mined clusteriness coeflicient (in this case is 0.85), simply by reaching that far from the diagonal
anchor to the cliff anchor. Calling the clusteriness c, the cliff and diagonal anchors ¢. and ¢4, and
the final threshold ¢ yields ¢ = t4 — ¢ * (tq — t.). This clusteriness heuristic also works with the
simple agglomerative or cluster aware strategies, though the cliff is not so steep and the landscape
at the top is more exaggerated.



3.9 Optimising F(BCubed): example training set results

Lang/genre | problem MAP | coward best Ch diff | fixed cy diff
en articles | problem001 | 0.028 | 0.824 | 0.824 | 0.80 | 0.000 | 0.817 | 0.82 | -0.007
en articles | problem002 | 0.110 | 0.667 | 0.667 | 0.79 | 0.000 | 0.662 | 0.82 | -0.005
en articles | problem003 | 0.054 | 0.925 | 0.925 | 0.87 | 0.000 | 0.925 | 0.82 | 0.000
enreviews | problem(004 | 0.051 0.815 | 0.815 | 0.77 | 0.000 | 0.811 | 0.79 | -0.004
enreviews | problem005 | 0.018 | 0.933 | 0.933 | 0.83 | 0.000 | 0.933 | 0.79 | 0.000
en reviews | problem006 | 0.114 | 0.667 | 0.707 | 0.90 | 0.040 | 0.664 | 0.79 | -0.003
nl articles | problem007 | 0.407 | 0.944 | 0.955 | 0.91 | 0.011 | 0.944 | 0.81 | 0.000
nl articles | problem008 | 0.380 | 0.659 | 0.782 | 0.94 | 0.123 | 0.675 | 0.81 | 0.017
nl articles | problem009 | 0.128 | 0.825 | 0.845 | 0.86 | 0.020 | 0.833 | 0.81 | 0.008
nl reviews | problem010 | 0.122 | 0.701 | 0.726 | 0.77 | 0.025 | 0.723 | 0.77 | 0.021
nl reviews | problemO11 | 0.039 | 0.802 | 0.806 | 0.71 | 0.004 | 0.799 | 0.77 | -0.003
nl reviews | problem012 | 0.002 | 0.953 | 0.953 | 0.78 | 0.000 | 0.953 | 0.77 | 0.000
grarticles | problem013 | 0.282 | 0.675 | 0.742 | 0.95 | 0.068 | 0.675 | 0.85 | 0.000
grarticles | problem014 | 0.218 | 0.817 | 0.862 | 0.92 | 0.045 | 0.826 | 0.85 | 0.008
grarticles | problem015 | 0.236 | 0.932 | 0.939 | 0.87 | 0.007 | 0.939 | 0.85 | 0.007
grreviews | problem016 | 0.270 | 0.952 | 0.962 | 0.81 | 0.010 | 0.954 | 0.82 | 0.001
grreviews | problem017 | 0.462 | 0.675 | 0.817 | 0.88 | 0.142 | 0.735 | 0.82 | 0.061
grreviews | problem018 | 0.585 | 0.842 | 0.914 | 0.83 | 0.072 | 0.903 | 0.82 | 0.061

Table 1. Indicative MAP and F(BCubed) scores derived from one run on the training set. The cow-
ard column shows the F(BCubed) score for a fully disconnected solution where each document
is in its own cluster. The best column shows the maximum score obtainable using the techniques
described here, while the next column (c,) shows the clusteriness setting necessary to obtain that
score. The fixed column show the scores obtained by setting the clusteriness according to heuris-
tics based on language and genre, and the corresponding cy column shows that setting. The two
diff columns show the difference between the cowardly approach and the best and fixed scores
respectively; gains are highlighted.

Table 1 shows some results obtained on the training set. It shows that for most of the
English problems there is no chance of getting a better-than-cowardly result (using these
techniques), but for the other languages this is not only possible but is achieved using
the preset values. Those preset values were of course adjusted with full knowledge of
the training set.

3.10 Ensembles

Five nets were trained for each language, and the raw cross entropy matrices were summed
before subsequent processing. All the models were trained in a similar fashion, using
a form of adagrad optimisation, with somewhat haphazard variation in a few meta-



parameters. A summary of the meta-parameters is shown in Table 2.4
Whether this variation in meta-parameters (or indeed the use of ensembles at all)
actually helps was not thoroughly explored.

size PSN leak over-fit direction word DF

Dutch 299 05 oas 4 forward -
159 0.3 5% 2 forward -
139 03 % 4 reverse 0.005
99 05 oas 3 forward 0.01
139 0.3 ﬁ 5 reverse -
English 299 0.5 S 4 forward -
139 03 5 5 reverse -
239 1 3%\, 2 reverse 0.005
139 0.3 ﬁ 5 forward 0.01
159 0.5 ﬁ 2 forward -
Greek 299 0.3 ﬁ 3 forward 0.005
279 0.5 o 4 forward -
159 0.3 ﬁ 5 reverse -
159 1 T 3 forward 0.005
139 0.3 L 5 reverse -

N
2

Table 2. Meta-parameters that varied across training runs. size is the number of neurons in the
network’s hidden layer (for slight efficiency reasons, one less than a multiple of four is always
chosen). PSN is the standard deviation of Gaussian pre-synaptic noise added during training.
leak is the chance that each training example has of affecting a non-target softmax group in the
first epoch (subsequently it decays exponentially). Over-fit is the number of epochs that training
continues after the average cross-entropy against a validation text has started worsening. word
DF refers to the document frequency threshold for word inclusion; a dash means no words are
removed.

As the number of documents is much greater than typically found in the PAN2015
challenge, the hidden layers can be larger than seen in [2], resulting in hopefully more
accurate and nuanced modelling at the cost of training time.

In ordinary language modelling, the point is to achieve maximum accuracy, and to
this end a validation corpus is often used to avoid overfitting the model to the training
set. For this task a similar approach is used, though accuracy of the language model
itself is of course not the primary concern. It was found that a slightly overfit model
(vis-a-vis a validation text, averaged across all sub-models) seems to give better MAP
results. Hence the nets were trained until the validation entropy had been worsening for
a small number of epochs.

* Full meta-parameter details are defined in code at https://github.com/douglasbagnall/bog/tree/master/config;
there is little to be gained from an exhaustive summary.



For each language, two of the five models read the texts backwards, learning to pre-
dict the characters that lead to the current state. While reversed language models are no
better than forward ones on their own, they were included on the hypothesis that their
differing perspective should help the ensemble.

There were also two nets for each language with a word document frequency thresh-
old or 0.005 or 0.01. The arrangement of all the meta-parameters is essentially ad-hoc.

4 Results
Lang genre problem F(BCubed) R-BCubed P-BCubed MAP
en articles problem001 0.83333 0.71429 1 0.11628
problem002 0.66667 0.5 1 0.36283
problem003 0.95522 0.91429 1 0.040784
reviews problem004 0.84058 0.725 1 0.096951
problem005 0.94172 0.9 0.9875 0.028065
problem006 0.6825 0.525 0.975 0.10814
nl articles problem007 0.84121 0.74561 0.96491 0.26479
problem008 0.91896 0.87719 0.96491 0.05726
problem009 0.68543 0.52632 0.98246 0.18788
reviews problem010 0.9418 0.89 1 0.071431
problem011 0.67947 0.52 0.98 0.054028
problem012 0.82343 0.71 0.98 0.018187
ar articles problem013 0.84298 0.72857 1 0.24491
problem014 0.66667 0.5 1 0.28022
problem015 0.93939 0.88571 1 0.014714
reviews problem016 0.86022 0.82381 0.9 0.3739
problem017 0.89143 0.92857 0.85714 0.17308
problem018 0.79028 0.65952 0.98571 0.54633

Table 3. Results for this paper in the 2016 PAN Author Clustering evaluation. P-BCubed and
R-BCubed are the precision and recall constituent parts of the F(BCubed) score. MAP is mean
average precision.

Results are shown in Table 3. At the time of writing it is unknown how these results
compare to other approaches.

Where the P-BCubed column in Table 3 is 1, it is likely (but not certain) that the
software has settled on the cowardly strategy (Section 3.5). Where it is not 1, the software
has deviated from this strategy, whether successfully or not. There is cause for optimism
where the MAP scores are greater than 0.1 and the BCubed precision is not far below 1.
On the whole the software looks to have favoured valour over caution.



5 Discussion

The technique described seems to perform reasonably well on an intrinsically difficult
problem, but it is sadly difficult to be certain how it compares to other methods. Most
entries in the PAN competition appear to have suffered problems relating to their under-
standing of the scoring system, which may be hiding some successes at actually detecting
links between texts.

5.1 A zero-effort baseline

Lang genre problem MAP random MAP
en articles problem001 0.028 0.043
en articles problem002 0.110 0.132
en articles problem003 0.054 0.060
en reviews problem004 0.051 0.014
en reviews problem005 0.018 0.004
en reviews problem006 0.114 0.024
nl articles problem007 0.407 0.004
nl articles problem008 0.380 0.059
nl articles problem009 0.128 0.016
nl reviews problem010 0.122 0.017
nl reviews problem011 0.039 0.010
nl reviews problem(12 0.002 0.006
gr articles problem013 0.282 0.029
gr articles problem014 0.218 0.017
gr articles problem015 0.236 0.010
gr reviews problem016 0.270 0.029
er reviews problem017 0.462 0.065
er reviews problem018 0.585 0.103

Table 4. Comparing actual training set MAP scores from this paper with MAP scores from ran-
domly shuffied score matrices. The randomised values are from a single run; repetitions of the
experiment will give different results.

The PAN committee published a baseline result on an early-bird test set with an
F(BCubed) score of 0.6922, and a MAP of 0.000459. As has been well established, the
fully-disconnected cowardly strategy offers a hard-to-beat, easy-to-achieve baseline for
F(BCubed). For MAP a beatable but useful baseline might be a fully connected graph
with random link strengths. Randomly shuffling the link arrays gives results like the final
column in Table 4. The average of this column is 0.036 — two orders of magnitude better
than the “official” baseline. MAP rewards verbosity. Even if a method gives no ranking



of undesired links, it is better to assign them low random weights than to ignore them
altogether.

As explained at length in Section 3.5, a system that sticks to the a-priori truth that
each document is in a cluster with itself will obtain an F(BCubed) of around 0.8. Thus
it is easy to define a zero-effort baseline that randomizes links for MAP and uses the
cowardly strategy for F(BCubed). Unfortunately this baseline would have performed
quite well in competition. Many teams seem not to have grasped the fundamental biases
of the two scoring mechanisms, although their underlying solutions may be sound.

This suggests a weakness in F(BCubed)[1] for evaluating very difficult clustering
problems. Whereas from an informational point of view putting everything in a single
cluster might not seem very different from putting everything in separate clusters of
size one, F(BCubed) over-rewards the latter claim. It may be that there is no clustering
evaluation system that suits all problems.

MAP and F(BCubed) are evidently both quite tricky to code and reason about. It
might help in future competitions if some form of evaluation software was available so
that inexperienced coders could gain a better understanding of the task and their progress
in it.

5.2 Variations and run-time

A major drawback to this technique is the time it takes. As described in the paper it took
far longer than any other technique. An obvious way to speed up the process would be
to reduce the ensemble size to one (for a five-fold improvement). Reducing the number
of hidden neurons would further improve speed but reduce efficacy a small margin.

Going the other way, increasing the amount and quality of control text would increase
the system’s overall understanding of the language, and allow the number of hidden
nodes to be increased. This should lead to somewhat better results without fundamental
changes.
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