A Highly Literate Approach to Ontology
Building

Phillip Lord and Jennifer D. Warrender

School of Computing Science, Newcastle University, Newcastle-upon-Tyne, UK

Abstract. Ontologies present an attractive technology for describing
bio-medicine, because they can be shared, and have rich computational
properties. However, they lack the rich expressivity of English and fit
poorly with the current scientific “publish or perish” model. While, there
have been attempts to combine free text and ontologies, most of these
perform post-hoc annotation of text. In this paper, we introduce our new
environment which borrows from literate programming, to allow an au-
thor to co-develop both text and ontological description. We are currently
using this environment to document the Karyotype Ontology which al-
lows rich descriptions of the chromosomal complement in humans. We
explore some of the advantages and difficulties of this form of ontology
development.

1 Introduction

Ontologies have been used extensively to describe many parts of bio-medicine.
Ontologies have two key features which make their usage attractive. First, they
provide a mechanism for standardizing and sharing the terms used in descrip-
tions, making comparison easier and, secondly, they provide a computationally
amenable semantics to these descriptions, making it possible to draw conclusions
about the relationships between descriptions even when they share no terms in
common.

Despite these advantages, the oldest and most common form of description in
biology is free text. Free text has numerous advantages compared to ontologies:
it is richly expressive, is widely supported by tooling, and while the form of
language used in science (“Bad English” [16]) may not be easy to use, understand
or learn, it is widely taught and most scientists are familiar with it.

Between these two extremes of computable amenability, there are a full array
of different techniques. A “database” such as UniProt, for instance, appears to be
highly structured but also contains a large quantity of “annotation” that appears
to be free text; although, even this contains informal structure, which can be
found and analysed by text analysis [1]. We can set this against descriptions of
biological methods which appear in the form of a scientific paper. The two forms
of description have largely been used independently. Ontology terms are used
in semi-structured formats such as a UniProt record, or minimum information
documents, but in general, ontology terms and the free text are in different parts
of the record.

In this paper, we show how we can integrate ontological and textual knowl-
edge in a single authoring environment, and describe how we are applying this
to describing karyotypes.

2 Developing Knowledge

First, we ask the question, why is it difficult to relate ontological and textual
descriptions during authoring. One possible explanation is that the two forms
have very different “development environments”'. The main documentation en-
vironment used within science is Word, followed by ITEX, common in more
mathematical environments. More recently, there has also been interest in var-
ious light-weight markup languages, such as markdown. In the case of Word,
the development environment is a single tool which (effectively) defines the file
format, and the user interface that the author uses to interact with it; with
both ITEX and other markup languages, there is a tool chain in use, often with
several options at each step, meaning that different authors have (somewhat)
different environments.

Ontology development environments also come in many different forms. Early
versions of the Gene Ontology, for instance, used a bespoke text file format and a
text editor — an approach rather similar to the light-weight markup languages of
today. This had the significant advantage of a low-technological barrier to entry,
at least for authors, as well as easy integration with tools such as version control
systems which enabled collaborative working. It works poorly using XML native
formats like OWL (Ontology Web Language), however. More modern environ-
ments, such as Protégé and OBO-Edit provide a much more graphical interface.
These generally provide a much richer way of interacting with an ontology; au-
thors can see whole terms at once, using a variety of syntaxes and allow rapid
navigation through the class hierarchy, something which most ontology authors
do a lot [13].

While these environments add a lot of value, they do not necessarily integrate
well with text. Both Protégé and OBO-Edit have a class-centric view and are
biased toward showing the various logical entities in the ontology, as opposed
to the textual aspects. Indeed, this bias is shown even at the level of OWL. For
example, annotations on an entity (or rather an axiom) are a set rather than a
list, while ordering is generally considered to be essential for most documents.

While there have been many attempts to integrate textual and ontological
knowledge, these have mostly involved post-hoc annotation of ontological entities
using text analysis. A notable exception to this is the Ontology Word add-in
which uses text-analysis to suggest ontology terms that can be used to annotate
text at the point of authorship [2].

With this divergence of development environments, it seems hard to under-
stand how we could square the circle of combining text and ontology develop-
ment. Next, we describe the Karyotype Ontology and how the novel development
methodology we used for this ontology allows us to achieve this.

1 We lack a good term which covers word-processor, editor and IDE.

T

Doc.clinw

Doc.tex

|FoE (T - —
- m

T4

(a) The traditional workflow

__Te¢ | | [Code |

Doc.tex

: \
4 l
\

[[

I &1

(b) The lenticular workflow

Fig. 1: Two workflows for the creation of literate ontologies. In a) the ontology
is developed in an intermediate format (such as NoWeb), and the documenta-
tion and code-centric versions are generated. In b) both versions are developed
simultaneously as views.

3 The Karyotype Ontology

A karyotype describes the number of chromosomes and any alterations from the
normal. These are visible under the light microscope, and when stained have
a characteristic banding pattern which can be used to distinguish between dif-
ferent chromosomes and the positions on these chromosomes. In humans, these
alterations are described by their type, such as inversions, deletions or duplica-
tions and by their location, specified by a chromosome number and band num-
ber, following the ISCN specification. So, 46,XY,t(1;3) (p22;913.1) describes a
male with a translocation from chromosome 1p22 to chromosome 3q13.1. The
Karyotype Ontology is, effectively, an ontological implementation of this ISCN
specification for human karyotype nomenclature [10]2.

The Karyotype Ontology [15] was a challenging ontology to build because
it is large but highly repetitive. It provided the original motivation for and has
been developed with Tawny-OWL [8], our novel ontology environment which
provides a fully programmatic development. Tawny-OWL is implemented as a
Domain-Specific Language (or DSL) using the commodity Clojure language and
inherits its programmatic capabilities directly from there. Simple ontological

2 ISCN 2013 is now available

In \ko, each karyotype is modelled by explicitly
stating the base karyotype and any abnormality

events, using the |b/derivedFrom| and
|e/hasDirectEvent | relations respectively. For this
exemplar, the base karyotype is |k/46,XX|, as the

tumour originated from a female. In addition, we
model the 1| deletion abnormality using a

;; In \ko, each karyotype is modelled by explicitly

;; stating the base karyotype and any abnormality

;; events, using the |b/derivedFrom| and

;3 le/hasDirectEvent| relations respectively. For this
;; exemplar, the base karyotype is |k/46,XX|, as the
;; tumour originated from a female. In addition, we

;; model the |1| deletion abnormality using a

cardinality restriction and the [e/Deletion| and ;; cardinality restriction and the |e/Deletion| and
|h/HumanChromosome22| classes. |h/HumanChromosome22| classes.
;5 \begin{code}

\begin{code} H
(ss k (defclass k45_XX_-22

:label "The 45,XX,-22 karyotype"
icomment "A karyotype with monosomy 22."

- ISCNExampleKaryotype_subset
b/derivedFrom b/k46_XX)
1 e/hasDirectEvent
(owl-and e/Deletion
h/HumanChromosome22)))

h/HumanChromosome22)))

\end{code} ;5 \end{code}

(a) A document-centric view (b) The ontology-centric view

Fig. 2: Two lenticular views over an ontology source

statements can be written with a syntax inspired by OWL Manchester nota-
tion [3]; repetitive statements can be built automatically by writing functions
which encapsulate and abstract over the simpler statements, a process we call
“patternisation” [14]. Tawny-OWL can be used to generate any ontology and is
not specific to the Karyotype Ontology; the latter however is our most extreme
example of a patternised ontology with over 1000 classes using a single pattern.
Tawny-OWL thus fulfils the requirement for efficient population of an ontology,
something which tools like Protégé are lacking [12].

In addition to its programmatic capabilities, Tawny-OWL also allows the
user to take advantage of commodity Clojure development environments. For
instance, auto-complete, syntax highlighting, indentation and the REPL (Read-
Eval-Print-Loop, essentially a shell) all comes direct from Clojure. In this way,
we have managed to combine the advantages of text-based environments for
editing ontologies i.e. the use of a standard editing environment and integration
with version control, while maintaining (and in some ways surpassing) the power
of tools like Protégé.

We consider next the implications that this has for the ability to integrate
ontological and textual descriptions.

4 The Genesis of Literate Ontology

As Tawny-OWL is based on a full programming language, it supports a fea-
ture which at first seems quite inconsequential: comments. As with almost ev-
ery programming language, it is possible to add free, unstructured text to the
same source code that defines the ontology. While opinions vary on the role of
comments in programmatic code, perhaps the most extreme is that of literate
programming [4] which suggests that code should be usable both as a program
capable of execution and as a document capable of reading.

A key aspect of literate programming is that neither view should have pri-
macy, which separates it from much weaker systems such as, for example, JavaDoc,
where the documentation very much fits into the code. We call this form of devel-
opment code-centric. A more traditional approach uses tangling® — here a single
source document contains both ontological and document source is created. It is
then tangled to produce two forms of generated code which in turn compile into
the executable and documentation form (see Figure 1a). This form of editing is
used by a number of different systems, two of the most heavily used of which are
DocTeX which uses BTEX to document IATEX? or Sweave [5] which combines
BTEX and R [9], the statistical programming language.

Our early attempts at literate ontology development used this approach. We
tried embedding OWL into IATEX [7]. As an alternative, we also build a system
which allowed easy insertion of cross-references between a KTEX file and Manch-
ester OWL notation [6]. However, we found both to be highly-unusable. In one
sense, tangling achieves the task of putting the executable and documentable
sections of a code-base on an equal footing. However, in practice, there is a
problem; the programmer has to edit the untangled form. These days program-
mers are used to extremely rich development environments which must be fully
aware of the computational amenable nature of the source code to function. In
both cases, our early experiments allowed the use of a IATEX development envi-
ronment, but provided a very weak ontology development environment similar to
the early use of text editors. We call this form of development document-centric.
We found this form of document-centric development so unattractive that it has
been abandoned.

5 Literate Programming with Lenticular Views

The development of Tawny-OWL would make a tangling approach more viable,
but still we must choose: a document-centric approach would involve editing
Clojure source code without any IDE support (e.g. code evaluation, completion,
as well as indentation or syntax highlighting for the Clojure sections) while a
code-centric approach would lack support for BTEX editing (e.g. citation inser-
tion, cross-referencing as well as indentation or syntax-highlighting for the I TEX
sections).

Our latest solution attempts to square this circle. We provide a multi-view
approach to editing, which allows the author to see her source code in either a
document-centric or a code-centric view. We call this approach lenticular text,
named after lenticular printing which produces images which change depending
on your angle of viewing. This is an entirely novel approach to literate program-
ming, effectively performing the tangling operation for the author as they type.

3 The term “tangling” is not ours and is to our mind backward. However, it reflects
the idea that source code is for consumption by a programmer and that this form is,
therefore, untangled. The tangling process manipulates this clear form so that the
computer can read it

4 Which is genuinely as confusing as it sounds

A representation of the two views are shown in Figure 2. The two views, it should
be noted, contain the same text but are syntactically different, such that the
document-centric view is entirely valid ETEX code, while the ontology-centric
view is valid Tawny-OWL code.

We have now implemented lenticular text for the editor, Emacs®, in a package
called “lentic”%. We choose Emacs because it already provides a strong environ-
ment for editing both INTEX and Clojure” A key feature of this implementation is
that both views exist simultaneously in Emacs, and provide all the features of the
appropriate development environment; for example, “tab-completion” works in
both the document-centric view (completing XTEX macros) and in the ontology-
centric view (completing ontology identifiers). We can launch a compilation of
the document-centric view (producing a PDF), or evaluate our ontology, per-
haps reasoning over it, in the code-centric view. Therefore, we have achieved a
key aim of literate programming: neither view holds primacy and the author can
edit either. The overall workflow is shown in Figure 1b.

5

6 A Literate Karyotype

The ISCN which describes karyotypes is an informal specification, combined
with many descriptions of particular karyotypes. For example, here we quote
two examples from page 56, ISCN 2009. These examples help to define the
specification further.

— 45,X A karyotype with one X chromosome (Turner syndrome).
— 47,XYY A karyotype with one X chromosome and two Y chromosomes
(Klinefelter syndrome).

In the Karyotype Ontology, we have encoded many of these examples, partly
to test that our ontology is capable of representing the ISCN specification.
Through the use of lenticular text, we are able to annotate these descriptions
both with references to the original work in ISCN as well as implementation
notes, describing our representation. We are steadily converting the whole of the
Karyotype Ontology into literate form; as an example of how this process works,
we have included the output of part of the Karyotype Ontology at the end of
this paper (see Section A). In short, the karyotype ontology is becoming a fully
literate ontology.

7 Discussion

In this paper, we have described our methodology for integration of text and
ontological statements at authoring time, using lenticular text to enable literate

® https://www.gnu.org/software/emacs/

5 https://github.com/phillord/lentic

" It also relatively easy to extend, and has support for Manchester OWL Notation
added by one of us (PL).

ontology development. This is a significant advance over, for example, the Word
Ontology plug-in, which enables the use of ontology annotation at authoring
time. With lenticular text, we are not limited to annotation with existing terms;
we can define terms of arbitrary complexity, allowing us to post-coordinate our
definitions [11].

The combination of Tawny-OWL and lenticular text is an extremely rich
environment. We are aware, however, that it is a specialist environment. To
develop a literate ontology the author needs: to use Tawny-OWL, program in
Clojure, a Clojure development environment, write documents in I4TEX, and use
lentic package which is Emacs-based. In reality, though, the tools described here
are not tightly coupled. In particular:

— Clojure programming is only needed to extend Tawny-OWL.

— Clojure is not tied to Emacs; there are other, well-supported environments.

— Currently, lenticular text is novel and only implemented by the Emacs lentic
package but it could be implemented in other environments®

— It is possible to edit a literate ontology without using lenticular views, effec-
tively replicating the traditional tangling workflow (see Figure 1a)".

— Neither lenticular text nor the lentic package is specific to BTEX or Tawny-
OWL 10,

— Both lenticular text and the lentic package are useful for general purpose
programming and are not ontology specific!!.

— Other embedded DSLs for OWL exist, such as ScCOWL!'? and OWLJS!3.

While, we accept that the adoption of all the tooling described in the paper
maybe be relevant to very few developers, the use of parts of it have much more
widespread utility. It is, of course, unlikely to overtake Word as the main tool for
scientific authoring, it does have the potential to fulfil a distinct niche as Sweave
has done for statisticians.

We have, however, hit some problems with this process. We would like to
have developed the Karyotype Ontology alongside the text from ISCN, so that
the justification for each of the statements we have made would be clear. Unfor-
tunately, the ISCN is published under a non-permissive licence which prevents
the production of this sort of derived work. It is not even possible to hyperlink
through to the relevant sections of ISCN, as it is released only on paper. The

8 The first simple, version of lentic was around 1k loc, so this is not challenging to
implement. Later versions are larger, as making the implementation efficient and
scalable is somewhat harder.

9 We actually use Lentic and Emacs in “batch” for this purpose, but an independent
tool could be implemented very easily

10 Currently, lentic supports various combinations of Emacs- Lisp, Haskell or Clojure,
with asciidoc, org-mode or ITEX.

11 Lentic is self-documenting using Emacs-Lisp and org-mode, and Tawny-OWL is
being converted. We also have entirely non-ontological users

12 https://github. com/phenoscape/scowl

3 https://github.com/cmungall/owljs

irony of our attempt to use Semantic Web technology on a resource that has not
even reached the web has not escaped our notice.

Likewise, our use of ITEX integrates poorly with the web. While it is possi-
ble to turn IXTEX source into HTML, it is not straight-forward. Lentic supports
other formats which are more suitable for this purpose (org-mode and asciidoc)
although they are formats aimed a programmers and have, for example, com-
paratively weaker support for literate referencing. We also currently have little
support for cross-referencing between the forms — so referring to ontology terms
in text, for example, or sections in the documentation from within ontology
rdfs:comment annotations. We believe that these extensions are entirely achiev-
able in future.

Still, there are many other potential biomedical uses'* for this form of tech-
nology, beyond karyotype descriptions. We are currently also investigating clin-
ical guidelines which describe treatment plans — fortunately in the UK, these
are published with a permissive license. In these cases, the knowledge being re-
produced is such high value and expensive to produce that the costs imposed
by adding semantics in a specialist environment are probably worthwhile. With
Tawny-OWL and lentic, we now have tools available which allow us to achieve
this goal.

Acknowledgements

This work was supported by Newcastle University.

References

1. Bell, M.J.: Provenance, Propagation and Quality of Biological Annotation. Ph.D.
thesis, Newcastle University (2014)

2. Fink, J.L., Fernicola, P., Chandran, R., Parastatidis, S., Wade, A., Naim, O., Quinn,
G.B., Bourne, P.E.: Word add-in for ontology recognition: semantic enrichment of
scientific literature. BMC Bioinformatics 11(1), 103 (2010), http://dx.doi.org/
10.1186/1471-2105-11-103

3. Horridge, M., Patel-Schneider, P.F.: Owl 2 web ontology language manch-
ester syntax (second edition). Tech. rep. (2012), http://www.w3.org/TR/
owl2-manchester-syntax/

4. Knuth, D.E.: Literate programming. The Computer Journal 27, 97-111 (1984)

5. Leisch, F.: Sweave: Dynamic generation of statistical reports using literate data
analysis. In: Hardle, W., Ronz, B. (eds.) Compstat 2002 — Proceedings in Com-
putational Statistics. pp. 575-580. Physica Verlag, Heidelberg (2002), http://wuw.
stat.uni-muenchen.de/~leisch/Sweave, iSBN 3-7908-1517-9

6. Lord, P.: Literate omn. http://www.russet.org.uk/blog/1213 (2009), \url{http:
//www.russet.org.uk/blog/1213}

7. Lord, P.: Literate owl (well on blogs). http://www.russet.org.uk/blog/1204
(2009), http://www.russet.org.uk/blog/1204

As well as outside biomedicine: perhaps inenvitably, we have also used it to describe
pizza.

8. Lord, P.: The Semantic Web takes Wing: Programming Ontologies with Tawny-
OWL. http://arxiv.org/abs/1303.0213 (2013), http://arxiv.org/abs/1303.
0213

9. R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2014), http://www.R-project.
org

10. Shaffer, L., Slovak, M., Campbell, L. (eds.): ISCN 2009: An International Sys-
tem for Human Cytogenetic Nomenclature (2009). Karger (2009), http://books.
google.co.uk/books?id=z0yNPgAACAAJ

11. Stevens, R., Sattler, U.: Post-coordination: Making things up as you
go along. http://ontogenesis.knowledgeblog.org/1305 (2013), http:
//ontogenesis.knowledgeblog.org/1305

12. Vigo, M., Bail, S., Jay, C., Stevens, R.: Overcoming the pitfalls of ontology author-
ing: Strategies and implications for tool design. International Journal of Human-
Computer Studies 72(12), 835-845 (Dec 2014), http://dx.doi.org/10.1016/j.
ijhcs.2014.07.005

13. Vigo, M., Jay, C., Stevens, R.: Protege4us: harvesting ontology authoring data with
protege. In: The Semantic Web: ESWC 2014 Satellite Events, pp. 86-99. Springer
(2014)

14. Warrender, J.D., Lord, P.: A pattern-driven approach to biomedical ontology en-
gineering. SWAT4LS 2013 (2013)

15. Warrender, J.D., Lord, P.: The Karyotype Ontology: a computational representa-
tion for human cytogenetic patterns. Bio-Ontologies 2013 (2013)

16. Wood, A., Flowerdew, J., Peacock, M.: International scientific english: The lan-
guage of research scientists around the world. Research Perspectives on En-
glish for Academic Purposes pp. 71-83 (2001), http://dx.doi.org/10.1017/
CB09781139524766.008

A Appendix: What is an ISCN String?

This section! provides a lenticular review of how ISCN Strings are defined by
the specification and are modelled using The Karyotype Ontology, by focusing
on a subset of exemplars defined in the ISCN.

;; Define namespace
(ns "{:doc "Defining example karyotypes from the ISCN2013."
rauthor "Jennifer Warrender"}
ncl.karyotype.iscnexamples_subset
(:use [tawny.owl])
(:require [ncl.karyotype
[karyotype :as k]
[human :as h]
[events :as el
[base :as bl]))

;; Define ontology

(defontology iscnexamples_subset
tiri
"http://www.purl.org/captau/karyotype/iscnexamples_subset"
:prefix "iexs:"
:comment "Subset of the ISCN Example Karyotypes ontology
for Human Karyotype Ontology, written using the Tanwy_O0WL
library.")

;3 Import all karyotype axioms
(owl-import k/karyotype)

;; Create a new subclass of Karyotype
(defclass ISCNExampleKaryotype_subset
:super k/Karyotype)

In The Karyotype Ontology “normal” karyotypes for each ploidy level are
modelled in the base ontology; thus we import all associated axioms into the
current ontology.

(owl-import b/base)

However, not all karyotypes are normal; they can include a variety of ab-
normalities. There are two types of abnormality. Numerical abnormalities are
abnormalities that affect the number of chromosomes present in the karyotype,
either by gaining or losing whole chromosomes. Structural abnormalities are ab-
normalities that involve only parts of the chromosomes?.

In order to model karyotypes, we need concepts in the ontology that model

the human chromosomes and the numerical abnormality events. These are mod-

! This section is a demonstration of the output from our lenticular representation of
karyotypes. It should not be considered to be a formal part of the paper.
2 For simplicity, structural abnormalities will not be discussed at this time.

elled in the human and events ontologies respectively; thus we import all axioms
from both.

(owl-import e/events)
(owl-import h/human)

In the ISCN, numerical abnormalities are represented in the ISCN String
using symbols and abbreviated terms. For numerical abnormalities, the symbol
- is used to represent the loss of chromosomes while + represents the gain of
chromosomes.

For example, the karyotype of a female individual that has lost one chromo-
some 22 (and no other abnormalities) is represented as k45,XX,-22 [1, p. 57]; this
results in 45 chromosomes and monosomy (one copy of) chromosome 22.

In The Karyotype Ontology, each karyotype is modelled by explicitly stat-
ing the base karyotype and any abnormality events, using the b/derivedFrom
and e/hasDirectEvent relations respectively. For this exemplar, the base kary-
otype is k/46,XX, as the tumour originated from a female. In addition, we model
the 1 deletion abnormality using a cardinality restriction and the e/Deletion
and h/HumanChromosome22 classes. However due to the programmatic nature of
Tawny-OWL, we can implement parameterised patterns [14], thus simplifying
the deletion abnormality definition to one line of code, using the e/deletion
pattern.

(defclass k45_XX_-22
:label "The 45,XX,-22 karyotype"
:comment "A karyotype with monosomy 22."
:super ISCNExampleKaryotype_subset
(owl-some b/derivedFrom b/k46_XX)
(e/deletion 1 h/HumanChromosome22))

Similarly, the karyotype of a tumour from a female individual that has lost
one chromosome X (and no other abnormalities) is represented as k45,X,-X [1,
p. 56]. In The Karyotype Ontology, this karyotype is modelled with the base
karyotype b/46,XX and 1 deletion event that involves h/HumanChromosomeX.

(defclass k45_X_-X
:label "The 45,X,-X karyotype"
:comment "A tumor karyotype in a female with loss of one X
chromosome."
:super ISCNExampleKaryotype_subset
(owl-some b/derivedFrom b/k46_XX)
(e/deletion 1 h/HumanChromosomeX))

However, the classification of abnormalities is not so simple; an abnormal-
ity can be also classified as either a constitutional or acquired abnormality®.
A constitutional abnormality, also known as an in-born abnormality, is an ab-
normality that is present in (almost) all cells of an individual and exists at the
earliest stages of embryogenesis, while an acquired abnormality is an abnormality
that develops in somatic cells [2].

3 All previous exemplars define acquired abnormalities.

Generally, constitutional abnormalities are indicated using the suffix c. For
example the ISCN String 46,XY,+21c,-21 [1, p. 58] represents the karyotype of
tumour cells taken from a male individual, that had a constitutional trisomy 21
and has acquired disomy 21. Using this representation we see that karyotypes
with constitutional abnormalities explicitly define two types of canonicalisation;
one of the individual and the other for the cell line they have given rise to.

In The Karyotype Ontology, constitutional abnormalities are also modelled
explicitly using the e/hasDirectEvent relation. However unlike acquired abnor-
malities, constitutional abnormalities are modelled as a nested restriction in
conjunction with the base karyotype. In this exemplar:

— the base karyotype is b/46,XY (as the karyotype originates from a male indi-
vidual).

— the 1 constitutional abnormality is a gain of one chromosome 21. The asso-
ciated parameterised pattern for gain is e/addition.

— the 1 acquired abnormality is a loss of one chromosome 21.

(defclass k46_XY_+21c_-21
:label "The 46,XY,+21c,-21 karyotype"
:comment "Acquired loss of one chromosome 21 in a patient
with Down syndrome."
:super ISCNExampleKaryotype_subset
;;aka 47 ,XY,+21
(owl-some b/derivedFrom
(owl-and
(owl-some b/derivedFrom b/k46_XY)
(e/addition 1 h/HumanChromosome21)))
(e/deletion 1 h/HumanChromosome21))

However, constitutional sex chromosome numerical abnormalities are more
complex still. Instead of using the + and - symbols to indicate numerical abnor-
malities, these constitutional sex chromosome abnormalities are included in the
initial ISCN String sex description. For example, the karyotype for an individ-
ual born with Tuners Syndrome (and no other abnormalities) is represented as
45,X [1, p. 56]: a female individual that has 45 chromosomes and monosomy X
(only one X chromosome)?.

(defclass k45_X

:label "The 45,X karyotype"

:comment "A karyotype with one X chromosome (Turner

syndrome) . "

:super ISCNExampleKaryotype_subset

(owl-some b/derivedFrom
(owl-and
(owl-some b/derivedFrom b/k46_XN)
(e/deletion 1 h/HumanSexChromosome))))

4 Note that the definition is very similar to 45,X,-X.

With the c suffix, acquired chromosome abnormalities in individuals with
a constitutional sex chromosome abnormality can easily be distinguished. For
example the ISCN String 46,Xc,+21 [1, p. 57] represents tumour cells taken from
a female individual with Tuners Syndrome; a constitutional monosomy X and
an acquired trisomy 21.

(defclass k46_Xc_+21
:label "The 46 ,Xc,+21 karyotype"
:comment "Tumor cells with an acquired extra chromosome 21
in a patient with Turner syndrome."
:super ISCNExampleKaryotype_subset
;;aka 45,X
(owl-some b/derivedFrom
(owl-and
(owl-some b/derivedFrom b/k46_XN)
(e/deletion 1 h/HumanSexChromosome)))
(e/addition 1 h/HumanChromosome21))

;; Implement disjoint axioms
(as-disjoint k45_XX_-22 k45_X_-X
k46_XY_+21c_-21 k45_X k46_Xc_+21)

Now that we defined a few exemplar karyotypes, we discuss the definition of
sex.

A.1 Defining Sex

While building this ontology, we found that sex is not as intuitive as it seems.
The obvious definition for sex was that a “male” karyotype should be defined as
a karyotype with a Y chromosome, while a “female” karyotype as one without.
However further investigation showed that these definitions are, in fact, too
simplistic as the karyotype 45,X,-Y°, has no Y chromosome, yet would generally
be considered to be a “male” karyotype.

Therefore, the finalised definition for sex, as shown below considers the his-
tory of the karyotype by asserting a derivedFrom relation®. Using these defini-
tions, the 45,X,-Y karyotype can be correctly stated as being a “male” karyotype.

(defclass MaleKaryotype
requivalent
(owl-or
b/k46_XY
(owl-some b/derivedFrom b/k46_XY)))

(defclass FemaleKaryotype
equivalent
(owl-or

® A male-derived cell line which has lost its Y chromosome.
5 Due to the transitive property of b/derivedFrom, we can also determine the sex of
karyotypes that contain constitutional abnormalities.

b/k46_XX
(owl-some b/derivedFrom b/k46_XX)))

However these definitions are unable to ontologically categorise the 45,X kary-
otype as either female or male though it would generally be considered a “female”
karyotype. There is no correct answer to this problem. We could either redefine
our female karyotype to include the 45,X karyotype or add phenotypic sex. This
decision needs to be taken by the domain experts themselves.

References

1. L. Shaffer, M.-J. J., and S. M., editors. ISCN 2013: An International System for
Human Cytogenetic Nomenclature (2013). Karger, 2012.
2. M. M. Wintrobe and J. P. Greer. Wintrobe’s clinical hematology. 1, 2009.

