
Modeling Spatial Aspects of
Safety-Critical Systems with FocusST

Maria Spichkova1, Jan Olaf Blech1, Peter Herrmann2, and Heinz Schmidt1

1 RMIT University, Melbourne, Australia
{maria.spichkova, janolaf.blech, heinz.schmidt}@rmit.edu.au

2 Norwegian University of Science and Technology (NTNU), Trondheim, Norway
herrmann@item.ntnu.no

Abstract. This paper presents an approach for modeling and verifi-
cation of components controlling behaviour of safety-critical systems in
their physical environment. In particular, we introduce the modeling lan-
guage FocusST that is centred on specifying time and space aspects. Ver-
ifications can be carried out using the interactive semi-automatic proof
assistant Isabelle. The approach is exemplified by means of a railway
system scenario.

1 Introduction

Many safety-critical systems (SCSs) consist of mobile units autonomously mov-
ing in their physical environment. Modeling such systems requires not only the
definition of the software part but also a specification of interactions with the
physical environment. In consequence, the models need to capture timing and
spatial aspects that should provide a basis for formal verification of safety prop-
erties. In most cases, however, we do not need the whole representation of an
SCS but only those parts relevant to a concrete purpose. Thus, an appropriate
model should give an overview of core system properties and allow an effective
inconsistencies funding, reducing modeling and verification effort.

For modeling SCSs suitably, it is essential to have a well developed theory cov-
ering real-time and space requirements since mistreating or excluding them can
lead to specification errors due to difficulties of choosing a correct abstraction.
Moreover, in many cases reasoning about time to represent a real-time system
makes the specification more readable (in comparison to an untimed representa-
tion), simplifies the argumentation about its properties, and gives a formal basis
for verification. A suitable representation of SCSs should also make it possible
to model information flow not only in time but also in space, because the spatial
aspect may influence the delays of interactions between subcomponents of the
system as well as between the system and the environment. This point is im-
portant for cost reduction of interoperability testing at the integration phase of
the development process. Further, for a versatile application of a notation, the
selection of a suitable space-time coordinate system should be relatively free.

The modeling language that we use in our approach is FocusST . It allows
us to create concise but easily understandable specifications and is appropriate

for application of the specification and proof methodology presented in [19, 25].
This methodology allows writing specifications in a way that carrying out proofs
is quite simple and scalable to practical problems. In particular, a specification
of an SCS can be translated to a Higher-Order Logic and verified by the inter-
active semi-automatic theorem prover Isabelle [17] also applying its component
Sledgehammer [4]. Sledgehammer employs resolution based first-order automatic
theorem provers (ATPs) and satisfiability modulo theories (SMT) solvers to dis-
charge goals arising in interactive proofs. Another advantage is a well-developed
theory of composition as well as the representation of processes within a sys-
tem [20]. The collection of FocusSToperators over timing aspects and their
properties specified and verified using the theorem prover Isabelle is presented
in the Archive of Formal Proofs [21]. In this work we focus on modeling of spatial
aspects.

Related Work: One of the most well-established models for the specification and
verification of real-time system design is timed automata, introduced by Alur
and Dill [1, 2]. A timed automaton is a finite automaton extended by real valued
clocks that are applied to measure the time elapsed since certain events occurred.
The clocks are used in so-called clock invariants that restrict the time, a timed
automaton may rest in a particular state without executing certain transitions.
Timed automata assume perfect continuity of clocks which may not suit the
purposes of the work presented here, especially if we deal with an embedded
system with instantaneous reaction times. Furthermore, they do not prevent
Zeno runs [12], i.e., executing an infinite number of transitions in a finite period
of time. To solve this, the idea of robust model checking was introduced by
Puri [18] and revised in other approaches, e.g., [8]. In this paper, we suggest
another solution: We use asynchronous channels between timed automata and
argue about possibly infinite message sequences towards an automaton at some
time interval. This can be represented by using an infinite sequence of finite
time intervals as input for a timed automaton. Any timed transition system
can be discretised without loss of generality [14]. For this reason, we apply a
discrete model of time where any granularity defining the concrete meaning of
a time interval according to the system requirements can be used. We can even
switch from one time granularity to another using predefined operators. A great
advantage of the proceeding is that it excludes Zeno runs.

Related work regarding spatial aspects has been done with respect to logic
and tools. A process algebra like formalism for describing and reasoning about
spatial behavior has been introduced in [10, 11]. Process algebras come with a
clear and formal semantics definition and are aimed towards the specification of
highly parallel systems. Here, disjoint logical spaces are represented in terms of
expressions by bracketing structures and carry or exchange concurrent processes.
Results on spatial interpretations can be found in [15]. Many aspects of spatial
logic are in general undecidable. A quantifier-free rational fragment of ambient
logic (corresponding to regular language constraints), however, has been shown
to be decidable in [26]. Work on spatial model checking by ourselves is pre-
sented in [6, 7]. Furthermore, this approach was coupled with the model-based

y

x

tr1

RTrack

AVehicle1 AVehicle2 AVehicle3

50

0 25 60 100 120

90

tr2 tr3 tr4 tr5 tr6

5

Fig. 1. Automatic transport system

engineering technique Reactive Blocks [16] such that reactive systems (e.g., SCS
controllers) can be developed using models and be checked for spatial properties
before generating executable code [13].

Scenario: Due to the well specified degrees of freedom enforced by rail tracks,
trains have been a popular target for verification work (see, e.g., [3]). This makes
them also an appropriate target to introduce the main idea of modeling and
verification of spatial aspects. Here, we present a small example from this area
that is depicted in Fig. 1. A train RTrack shuttles on a rail track that is crossed
by three roads. On each road, an autonomous vehicle AVehicle is operating. All
four mobile units are characterized by a number of constraints on their location,
speed, movement direction, etc. To avoid collisions, the train sends a wait signal
to the respective AVehicle while passing one of the corresponding critical points
tri close to the crossings (1 ≤ i ≤ 6). If a critical point is ahead of a crossing in
the direction of the train, the wait signal expresses a time interval, for which the
AVehicle has to stop if it is heading towards the crossing and is far enough to
stop in due time. The time interval may depend on the speed of the train giving
it sufficient time to pass the crossing. If a critical point is behind a crossing, wait
contains value 0 indicating that the vehicle may immediately continue moving.
The fact that an AVehicle is only stopped for a certain time interval at most,
provides a challenge on the space-related behavior since we have to guarantee
that the train already left the crossing when the time interval passed. This poses
the following questions: How should we model spatial properties of this system in
a readable way? Does this modeling technique allow formal verification of safety
properties? Is this model also appropriate to specify and verify a large number of
components, e.g., for the case that we have not three but one thousand AVehicle
components? In this paper we will answer these questions by presenting our
modeling approach in FocusST .

2 Spatial Aspects in FocusST

The FocusST language was inspired by Focus [9], a framework for formal speci-
fication and development of interactive systems. In both languages, specifications
are based on the notion of streams. However, in the original Focus input and
output streams of a component are mappings of natural numbers N to single
messages,whereas a FocusST stream is a mapping from N to lists of messages
within the corresponding time intervals. Moreover, the syntax of FocusST is
particularly devoted to specify spatial (S) and timing (T) aspects in a compre-
hensible fashion, which is the reason to extend the name of the language by ST .
The FocusST specification layout also differs from the original one: it is based
on human factor analysis within formal methods [22, 23].

We specify every component using assumption-guarantee-structured tem-
plates. This helps avoiding the omission of unnecessary assumptions about the
system’s environment since a specified component is required to fulfil the guar-
antee only if its environment behaves in accordance with the assumption. In a
component model, one often has transitions with local variables that are not
changed. Also, outputs are often not produced, e.g., when a component gets
no input or some preconditions necessary to produce a nonempty output are
violated. In many formal languages this kind of invariability has to be defined
explicitly in order to avoid underspecified component specifications. To make our
formal language better understandable for programmers, we use in FocusST so-
called implicit else-case constructs. That means, if a variable is not listed in the
guarantee part of a transition, it implicitly keeps its current value. An output
stream not mentioned in a transition will be empty. Further, we do not require
to introduce auxiliary variables explicitly: The data type of a not introduced
variable is universally quantified in the specification such that it can be used
with any data value.

The FocusST specifications are a special form of timed automata that we
name Timed State Transition Diagrams (TSTDs). A TSTD can be described in
both diagram and textual form. For easier argumentation, we can further repre-
sent it by a special kind of tables including a number of new operators that work
on time intervals. For a real-time system S with a syntactic interface (IS �OS),
where IS and OS are sets of timed input and output streams respectively, a
TSTD corresponds to a tuple (State, state0, IS ,OS ,→), in which State is a set
of states, state0 ∈ State is the initial state, and → ⊆ (State × IS × State ×OS)
represents the transition function of the TSTD.

An input action for a TSTD is the set of current time intervals of the input
streams of the system, while the output action is the set of corresponding time
intervals of the output streams of the system. Focus distinguishes between weak
causal systems and strong causal systems (see [9]). In the former case, the output
must be produced within the same time interval the input is consumed while in
the latter one the output has to be produced within a delay of at least one time
unit. The exact delay needs to be defined according to the timing requirements
on the specified system.

Spatial Aspects: In addition to the representation of timing properties in the
language, we define a special type of components specifying real objects that can
physically change their location in space, so-called sp-objects. Each sp-object is
associated with three special variables storing its current location (i.e., central
point of the object), speed and direction of movement. For simplicity, the variable
speed is defined over the set of natural numbers N, while location is of type
Space and defines a coordinate having two or tree dimensions according to the
system’s needs. In our two-dimensional example, Space is a tuple of two Cartesian
coordinates xx and yy . Finally, direction is defined over the type Directions
= {0, . . . , 359} which represents the angle in the Cartesian coordinate system.
In comparison to the local variables declared within components, these three
variables are global and can be used to specify physical interaction of components
in a system.

A system model may be constrained by restricting the directions and speed
of an sp-object. This allows us to verify whether the specified behaviour ex-
cludes the possibility that the object enters restricted areas during time intervals
marked as dangerous, e.g., collisions with other sp-objects.

FocusST specification: Figure 2 depicts the textual representation of the sp-
object specification pattern for the component AVehicle introduced in the sce-
nario section of the introduction. This component is strong causal with a delay
of one time unit, and has the three input channels wait and tSpeed of type N as
well as tDir of type Directions declared in the interface part of the specification
using label “in”. The ports tSpeed and tDir are used to notify changes of the
target speed and the target direction of the object. If AVehicle is too close to
a potential obstacle, e.g., the crossing with RTrack, it is signalled via the wait
port to stop for a number of time units. Thereafter it continues moving with the
previous speed. Label “out” defines the output channel resp of type Event that
consists a single element event used to signal the start of motion by the vehicle.

Let us name some of the operators used to specify time intervals in our
streams: 〈〉 denotes an empty list, i.e., a single time interval without any events,
and 〈x 〉 a list consisting of the element x ; ft.l describes the first element of a list
l ; s i represents the ith time interval of the stream s.

Empty brackets after the component’s name mean that AVehicle does not
have any parameters. The component uses the local variable timer referring to
the current timer value (the special value 0 means that the timer is not active
while 1 indicates that it has to time out). By lspeed , we store the speed the
object carried before needing to stop. The variable timer is initially set to be 0
while the initial value of lspeed is not specified.

The keyword “asm” lists the assumption, AVehicle demands from its envi-
ronment, i.e., specified using the FocusSToperator msg1, at most one message
is received via each of the ports wait , tSpeed and tDir at any time interval.

The section “gar” contains the transitions and other formulas. Here, variable
settings before executing (i.e. at some time interval t) a transition are marked
by simple variable identifiers, e.g., timer , while the operator ′ refers to their
setting afterwards, e.g., timer ′ denotes the value of the timer variable at the time

spObject AVehicle ()

in wait, tSpeed : N, tDir : Directions

out resp : Event

local timer , lspeed ∈ N
init timer = 0

asm msg1(wait) ∧ msg1(tSpeed) ∧ msg1(tDir)

gar

Init1 resp0 = 〈〉

∀ t ∈ N :

1 wait t = 〈〉 ∧ timer = 0 →
Upd(speed, tspeed t) ∧ Upd(direction, tDir t) ∧ Move()
. . .

3 wait t 6= 〈〉 ∧ ft.wait t > 0 ∧ timer = 0 → timer ′ = ft.wait t ∧ lspeed = speed ∧ speed′ = 0
. . .

7 wait t = 〈0〉 ∧ timer 6= 0 → respt+1 = 〈event〉 ∧ timer ′ = 0 ∧ speed′ = lspeed

Fig. 2. Textual representation of specification pattern AVehicle

interval t+1. The initial condition Init1 specifies that the output channel resp is

empty at the beginning. Formula 1 models a transition that if AVehicle does not
receive a wait-signal at the time interval t and its timer is inactive, the component
moves according its target direction and speed values. This is expressed by the
function Move() that updates the value of the variable location. The function
Upd defines the updates of the variables speed and direction according to the
events in the input streams tSpeed and tDir at time interval t . Moreover, due to
the implicit else-case construct discussed above, the timer does not change its
value and the output stream resp is an empty list. Formula 3 specifies the start
of the timer if RTrack approaches the crossing. In this case, AVehicle receives a
number k > 0 via the port wait . The timer is started by setting its variable to
k while the vehicle is stopped (speed ′ = 0) and the previous speed is stored in
the auxiliary variable lspeed . Transition 7 specifies that if AVehicle receives 0
via the port wait (i.e., it does not need to wait for the RTrack any more) while
its timer is active, the timer will be set off and, at the next time interval, the
event-signal will be sent indicating that the vehicle resumes moving again into
its target direction. We omit here the rest of the specification due to lack of
space.

Fig. 3 shows the diagrammatic version of the TSTD for AVehicle. It contains
all transitions that we label with the same numbers as in the textual representa-
tion. To increase readability of the graphical representation, we distinguish three
types of the transition labels by coloured representation: Inputs and constraints
on the current local variables’ values are marked blue, outputs and changes of

timerOff timerOn

waitt = <k>, k > 0
timer' = k
lspeed' = speed, speed' = 0

timer = 0
resp0 = <>

1

2

7

3

4

5

6

timer = 0, waitt = <>
tSpeedt = x, tDirt = y
timer' = 0
Upd(speed, x), Upd(direction,y), Move()

timer > 1, waitt = <>
timer--

timer = 1, waitt = <>
respt+1 = <event>, timer' = 0
speed' = lspeed

waitt = <0>
tSpeedt = x, tDirt = y
respt+1 = <event>, timer' = 0
Upd(speed,x), Upd(direction,y)
Move()

waitt = <k>, k > 0
timer' = k

waitt = <0>
respt+1 = <event>, timer' = 0
speed' = lspeed

Init1

Fig. 3. Timed State Transition Diagram for AVehicle

general (non-spatial) local variables’ values green, and changes of spacial aspects
black.

3 Verification Constraints on Spatial Aspects

We can restrict directions and speed of an sp-object by adding constraints. Pred-
icates are associated with every component. Per default, they are specified as
true but can be restricted to represent precise bounds of a component. To cal-
culate whether a collision of sp-objects is possible, we assign to each sp-object
a global constant rad that describes radius of the maximal space the object can
“cover” in the worst case. The maximal space the object can occupy at the time
t , is denoted by the variable rzone of the type Zone. This variable is defined as
a tuple (minX ,minY ,maxX ,maxY) of natural numbers which are calculated
according to the values of speed , location and rad . The rad value of a composite
component is defined by analysing which space its subcomponents can occupy
in the worst case: S .rad = max (WCX ,WCY)/2 with WCX and WCY being
the maximum extensions of all of the subcomponents of S in direction x resp. y .

We represent the set of all the components’ constraints by a table, to in-
crease readability and to check schematically whether constraints on a composed
component correspond to the constraints on its subcomponents, e.g.,

∀S , C : C ∈ subcomp(S)→
(S .rzone.minX ≤ S .C .rzone.minX ∧ S .rzone.minY ≤ S .C .rzone.minY) ∧
(S .rzone.maxX ≥ S .C .rzone.maxX ∧ S .rzone.maxY ≥ S .C .rzone.maxY)

∀ k , S ,C : C ∈ subcomp(S)→
(k ≤ S .rzone.minX → (k + S .C .rad) ≤ S .C .location.xx)

To analyse spatial properties, we need to specify the rules how the locations
of the objects can change over time. The location of the sp-object C at the

Table 1. Set of the spatial constraints

Component rad locationRestr speedRestr directionRestr

AVehicle1 2 location.xx = 25 speed < 10 direction = 90 ∨ direction = 270

AVehicle2 2 location.xx = 60 speed < 15 direction = 90 ∨ direction = 270

AVehicle3 2 location.xx = 100 speed < 20 direction = 90 ∨ direction = 270

RTrack 4 location.yy = 50 direction = 0 ∨ direction = 180

beginning of the next time interval can be computed from its speed, direction
of movement and the current location. In particular, we specify a trajectory of
the object during a time interval t to be a straight line, thus, it can be de-
scribed by the coordinates of two locations, at the beginning of the current and
the next time interval: C .tr = [C .location,C .location ′]. Then, we can describe
the space where the object C can be during the time interval t (let denote it
C .rzoneInterval) by a set of coordinates:

{(a, b) | ∃(a1, b1) ∈ C .tr∧a1−C .rad ≤ a ≤ a1+C .rad∧b1−C .rad ≤ b ≤ b1+C .rad}

If C .speed = 0 holds, the component C does not move (i.e., C .location ′ =
C .location) such that C .rzoneInterval describes the rzone space in this case.

Restrictions on location, speed and direction can be specified both point-
wise and by using minimum and maximum limits, where a variable can have
any value within the defined interval. Let us explain this by using the scenario
introduced in Sect. 1. Its spatial contraints are listed in Tab. 1. It is easy to
see from this table and Fig. 1 that the four mobile units can occupy 100 units
on the x coordinate and 85 units on the y coordinate. Thus, S .rad is assigned
with the value 50. By defining an additional constraint for the space that can be
used by the overall example system S , we implicitly restrict the corresponding
constraints of its components, e.g.,

0 ≤ S .rzone.minX ∧ S .rzone.maxX ≤ 120 ∧
5 ≤ S .rzone.minY ∧ S .rzone.maxY ≤ 90

implies that for the component AVehicle1 holds not only location.xx = 25 but
also 7 ≤ location.yy ≤ 88 (taking its own value rad = 2 into account). Repre-
senting the spatial aspect of a component as a pair of coordinates and a radius,
we specify possible collisions between two objects C1 and C2 during the time
interval t by PCollisiont(C1,C2). Thus, an important property for this system
is that collisions between the RTrack and AVehicle components are excluded,
i.e. for all t ∈ N and i , j ∈ {1, 2, 3} the following holds

¬PCollisiont(RTrack ,AVehiclei) ∧ ¬PCollisiont(AVehiclei ,AVehiclej)

Since in our example, the AVehicle objects move on parallel roads, the property
on the right side holds trivially. If a possible collision is detected, the corre-
sponding case should be analysed carefully both on an abstract (logical) and

on a physical level: Due to our overapproximation of space, not every situation
labelled as possibly dangerous on the abstract level indeed corresponds to a
real physical collision but, on the other side, any real physical collision must be
detectable on the abstract level.

We have used the interactive theorem prover Isabelle/HOL [17] to analyse
whether collisions between the RTrack and AVehicle components are excluded.
For example, direction and location constraints together with behaviour specifi-
cations imply that the mobile units can collide, if we underspecify the coordinates
of the critical points tr1, . . . , tr6 as well as the initial locations.

Due to similarity of specifications of separate components, the model of the
presented system is scalable not only for specification but also for verification
purposes. Even if we have not three but thousand AVehicle components, proofs
of their spatial behavioural properties can be reused or generated.

4 Conclusions

This paper presents the FocusST approach for modeling and verification of
safety-critical systems using specifications based on time intervals and spatial
aspects. Several features have been demonstrated using an example system based
on interacting autonomous vehicles. We focus on timing and spatial aspects as
well as readability of the specifications and ease of verification of core properties.
For the proofs, we have applied the interactive semi-automatic proof assistant
Isabelle.

Our future research direction comprises work on the modeling levels for SCSs,
that reflect the idea of remote integration/interoperability testing in a virtual
environment [5, 24] as well as automatisation of proof generation for spatial be-
havioural properties from the system model. Moreover, we want to combine
this verification technique with the modeled-based engineering tool Reactive
Blocks [16] to facilitate the practical development of the control software for
space-aware SCSs.

References

1. R. Alur and D. L. Dill. A Theory of Timed Automata. Theoretical Computer
Science, 126:183–235, 1994.

2. R. Alur and P. Madhusudan. Decision Problems for Timed Automata: A Survey.
In SFM, pp. 1–24, 2004.

3. P. Behm, P. Benoit, A. Faivre, and J.-M. Meynadier. Météor: A Successful Ap-
plication of B in a Large Project. Formal Methods (FM’99), vol. 1708 of LNCS,
Springer, 1999.

4. J. C. Blanchette, S. Böhme, and L. C. Paulson. Extending Sledgehammer with
SMT Solvers. Journal of Automated Reasoning 51(1):109–128, 2013

5. J. O. Blech, M. Spichkova, I. Peake, H. Schmidt. Cyber-Virtual Systems: Simu-
lation, Validation & Visualization. In 9th International Conference on Evaluation
of Novel Approaches to Software Engineering (ENASE 2014), 2014.

6. J. O. Blech and H. Schmidt. BeSpaceD: Towards a Tool Framework and Method-
ology for the Specification and Verification of Spatial Behavior of Distributed Soft-
ware Component Systems. In arXiv.org, http://arxiv.org/abs/1404.3537, 2014.

7. J. O. Blech and H. Schmidt. Towards Modeling and Checking the Spatial and
Interaction Behavior of Widely Distributed Systems. In Improving Systems and
Software Engineering Conference, 2013.

8. P. Bouyer, N. Markey, and O. Sankur. Robust Model-checking of Timed Automata
via Pumping in Channel Machines. Formal Modeling and Analysis of Timed Sys-
tems, Springer, 2011.

9. M. Broy and K. Stølen. Specification and Development of Interactive Systems:
Focus on Streams, Interfaces, and Refinement. Springer, 2001.

10. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Information
and Computation, 186(2), 2003.

11. L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Theoretical
Computer Science, 322(3):517-565, 2004.

12. R. Gómez and H. Bowman. Efficient Detection of Zeno Runs in Timed Automata.
Formal Modeling and Analysis of Timed Systems, Springer, 2007.

13. F. Han, J. O. Blech, P. Herrmann, and H. Schmidt. Towards Verifying Safety
Properties of Real-Time Probability Systems. In Formal Engineering approaches
to Software Components and Architectures (FESCA), EPTCS, 2014.

14. T. Henzinger, Z. Manna, and A. Pnueli. What Good are Digital Clocks? In Colloq.
on Automata, Languages and Programming, pp. 545–558. Springer, 1992.

15. D. Hirschkoff, É. Lozes, D. Sangiorgi. Minimality Results for the Spatial Logics.
In Foundations of Software Technology and Theoretical Computer Science, LNCS
2914, Springer, 2003.

16. F. A. Kraemer, V. Sl̊atten and P. Herrmann. Tool Support for the Rapid Compo-
sition, Analysis and Implementation of Reactive Services. Journal of Systems and
Software, 82(12):2068–2080, 2009.

17. T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL — A Proof Assistant for
Higher-Order Logic. LNCS 2283, Springer, 2002.

18. A. Puri. Dynamical Properties of Timed Automata. Discrete Event Dynamic
Systems, 10(1-2):87–113, 2000.

19. M. Spichkova. Specification and Seamless Verification of Embedded Real-Time Sys-
tems: FOCUS on Isabelle. PhD thesis, TU München, 2007.

20. M. Spichkova. Focus on Processes. Tech. Report TUM-I1115, TU München, 2011.
21. M. Spichkova. Stream Processing Components: Isabelle/HOL Formalisation and

Case Studies. In Archive of Formal Proofs, ISSN 2150-914x, 2013.
22. M. Spichkova. Human Factors of Formal Methods. In IADIS Interfaces and Human

Computer Interaction (IHCI). 2012.
23. M. Spichkova. Design of Formal Languages and Interfaces: “Formal” Does Not

Mean “Unreadable”. Emerging Research and Trends in Interactivity and the
Human-Computer Interface. IGI Global, 2013.

24. M. Spichkova, H. Schmidt, and I. Peake. From Abstract Modelling to Remote
Cyber-Physical Integration/Interoperability Testing. In Improving Systems and
Software Engineering Conference. 2013.

25. M. Spichkova, X. Zhu, and D. Mou. Do We Really Need to Write Documentation for
a System? In International Conference on Model-Driven Engineering and Software
Development, 2013.

26. S. Dal Zilio, D. Lugiez, and C. Meyssonnier. A Logic You Can Count on. In
Symposium on Principles of programming languages, ACM, 2004.

