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1 Introduction 

In today's world, computing problems are becoming more and more applicable in real 
life. Some problems arise from the real problem of production requirements of sci-
ence, etc.  

The challenge of creating a real-life computational equivalent of the human mind 
requires that we had better understand at a computational level how natural intelligent 
systems develop their cognitive and learning functions. The narrow focus of science 
on this challenge brings together four schools of thought:  
1. Computational neuroscience, that tries to understand how the brain works in terms 

of connectionist models;  
2. Cognitive modeling, pursuing higher-level computational description of human 

cognition;  
3. Human-level artificial intelligence, aiming at generally intelligent artifacts that can 

replace humans at work; 
4. Human-like learners: artificial minds that can be understood by humans intui-

tively, that can learn like humans, from humans and for human needs.  
A solution to the problems of this type consists of several parts. The main parts are 

the tools and methodology. Tools provided at this time to address them varied. We 
consider the approach of cognitive modeling and cognitive architectures. 

Important part of cognitive architecture – solvers. For creating solvers, we use the 
constraint programming method.  

Let’s consider this method with its application area and specification. 
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1.1 Basic Сoncepts 

Constraint programming is a powerful method for solving combinatorial (optimiza-
tion) problems, which has proven effective and efficient in a wide range of applica-
tion areas. 

Constraint programming is an embedding of constraints in a host language. The 
first host languages used were logic programming languages, so the field was initially 
called constraint logic programming. The two paradigms share many important fea-
tures, like logical variables and backtracking. Today most Prolog (for example) im-
plementations include one or more libraries for constraint logic programming. 

The difference between the two is largely in their styles and approaches to model-
ing the world. Some problems are more natural (and thus, simpler) to write as logic 
programs, while some are more natural to write as constraint programs. 

The constraint programming approach is to search for a state of the world in which 
a large number of constraints are satisfied at the same time. A problem is typically 
stated as a state of the world containing a number of unknown variables. The con-
straint program searches for values for all the variables. 

Application areas. Many hard, real-world combinatorial problems lend them-
selves to modeling as constraint satisfaction or optimization problems. The Handbook 
of Constraint Programming (Rossi et al., 2006) lists example applications in the areas 
of scheduling and planning, vehicle routing, configuration, networks (such as power 
or pipeline networks), and bioinformatics. Further application areas include computa-
tional linguistics (for example Duchier, 1999), as well as verification (Yuan et al., 
2006) and optimization (van Beek and Wilken, 2001) of computer programs. 

Constraint Satisfaction Problems. A combinatorial problem is modeled as a set 
of variables, representing the objects the problem deals with, and a set of constraints, 
representing the relationships among the objects. Such a combinatorial problem is 
called a Constraint Satisfaction Problem (CSP). The common case where the vari-
ables can only take values from a finite universe is called a finite domain constraint 
satisfaction problem. A constraint programming system implements variables and 
constraints and provides a solution procedure for CSPs, which tries to find an assign-
ment to the variables that satisfies all of the constraints. Clearly, solving CSPs is NP-
hard in general, as the satisfiability of Boolean formulas (SAT) is one instance. 

As we use the constraint programming approach, solvers are called constraint 
solvers. 

Constraint solvers. The success of constraint programming as a field is due to the 
availability of effective and efficient solution procedures that can solve these practical 
problems. This paper concentrates on finite-domain constraint programming, imple-
mented in a propagation-based constraint solver, based on exhaustive search. This 
class of solvers has been successful because of its best-of-several worlds approach. 
They combine classic AI search methods with advanced implementation techniques 
from the Programming Languages community and efficient algorithms from Opera-
tions Research. Furthermore, the Constraint Programming community has identified 
global constraints as an important tool to make the structure of constraint problems 
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explicit and achieve strong propagation. Dedicated propagation algorithms for many 
different global constraints are available. 

We consider the variety of solvers, which are called propagation-based constraint 
solvers. 

Propagation-based constraint solving. At the heart of a propagation-based con-
straint solver, propagators realize the constraints of a CSP by pruning the variable 
domains. A propagator removes values from variable domains that cannot be part of 
any solution of its constraint. Propagators for particular constraints are usually im-
plemented as specialized algorithms. The constraint solver computes a fixed point of 
all propagators, maximizing the amount of inference they can contribute. It then splits 
the problem and solves the resulting smaller problems recursively. 

This process of inference is called constraint propagation. As the main inference 
method in constraint programming systems, constraint propagation infers that certain 
values cannot be part of certain variable domains any more because they violate some 
constraint. The entities that perform constraint propagation are called propagators. 

Constraint satisfaction problems are modeled with respect to a finite set of vari-

ables X and a finite set of values V. We typically write variables as Xzy,x,  , and 

refer to values as v, w V. 
For article example CSP, we choose the problem of scheduler generation. The 

atom of schedule system is one record of type {teacher, group, subject, room}. Let’s 
take this simple set for example. We will describe each part of article using this ex-
ample, specifying and describing a detail. 

1.2 Assignments and Сonstraints 

Constraint satisfaction problem solution should provide a unique correspondence 
between the values and the variables. A constraint restricts which assignments of 
values to variables are allowed. Next definition captures assignments and constraints.  

Definition 1 An assignment a is a function mapping variables to values. The set of 
all assignments is Asn := X → V. A constraint c is a set of assignments, cCon := P 
(Asn) = P (X → V) (we write P (S) for the power set of S). It corresponds to a relation 
over the variables in X. Any assignment a Є c is a solution of c. 

In basic works of Guido Tack [1], researchers base constraints on full assignments, 
defined for all variables in X. However, for typical constraints, only a subset vars(c) 
of the variables is significant; the constraint is the full relation for all xvars(c). 
More formally, a constraint c is the full relation for a variable x if and only: 

cx]a[vcaV,v  /: ,                                           (1) 

where a[v/x] is the assignment a′ where a′(x) = v and a′(y) = a(y) for all variables y ≠ 
x. 

Consequently, the significant variables of c can be defined as 
 cx]a[vcaV;v|Xx=s(c)  /::var                            (2) 

Constraints are either written as sets of assignments, or just stated as mathematical 
expressions with the usual meaning. We use the notation [[·]] when we want to stress 
that we mean the constraint; for example, we write [[x < y]] to denote the constraint 
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{a ∈ Asn a(x) < a(y)} . 
Using IMS we will define our constraints as a part of function that preceded the in-

sertion function, as we see later. It should done its work before insertion will, or re-
turn the forbiddance for insertion. Alternatively, like a part of insertion function, with 
one more conditional expression. 

1.3 Domains and Constraint Satisfaction Problems. Propagators 

Constraints represent one half of the Constraint Satisfaction Problem solutions. The 
other part is the initial set of values that each variable can take. For example in a Golf 
Club schedule, each variable must take a value from the set of golf-players. In our 
example, variables will take the value from the set of triples <Teacher, Group, Sub-
ject>. A mapping from variables to sets of possible values is a domain. Some popular 
domains for constraint programming are: 
  Boolean domains, where only true/false constraints apply (SAT problem) 
  Integer domains, rational domains 
  Linear domains, where only linear functions are described and analyzed (although 

approaches to non-linear problems do exist) 
  Finite domains, where constraints are defined over finite sets 
  Mixed domains, involving two or more of the above 

Finite domains are one of the most successful domains of constraint programming. 
In some areas (like operation research), constraint programming is often identified 
with constraint programming over finite domains. 

Definition 2 A domain d is a function mapping variables to sets of values, such 
that d(x)  V. The set of all domains is Dom: = X → P (V). The set of values in d for 
a particular variable x, d(x), is called the variable domain of x. A domain d represents 
a set of assignments, a constraint, defined as  

 d(x)a(x)Xx|Asna=con(d)  ::                                     (3) 

Said that an assignment con(d)a  is licensed by d. 

In our example, we can implement two types of domain realization. Each domain 
can be realized as a state of an agent, and be (or not) omitted by propagator during 
insertion, or other way – store all sets of domain in environment' state. 

Definition 3 A constraint satisfaction problem (CSP) is a pair <d, C> of a domain d 
and a set of constraints C. The constraints C are interpreted as a conjunction of all c Є 
C and are thus equivalent to the constraint caCc|Asna  : . The solutions of 

a CSP <d, C> are the assignments licensed by d that satisfy all constraints in C, 
defined as 

 caCc|con(d)a=>)Cd,sol(<  ::                                      ) 

2 Propagators 

The basis of a propagation-based constraint solver is a search procedure, which sys-
tematically enumerates the assignments licensed by the domain d of a CSP <d, C>. 
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For each assignment, the solver uses a decision procedure for each constraint to de-
termine whether the assignment is a solution of the CSP. Enumerating all assignments 
would be infeasible in practice, so in addition to the decision procedure, the solver 
employs a pruning procedure for each constraint, which may rule out assignments 
that are not solutions of the constraint. 

Two problems, decision, and pruning procedure for constraints implemented by 
propagators. Each propagator induces particular constraint. Propagator decides for a 
given assignment, whether it satisfies the induced constraint, and it can cut off (prune) 
these tasks from the domain that do not satisfy the constraint. Interleaving propaga-
tion and search yield sound and complete procedure for solving CSP. It is complete, 
because only the assignments that are not solutions are pruned by propagators, and all 
other assignments are in enum. This is sound, because for each of these tasks, the 
propagators to decide whether it's the definition of solution. The formal definition of 
propagators author (see [1]), reflects the minimum properties that are needed in order 
to get a sound and complete solver. Thus, this model differs from the one commonly 
found in the literature. Furthermore, knowledge of the unique characteristics of the 
propagators induced constraints is new. The authors define the propagators in terms 
domains.  

A propagator is a function p that takes a domain as its argument and returns a 
stronger domain, it may only prune assignments. If the original domain was an as-
signed domain {a}, the propagator either accepts it (p({a}) = {a}) or rejects it (p({a}) 
= 0), realizing the decision procedure for its constraint. In fact, each propagator in-
duces a unique constraint, the set of assignments that it accepts. To make this setup 
work, we need one additional restriction. The decision procedure and the pruning 
procedure must be consistent: if the decision procedure accepts an assignment, the 
pruning procedure must never remove this assignment from any domain—this prop-
erty is called soundness. 

Definition 4 A propagator is a function DomDomp  that is: 

 Contracting: dp(d)  for any domain d 

 Sound: for any domain Domd  and any assignment Asna , if  da  , then 

  p(d))ap(   

The set of all propagators is Prop. If a propagator p returns a strictly stronger do-
main d)(p(d) , we say that p prunes the domain d. The propagator p induces the 

constraint pc defined by the set of assignments accepted by p: 

    a=)ap(|Asna=cp :                                                 (5) 

Soundness expresses exactly that the decision and the pruning procedure realized 
by a propagator are consistent. A direct consequence is that a propagator never re-
moves assignments that satisfy its induced constraint. 

Focusing on our problem, we implement the idea of propagators in additional func-
tions that will proceed the domains (as agent state or environment state) before inser-
tion. Then after the insertion call other propagators to prune from their induced do-
main unnecessary values to decreasing with each step the search field. 
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For abstracting the solution of the problem we should give the definition and de-
scribing of propagation problem, as a higher model of solution of problems of given 
type. 

2.1 Propagation Problem 

Propagators were defined as a refinement of constraints – each propagator induces 
one particular constraint, but in addition has an operational meaning, its pruning pro-
cedure. It is possible to define the operational equivalent of a CSP, a propagation 
problem. Propagation problems realize all constraints of a CSP using propagators. 

Definition 5 A propagation problem (PP) is a pair <d, P> of a domain d and a set 
of propagators P. The induced constraint satisfaction problem of a propagation prob-
lem <d, P> is the CSP  >Pp|cd, p  . The solutions of a PP <d, P> are the solu-

tions of the induced CSP,  >)Pp|cd,sol(<=>)Pd,sol(< p : . 

The set of solutions of a PP d, P can be defined equivalently as 
    a=)ap(Pp|Asna=>)Pd,sol(< ::  , just applying the definitions of in-

duced constraints and solutions of CSPs. 
Solution of propagation problem make by using propagators, at each step of insert-

ing an agent into environment. For this, as we mentioned earlier, we will inspect by 
propagator each domain that is stored in the attributes of the agent. Before each inser-
tion, a domain stored in the attributes of the agent will checked by parameters gained 
while working. Let’s we look at insertion machine architecture 

 

Fig. 1. Insertion machine architecture 

The calculation of a insertion function can be tested for the ability to insert the 
propagator of the agent, which is inserted. If propagator exhausted domain that store 
in the agent, inserting step will rejected. 

Existence of strongest and weakest propagators. Propagators combine a deci-
sion procedure with a pruning procedure. While the decision procedure determines 
the constraint a propagator induces, there is some liberty in the definition of the prun-
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ing, as long as it is sound. Thus, there are different propagators for the same con-
straint, and they can be arranged in a partial order according to their strength: 

Definition 6 Let p1 and p2 be two propagators that induce the same constraint. 
Then p1 is stronger than p2 (written 21 pp  ) if and only if for all domains 

d, (d)p(d)p 21  . 

2.2 Propagation as a Transition System 

Propagation as a Transition System. A propagation-based solver interleaves con-
straint propagation and search, where constraint propagation means to prune the do-
main as much as possible using propagators, before search resorts to enumerating the 
assignments in the domain. Propagating as much as possible means, in the context of 
propagation problems, to compute a mutual fixed point of all propagators.  

Transitions. Let <d, P> be a propagation problem. If there is a propagator 
Pp that can prune the domain d, that is, if dp(d) , then applying p yields a new, 

simpler propagation problem, <p(d), P> . Soundness of p makes sure that the new 
problem has the same set of solutions as the original problem, 

>)Pp(d),sol(<=>)Pd,sol(< . 

A propagation problem thus induces a transition system, where a transition is pos-
sible from a domain d to a domain dd' if there is a propagator Pp  such that p(d) 

= d′ . Written such a transition  
d'p|d                                                                (6) 

Definition 7 Let d be a domain. A transition d'p|d   with a propagator p to a 

domain d′ is possible if and only if d′ = p(d) and dd' . The transition system of a 
propagation problem <d, P> consists of all the transitions that are possible with 
propagators Pp  , starting from d. A terminal domain, that is, a domain d such that 

there is no transition p(d)p|d   for any propagator Pp  , is called stable. 

Written d'd   if there is a sequence of transitions that transforms d into a stable 
domain d′. This sequence is empty, dd  , if d is stable. 

The transition system of a propagation problem is non-deterministic, as there are 
many possible chains of propagation that result in a stable domain. 

Fixed points. The important theorem that ensures that constraint propagation is 
useful in practice is that, given a propagation problem <d,P>, its transition system is 
finite and terminating. No matter in what order the propagators are applied, we reach 
a stable propagation problem after a finite number of steps. 

The naive approach to solving a propagation problem <d,P> is to generate all as-
signments da , and then use the propagators Pp  to check whether a satisfies all 

constraints. This approach makes use of the fact that propagators realize decision 
procedures for their induced constraints, but does not use their pruning capabilities. A 
solver that proceeds naively in this fashion is said to follow the generate-and-test 
approach. 
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3 Conclusion 

In conclusion, it can be said that the search for solutions by the generate-and-test 
approach is inefficient, so we will consider other options. Nevertheless, this option 
works well for prototyping, because of ease of implementation. In the future, we plan 
to create a working prototype of the university schedule, which plans to make a uni-
versal, independent of the input parameters, the types of activities and a list of les-
sons. The most effective solution to this problem now is supposed to use multi-layer 
environments, for pruning each of input domains by few environments and few 
propagators. 
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