Towards a Catalog of Non-Functional
Requirements for Model Transformations

Soroosh Nalchigar, Rick Salay, and Marsha Chechik

Department of Computer Science, University of Toronto
{soroosh,rsalay, chechik}@cs.toronto.edu

Abstract. Model transformations play an increasingly important role
in Model-Driven Engineering (MDE), and thus understanding desired
non-functional requirements of model transformations and being able to
determine how existing transformation languages stack up w.r.t. these
is also of interest. This paper is a first step towards producing a cata-
log that systematically captures the transformation community’s expe-
rience in developing transformations w.r.t. non-functional requirements.
We survey the literature to provide a list of non-functional requirements
of model transformations and find comparisons between three popular
model transformation languages (ATL, QVT-Relations and AGG) ac-
cording to these requirements.

1 Introduction

Model Driven Engineering (MDE) is a software engineering discipline in which
models are the primary artifacts and play a central role throughout the entire de-
velopment process [25,27]. Model transformations are the core MDE mechanism
for building software from design to code, and hence have a significant impact
on the software development process [8]. They are used for different reasons and
intents, e.g., to extract different views from a model (query), add or remove
detail (refinement or abstraction), generate code from model (synthesis) [1].

Since model transformations play a critical role in the MDE process, their
non-functional requirements (NFRs) are of great importance as well. Yet, exist-
ing research only addresses transformation NFRs indirectly. The NFRs that a
transformation language or tool should satisfy has been studied and these have
been proposed as a way of selecting a suitable language or tool [4,25,35]. An-
other line of research looks at the quality attributes and metrics for the model
transformation artifact itself (i.e., the code) with the aim of developing quality
assurance techniques for model transformations [3,27,41].

Since a transformation is a combination of artifact with a language, the char-
acteristics of a transformation are contributed to by the characteristics of both
the artifact and the language. Thus, these two lines of research must be combined
when considering the NFRs of transformations. We address this in the current
paper, making the following contributions. First, we normalize the findings from
both these lines of research to create a unified set of NFRs for transformations
reflecting the contributions of the artifact and language aspects. Next, we apply
these NFRs to compare three popular transformation languages (ATL, QVT-
Relations and AGG) based on evidence from the literature. We believe that this

paper is a first step towards producing a catalog that systematically captures
the transformation community’s experience in developing transformations w.r.t.
non-functional requirements.

The rest of this paper is structured as follows. Sec. 2 establishes a list of non-
functional requirements. Sec. 3 compares three existing model transformation
languages and examines how they contribute to non-functional requirements.
We summarize our results and discuss directions for future work in Sec. 4.

2 NFRs for Model Transformations

In this section, we build a list of non-functional requirements (NFRs) for model
transformations. Our methodology for doing so is by reviewing previous pub-
lished research on this topic and unifying the results. The list of papers we
reviewed was constructed by running Google Scholar using the keywords “model
transformation”, “quality”, “non-functional”, and “requirements”. Having the
results sorted by relevance, we examined the titles and abstracts, choosing pa-
pers that have proposed quality measures and NFRs of model transformations,
while excluding those dealing with transforming requirements in MDE since they
are out of the scope of our study. This resulted in 10 papers that we survey below.

Literature Review. Amstel et al. [3,41] proposed a set of eight quality at-
tributes for model transformation artifacts: understandability, modifiability, reusabil-
ity, reuse, modularity, completeness, consistency, and conciseness. The authors
also proposed a set of metrics for assessing them, comprised of size (e.g., the
number of functions), function (e.g., the number of equations and conditions per
function), module (e.g., number of library modules), and consistency (e.g., num-
ber of variables per type). Similar metrics have been proposed by Vignaga [42]
to assess the quality of ATL model transformations. Amrani et al. [1] presented a
catalog of model transformation intents and mentioned readability as a property
of model transformations. Syriani and Gray [37] proposed a categorization of
quality attributes for model transformations that included correctness, reusabil-
ity, efficiency, reliability, maintainability, and interoperability.

Mens and Gorp [25] differentiated between functional and quality require-
ments of model transformation languages and tools and proposed usability and
usefulness, verbosity, conciseness, scalability, extensibility, interoperability, ac-
ceptability and standardization as the main non-functional requirements. Mens
et al. [26] continued this line of research and examined how well graph transfor-
mation languages satisfy these quality requirements. Aziz [4] evaluated quality
of four model transformation technologies (ATL, IBM transformations, Acceleo,
and Java APIs) for model-to-model and model-to-text transformations in a case
study in Ericsson AB. His quality model included usability (comprised of under-
standability, learnability, and operability), maintainability (comprised of analyz-
ability and changeability), functionality (comprised of suitability and accuracy),
and scalability. Sendall and Kozaczynski [35] proposed a set of desirable charac-
teristics for a model transformation language including usability, ease of under-
standing, ease of modification, conciseness, acceptability, composition and reuse,

'sorpnjs snotaaad ur SY N UOIJRULIOJSULRI) [OPOW JO ATewing T o[qel],

Kyrunua
[ge ‘9z ‘qT] V/N|-woo 1esn oy £q pejdesoe ST [00) © YoIYMm 0} JueIxe oy | (DV) Angrqnidoooy
"9STL 09 JUSIDIJO pue SAINIUI 9 pue sosodind [eorjoeid (nN) ssou
[ge ‘9z ‘qT] V/N|oAles 01 o8en3ue] oy Jo A[iqe pue AN [ereusd oy |-jnfosy) puv fiyiqvsy)
k4% *SUOTYRULIOJSURI) [9POUL I9Y)O JO
‘1% ‘Ge ‘Lg ‘P) |s1red sesned UOIYRULIOJSURI) [9POUT & YOIYM 07 JUSIX0 O[T, -oSendue] oy} UIY)M SWSIURYDIOUW 9SNAI JO AY[ICR[IRAY (Tyg) 2snoy
*(osnoz
[T ‘TF|s1-s®) suoT)RULIOJSTRI) [OPOUT IO AC PISNAI 9 Ued UOTY
‘06 ‘ce ‘Lz ‘gl |-ewwrojsuer) ppowr ® (Jo jred ®) YDIYM 07 JULIXd OYT,| ‘oSengue] o) UIYIHIM SWISIURYDISW JsNal © Jo Lyqiqerreay| (XHAY) fin)rqosnay
“(A&yproeg 3990q0
‘spepout 10} sjeurioj j1odxe/jrodurt prep|ejd]N) JOIN Pue “TINN “TINX Se [ons spIepue)s juesd (LSs)
[L€°0z‘Gg] |-ue)s 09 suLIOJUOD J0RJI)IR UOIJRULIOJSURI) O} ISYIOYAA|-[01 [[e 0} Juer[durod ST {00} UOTJRULIOJSURIY o) IOTIOT A UOUDZIPIDPUDIS
‘(esodind umo sy1 sey
UOT)RULIOJSURI) [9POUT ® Ul [OPOW AI9AS) PAINIONI)S AT[eol
[c7‘T7 ‘LT €g] |-1emIa)sAs ST WOTYRULIOJSTURI) [9POTI ® YOIYM O JUDIXD Y, ‘Ayrempowt p1oddns 07 e8en8ue| o) Jjo Ayqiqe oy | (TAIN) firswmpopy
‘UOTJRULIOJSURI) JO sUOIjeOYIads
[ge ‘7] V/N|1ensia sopraoxd A3o[ouryoa) uorjeuriojsuel) oy OYPYMN| (IA) ©01D2DNSIA
“Aj1RUOI)OUN]
[¢¥ ‘TF|reuonyTppe I0 JuaIohTp apraoid oy pajdepe pue paSuetd aq
2646827 'p'g] |eo 10vJI1TR UOIJRULIOJSURI) [9POW © YOI M 0] JUS)Xd dY T, V/N|(ZOIN) freprqorfapoy
‘(s1egewrered uorjouny Aresso
-09UUN ‘SAUO[D 9POd ‘39 ‘uorjeuriojul snonjradns spnjout ‘o8en3
[17°‘cE ‘9z ‘cg] [10u s00p UOIjRULIOJSURI) [OPOUL B UOIYM O} JU9IXe OYJ,|-UR] UOIJRULIOJSURI) O} Ul IeSns 2110vjuds jo oouasqy| (QQ) §59uUas10U00)
“JoRJI)IR S) Ul SIONIIS *SIONIYSUOD J110RJUAS pasn AJjusnbaiy 10j o8ensd
[9Z‘gg] |[-uoo TeuonIppe IoYjo pue IeSNs OIJORIUAS JO JUNOUTY |-UR] UOIJRULIOJSURI} O} Ul IeSns OIj0RIUAS JO JUnowry (AA) finrsoquap
‘ssanoad
3ur100uISUo 01eM)JOS (USALIP-[OPOUT) O} UIYIIM POsn S[00)
[Le‘LT—cT] V/N |19T730 1M PayeISequr o¢ Ued [00) ST} YDTYM T[ITm osed oY T,| (NT) Arqviodosajug
"AjITeuor)ouny
[Lg—57] V/N|M0U [11M POPUSIXd 9q Ued [009 o) UITYM [IIM osed oY T,| (XH) f92)2qrsuaizsy
"oouew
-10j10d SUIOYLIORS JNOYIIM S[OPOW 9Iem)Jos Xo[dwoo pur
"9IMNOOXO 0] SOOINOSOI MOJ SOSTI puR A[HUSId|93Ie] JO SUOIJRULIOJSURI) 10 SUOIjRULIOJSURI) Xo[du10d pue (8d) finpeqopmog
[L€°9Z ‘G ‘P |-1go SYIom 10RJI)IR UOIJRULIOJSURI) B DI M O} JU9)X0 o T [031e] ym odod 0} [007 10 ofendue[oy} Jo AN[IQY|pup DUDULLOJLUD J
[cv 1% *9P0D UOI)RULIOJ ‘s1odo[oAdp AQ UIed] puR ‘OSn ‘purjSIOpuUN 0} ASed (NN)
‘Ge LT T e ‘1] |-suely [opoul pur)sIOpUN 0} PaIINbaI 1100 JO Junoure o T,(sT 95en3ur] UOIIRULIOJSURI) [9POUL ® [OIYM 09 U)X O[], fig171qvPUDISLOPUY)
juowaainbayy

$92.anog

UOIINQLIFU0D JOIINY

uornqriuod adensue]

[euOoI}oUNJ-UON]

and wvisual representation. Mohagheghi and Aagedal [27] presented comprehen-
sibility, modifiability, modularity, reusability, extensibility and interoperability as
quality goals in MDE.

Towards a List of Non-Functional Requirements. In order to combine the
NFRs and provide a single comprehensive list, we identified the equivalent at-
tributes from different works and unified them into a single attribute. For exam-
ple, modifiability from [3,27,41], changeability from [4], maintainability from [37],
and ease of modification from [35]) are considered to be a single attribute, called
modifiability in our list. Then, we removed completeness, consistency, correct-
ness, accuracy, and reliability because we believe these are functional rather than
NFRs (and can have boolean valuations).

Based on this review, Table 1 summarizes and defines a set of non-functional
requirements of model transformations (first column), lists the contributions of
the language and artifact aspects (second and third columns, respectively), and
cross-references them with the relevant citations (last column).

Obviously, the current list of NFRs could be extended by new items, identified
in future papers.

3 Application: NFRs of Three Model Transformation
Languages

In this section, we apply the NFRs from the list established in Sec. 2 to three pop-
ular model transformation languages: ATLAS Transformation Language (ATL) [19],
Attributed Graph Grammar (AGG) [38], and QVT-Relations [21,28]. In choos-
ing these languages for comparison, we considered factors such popularity of the
languages as well as the availability of previous studies involving their NFRs.

3.1 Transformation Languages

Figure 1 shows a part of a simple transformation of a class schema model to a
relational database model implemented in these languages.

ATL is a hybrid (mix of declarative and imperative constructs) model trans-
formation language developed as a part of the ATLAS Model Management Archi-
tecture (AMMA) platform. Figure 1(a) shows the header of the transformation
where the source and target models are declared. It also indicates a transforma-
tion rule that creates a table instance for each of the class instances.

AGG is a general development environment for attributed graph transfor-
mations, supporting the algebraic approach. Figure 1(b) shows part of the type
graph for a class diagram (the top) and a relational database model (the bot-
tom), as well as helper structures that hold the correspondences between the
elements of different type graphs (the middle).

QVT is the OMG standard language for specifying model transformations
and includes three sublanguages: QVT-Relations (surveyed here and referred
to as QVT-R), QVT-Operational and QVT-Core. Figure 1(c) shows a part of
the aforementioned transformation expressed in QVT-R. In this example, each
relation represents a mapping, whereas a domain declares a pattern and is bound
to a model (e.g., UML).

module Class2Relational; transformation umlRdbms (

create OUT : Class * uml : SimpleUML,
SimpleRelational String name rdbms : SimpleRDBMS) {
from IN : Boolaan is_persistent key Table (name, schema);
SimpleClass; - key Column (name, table);
rule Class2Table { T top relation ClassToTable {
from are domain uml c:Class {
c : Class!Class package = p:Package {},
to |_, isPersistent = true,
out : Relational!Table (name = cn
name <- c.name, CZT* }

col <- Sequence {key}->
union(c.attr->select(e

domain rdbms t:Table {

| not e.multiValued)), schema = s:Schema {},
key <- Set {key} tar name = cn,
), i-c cols = cl:Column {
key : Relational!Column (name=cn+_tid,
name <- ’objectId’, Table . type=NUMBER},
type <- thisModule. . pkey = cl
objectIdType String name 3
)
} }
(a) (b) (c)

Fig. 1. Part of a sample transformation: (a) in ATL [17]; (b) in AGG [39]; and (c) in
QVT-R [9].

3.2 Methodology

We reviewed the literature, searching for theoretical and user comments as well
as empirical studies that compared the three languages w.r.t. each of the NFRs.

For each NFR, existing papers usually provide pairwise relative rankings
rather than absolute valuations of the NFR. Thus, our rankings between lan-
guages should also be interpreted as relative. Note also that we did not perform
empirical studies ourselves, and our comparisons are only based on published
work, not on our own experience. Finally, we did not include usability / useful-
ness and acceptability into our comparisons because we specifically chose popular
languages which, by definition, score high on these characteristics.

Our results are summarized in Table 2. In this table, we use a qualitative
scale where three stars (* %) represent the best and one star (%) — the worst
performance w.r.t each quality attribute. Also, in the case of binary evaluations,
“true” is mapped to * * x and “false” — to x. We summarize the source of our
evidence using the letters A-D: A indicates an empirical experiment or a case
study; B — information coming from the language description; C' — a qualitative
description; and D — all other sources.

3.3 Results

In the rest of the section, we discuss and compare the languages. w.r.t. each of
the non-functional attributes.

Understandability: For this attribute, we looked for the relevant litera-
ture than has compared these languages w.r.t. the overall size of the model
transformation in terms of the number of lines of code and the transformation
complexity [41]. [14] reported that AGG is more compact than ATL w.r.t. the

Languages| UN PS EX IN VE CcO
ATL sk (A) [% k(A) % x x(B)|* % x(C)|* % x(A)| *(A)
QVT-R x(A) *x(A) | x* (B) [xxx(C)|x*x(C)| *(C)
AGG [xxx(A)] *(C) |*x(C)| *=(C) *(C) |xx*(C)
MOF VI MDL ST REY RE
ATL *(A) |k (B) [x(A)|* % x(B)|* * x(A) [+ * x(A)
QVT-R | #(D) | (B) |***(A)[**x(C)|* x x(C)|x x %(C)
AGG |xxx(D)[x*x(B)| *(B) [x*x*(B)| *(C) | *(C)
Table 2. Summary of comparison of languages with regarding to non-functional re-
quirements. See Table 1 for abbreviations.

amount of code that a programmer needs to write in order to make an ex-
ecutable solution. [30] reported that QVT-R transformations are larger than
ATL in terms of number of line of code and also have the larger complexity in
terms of the number of recursive calls. According to [4], ATL includes a mix of
imperative and declarative constructs; while it makes the language powerful and
compact, it decreases language understandability. Based on these comparisons,
we infer that AGG is better than ATL, and ATL is better than QVT-R w.r.t.
understandability (column UN in Table 2).

Performance and scalability: According to [2], the ATL language is gen-
erally faster than QVT-R: their experiment of increasing either the size of the
complexity of the input models yielded ATL running times to be more than
five times faster than their QVT-R counterparts. [36] states that ATL is capa-
ble of managing complex models because of its imperative language constructs
and the use of helper functions. Also, according to [26], graph transformations
are generally considered to generate inefficient programs. Hence, we rank these
languages w.r.t. performance and scalability as ATL (best), QVT-R, and AGG
(worst) (column PS in Table 2).

Extensibility: To assess this characteristics, we looked for literature that
provided evidence on successful extensions to our three transformation languages
and then assigned boolean values to the languages w.r.t. this attribute. Randak
et al. [31] extended ATL with new keywords to natively support UML profiles in
transformations. The preprocessor then translates these keywords into standard
ATL syntax by a higher-order transformation. Mens et al. [26] argue that the
AGG tool is extensible in the sense that its internal graph transformation en-
gine, implemented in Java, can be extended freely to cover a variety of different
applications. [29] extended QVT-R and integrated it with constraint program-
ming for specification of attribute values in target models. Also, [10] extended
QVT-R to embed information about system variants and their impact on the
non-functional properties of the system being developed. Finally, several exten-
sions to ATL via virtual machines have been recently reported: [34], for adding
bidirectionality, and Eclectic [33] and EMFTVM [43] for richer bytecode. These
support the finding that ATL is more extensible than either QVT-R or AGG
(whom we deem equally extensible) — column EX in Table 2.

Interoperability: Our comparison of languages w.r.t. interoperability is
similar to the one we conducted for extensibility. [20] reports that languages
based on the graph transformation paradigm (e.g., AGG) employ graph patterns

and it is not clear how OCL-based queries are translated to graph patterns and
vice versa. [6] describes the procedure for making AGG and Ecore mutually in-
teroperable. Interoperability of ATL and QVT-R is discussed and shown in [18].
Based on these, we infer “false”, “true”, and “true” for the interoperability of
AGG, QVT-R, and ATL, respectively (column IN in Table 2).

Verbosity and Conciseness: We consider conciseness to be the inverse of
verbosity. [24] states that QVT-R rely only on the textual language OCL for
model querying, and this leads to verbose and complicated OCL expressions.
Also, according to [26], graph transformation languages (e.g., AGG) are concise.
In addition, understandability-related references, e.g., [14], also support the ar-
gument that ATL is more verbose than AGG. Based on these, we infer that ATL
and QVT-R are more verbose (less concise) than AGG. We were unable to find
a direct comparison between ATL and QVT-R regarding this attribute, so we
give these languages the same valuation (columns VE and CO in Table 2).

Modifiability: [13] states that ATL reduces modifiability of model trans-
formations because it implements the source pattern using multiple rules and
helpers, all of which need to be updated even for a minor constraint change in
source pattern definition. [40] mentions that the manipulation of transforma-
tion models in ATL is complex because of the inherent complexity of program-
ming language metamodels. Modifiability can be seen to be positively related to
understandability. Hence, we infer that AGG is better than ATL and QVT-R
with regarding to modifiability, whereas the direct comparison between ATL and
QVT-R is not available (column MOF in Table 2).

Visualization: AGG provides graphical languages and a development envi-
ronment to define model-to-model transformations [11]. Graph transformations
are defined over metamodel elements and visualized with a generic layout, called
abstract syntax, where nodes are visualized as rectangles, and edges — as directed
arrows [14]. Various graph layout options are offered for tuning the visualiza-
tion [7]. AGG can visualize simulations as well. While abstract syntax of a given
modeling language is less familiar than its concrete counterparts to the develop-
ers [9,14], the visualization and simulation capabilities of AGG make it intuitive
and easy to understand [7]. QVT-R has a graphical notation, but its graphical
editors are just recently being proposed [23] and further tool support is lack-
ing. Graphical editors for transformations with ATL exist, e.g., ATLFlow [44].
ATLFlow is able to describe the structure of a transformation and execute it,
but it does not support conditional branches or composite transformations [32].
We conclude that AGG’s graphical support and visual representation are better
than ATL’s or QVT-R’ (column VT in Table 2).

Modularity: We use boolean values to evaluate this NFR attribute w.r.t.
the question “does the language include constructs to support modularity”. ATL
supports modularity and allows packaging rules into modules. A module can
import another module to access its content [9,14,22]. QVT-R supports mod-
ularity as well [30]. We could not find any evidence of modularity support in
AGG. Hence, we assign “false”, “true”, and “true” to the modularity aspect of
AGG, QVT-R and ATL, respectively (column MDL in Table 2).

Standardization: The two standards for graph transformation languages
(GXL - an exchange format for graphs, and GTXL — an exchange format for
graph transformations) are supported by AGG. It also supports XML and can
be used for refactoring UML models [11,12,26]. Moreover, it is compliant with
the relevant standards such as UML, MOF, and XML. ATL can be used to
bridge XML, Grafcet, Petri net, and PNML [16], and an example of the MOF-
to-UML transformation is given in [15]. Finally, QVT languages are compatible
with MOF, UML, and OCL [21]. We thus infer that all the three languages have
proper compliance with the relevant standards (column ST in Table 2).

Reusability and Reuse: We interpret support for both reusability and
reuse as “does the language have constructs that support reuse”, and thus as-
sign boolean values to the three languages w.r.t. this attribute. AGG has no
explicit reuse mechanisms such as rule inheritance, derivation, extension and
specialization [9,26]. ATL’s support of Higher-Order Transformations can be
treated as enabling reuse since they allow to analyze, produce and manipulate
other model transformations [5,40]. The specification of QVT-R [21] indicates
that its architecture supports reuse of existing libraries and allows plugging-in
and executing external code. Thus, we evaluate the reuse support in the three
languages as “false”, “true”, and “true”, respectively (column REY in Table 2).

We end this section with some remarks. First, the comparisons in this paper
use a relative scale, with qualitative rather than absolute values, so " * %’ is not
necessarily “good”, just “better”, and '+’ is not necessarily “bad”, just “worse”.
And obviously, our comparison is limited to only three languages, and we do not
claim that our list of NFRs is complete or comprehensive.

4 Conclusion

In this paper, we reviewed the non-functional attributes of model transforma-
tions as described in previous works, and created their comprehensive list. We
then reviewed the literature to compare three popular model transformation lan-
guages w.r.t. this list, resulting in a non-functional requirements catalog. We ex-
pect this catalog to be used by language designers to help improve their language,
as well as by developers aiming to choose the right transformation language for
their job. We also hope that the community will join this effort both by growing
the list of non-functional qualities and by adding other transformation languages
to the catalog. Future work can extend the proposed list of non-functional prop-
erties by dividing each attribute into more quantifiable chunks and proposing
metrics for effectively measuring them. Another line of future work can be to
propose methods and mechanisms to assist software developers in finding the
most suitable language and tool based on their NFRs.

References

1. M. Amrani, J. Dingel, L. Lambers, L. Lucio, R. Salay, G. Selim, E. Syriani, and
M. Wimmer. Towards a Model Transformation Intent Catalog. In Proc. of AMT’12
(MODELS’12 Wksp.), 2012.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Amstel, S. Bosems, I. Kurtev, and L. Ferreira Pires. Performance in Model
Transformations: Experiments with ATL and QVT. In Proc. of ICMT’11, volume
6707 of LNCS, pages 198-212, 2011.

. M. F. v. Amstel. The Right Tool for the Right Job: Assessing Model Transforma-

tion Quality. In Proc. of COMPSACW’10, pages 69-74, 2010.

. K. M. A. Aziz. FEwaluating Model Transformation Technologies: An Exploratory

Case Study. PhD thesis, Chalmers University of Technology, 2011.

. J. Bézivin, E. Breton, G. Dupé, and P. Valduriez. The ATL Transformation-Based

Model Management Framework. Technical report, Université de Nantes, 2003.

. E. Biermann, C. Ermel, L. Lambers, U. Prange, O. Runge, and G. Taentzer. In-

troduction to AGG and EMF Tiger by Modeling a Conference Scheduling System.
In J. STTT, 12(3-4):245-261, 2010.

. E. Biermann, C. Ermel, L. Lambers, U. Prange, O. Runge, and G. Taentzer. In-

troduction to AGG and EMF Tiger by Modeling a Conference Scheduling System.
Int. J. Softw. Tools Technol. Transf., 12(3-4):245-261, 2010.

. E. Brottier, F. Fleurey, J. Steel, B. Baudry, and Y. Le Traon. Metamodel-Based

Test Generation for Model Transformations: an Algorithm and a Tool. In Proc. of
ISSRE’06, pages 8594, 2006.

. K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Ap-

proaches. IBM Syst. J., 45(3):621-645, 2006.

M. Drago, C. Ghezzi, and R. Mirandola. A Quality Driven Extension to the
QVT-relations Transformation Language. Computer Science - Research and De-
velopment, pages 1-20, 2011.

H. Ehrig, K. Ehrig, U. Prange, and G. Taentzer. Implementation of Typed At-
tributed Graph Transformation by AGG. Fundamentals of Algebraic Graph Trans-
formation, pages 305-323, 2006.

A. Folli and T. Mens. Refactoring of UML models using AGG. ECEASST, 8, 2007.
A. Goknil, N. Topaloglu, and K. van den Berg. Operation Composition in Model
Transformations with Complex Source Patterns. Technical Report TR-CTI, Centre
for Telematics and Information Technology, University of Twente, 2008.

R. Gronmo, B. Moller-Pedersen, and G. Olsen. Comparison of Three Model Trans-
formation Languages. In Proc. of ECMDA-FA’09, volume 5562 of LNCS, pages
2-17, 2009.

A. group. The MOF to UML ATL transformation. Technical report, LINA &
INRIA, September 2005.

P. Guyard. ATL Transformation Example: Bridging Grafcet, Petri net, PNML and
XML. Technical report, INRIA, August 2005.

INRIA. ATL Transformation Example: Class to Relational, 2005.
http://www.eclipse.org/atl/atlTransformations/Class2Relational/
ExampleClass2Relational [v00.01] .pdf. Last Accessed July 2013.

F. Jouault and I. Kurtev. On the Architectural Alignment of ATL and QVT. In
Proc. of SAC’06, pages 1188-1195, 2006.

F. Jouault and I. Kurtev. Transforming Models with ATL. In Proc. of MOD-
ELS’05, pages 128-138, 2006.

F. Jouault and I. Kurtev. On the Interoperability of Model-to-Model Transforma-
tion Languages. Science of Computer Programming, 68(3):114 — 137, 2007.

I. Kurtev. State of the Art of QVT: A Model Transformation Language Standard.
In Proc. of AGTIVE’07, volume 5088 of LNCS, pages 377-393, 2008.

I. Kurtev, K. Van Den Berg, and F. Jouault. Evaluation of Rule-Based Modu-
larization in Model Transformation Languages Illustrated with ATL. In Proc. of
SAC’06, pages 1202—1209, 2006.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

D. Li, X. Li, and V. Stolz. QVT-based Model Transformation using XSLT. SIG-
SOFT SEN, 36(1):1-8, 2011.

D. Li, X. Li, and V. Stolz. Model Querying with Graphical Notation of QVT
Relations. SIGSOFT Softw. Eng. Notes, 37(4):1-8, July 2012.

T. Mens and P. Van Gorp. A Taxonomy of Model Transformation. FEl. Notes
Theor. Comp. Sci., 152:125-142, 2006.

T. Mens, P. Van Gorp, D. Varré, and G. Karsai. Applying a Model Transformation
Taxonomy to Graph Transformation Technology. El. Notes Theor. Comput. Sci.,
152:143-159, 2006.

P. Mohagheghi and J. Aagedal. Evaluating Quality in Model-Driven Engineering.
In Proc. of MiSE’07, pages 6-15, 2007.

OMG. Meta Object Facility (MOF) 2.0 Query / View / Transformation. Technical
report, OMG Technical Report, 2011.

A. Petter, A. Behring, and M. Mhlhuser. Solving Constraints in Model Transfor-
mations. In Proc. of ICMT’09, volume 5563 of LNCS, pages 132-147, 2009.

S. Rahimi and K. Lano. Integrating Goal-Oriented Measurement for Evaluation
of Model Transformation. In Proc. of CSSE’11, pages 129-134, 2011.

A. Randak, S. Martinez, and M. Wimmer. Extending ATL for Native UML Profle
Support: An Experience Report. In Proc. of CEUR’11 Workshop, 2011.

J. E. Rivera, D. Ruiz-Gonzalez, F. Lopez-Romero, J. Bautista, and A. Vallecillo.
Orchestrating ATL Model Transformations. In Proc. of MtATL 09, pages 34—46,
20009.

J. Sanchez Cuadrado. Towards a Family of Model Transformation Languages. In
Proc. of ICMT’12, LNCS, volume 7307, pages 176-191, 2012.

I. Sasano, Z. Hu, S. Hidaka, K. Inaba, H. Kato, and K. Nakano. Toward Bidi-
rectionalization of ATL with Groundtram. In Proc. of ICMT 11, pages 138-151,
2011.

S. Sendall and W. Kozaczynski. Model Transformation: the Heart and Soul of
Model-Driven Software Development. IEEE Software, 20(5):42-45, 2003.

M. Stephan and A. Stevenson. A Comparative Look at Model Transformation
Languages. Technical report, Soft. Tech. Lab, Queen’s University, 2009.

E. Syriani and J. Gray. Challenges for Addressing Quality Factors in Model Trans-
formation. In Proc. of ICST’12, pages 929 —937, April 2012.

G. Taentzer. AGG: A Graph Transformation Environment for Modeling and Vali-
dation of Software. In Proc. of AGTIVE’03, volume 3062 of LNCS, pages 446-453,
2004.

G. Taentzer, K. Ehrig, E. Guerra, J. De Lara, L. Lengyel, T. Levendovszky,
U. Prange, D. Varré, and S. Varré-Gyapay. Model Transformation by Graph Trans-
formation: A Comparative Study. In MODELS’05 Wksp. MT in Practice, 2005.
M. Tisi, J. Cabot, and F. Jouault. Improving Higher-Order Transformations Sup-
port in ATL. In Proc. of ICMT’10, pages 215-229, 2010.

M. F. van Amstel, C. F. J. Lange, and M. G. J. van den Brand. Metrics for Analyz-
ing the Quality of Model Transformations. In ECOOP’08 Wksp. on Quantitative
Approaches to OO SE, 2008.

A. Vignaga. Metrics for Measuring ATL Model Transformations. Technical report,
Universidad de Chile, 2009.

D. Wagelaar, M. Tisi, J. Cabot, and F. Jouault. Towards a General Composition
Semantics for Rule-Based Model Transformation. In Proc. of MODELS’11, pages
623-637, 2011.

U. Zeidler. ATLflow Plugin. http://opensource.urszeidler.de/ATLflow/. Last
Accessed Dec. 2012.

