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We use mergers of microstates to obtain the first smooth horizonless microstate solu-

tions corresponding to a BPS three-charge black hole with a classically large horizon area.

These microstates have very long throats, that become infinite in the classical limit; nev-

ertheless, their curvature is everywhere small. Having a classically-infinite throat makes

these microstates very similar to the typical microstates of this black hole. A rough CFT

analysis confirms this intuition, and indicates a possible class of dual CFT microstates.

We also analyze the properties and the merging of microstates corresponding to zero-

entropy BPS black holes and black rings. We find that these solutions have the same size

as the horizon size of their classical counterparts, and we examine the changes of internal

structure of these microstates during mergers.
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1. Introduction

In [1] we found a very large number of geometries that have exactly the same super-

symmetries, size, charges and angular momenta as maximally-rotating, three-charge BPS

black holes and black rings in five dimensions. These smooth, horizonless solutions have no

brane sources, and belong to the class constructed and analyzed in [2,3], based on earlier

work in [4-7].

These solutions are very similar to BPS black holes and BPS black rings [8,9,6,10,7]

and only differ from those near the would-be “classical” horizon. In the new, horizonless

solutions this region is smooth and compact, and contains a large number of topologically

non-trivial two-cycles. Hence these solutions are called “bubbled black holes” and “bubbled

black rings.” All these solutions can be dualized to a frame in which they are asymptotic to

AdS3×S3 ×T 4, and therefore are dual to states in the D1-D5-P CFT that describes black

holes and black rings. Understanding whether this kind of supergravity solutions are dual

to typical CFT states is perhaps among the most important questions in understanding

black holes in string theory1.

For practical reasons, all the five-dimensional, three-charge BPS microstates that have

been constructed [13-17,1,2,3] use as a base a four-dimensional “generalized hyper-Kähler”

metric2 that has a tri-holomorphic U(1) symmetry, and is thus a Gibbons-Hawking (GH)

metric. Nevertheless, as recently shown in [1], using a Gibbons-Hawking base generically

appears to yield bubbled solutions corresponding to black rings and black holes of zero

horizon area. Indeed, it appears that none of the microstate solutions currently in the

literature has the same charges and angular momenta as a black hole with a classically

large horizon area.

It is very important to understand whether this limitation arises from using a Gibbons-

Hawking base. If this were so, then we would need to find more general classes of hyper-

Kähler base metrics, and these are very hard to construct and analyze explicitly. Before

embarking on this difficult task, one should therefore first attempt to construct microstates

1 If the answer to this question is positive, then the AdS-CFT correspondence would force us

to think about black holes as ensembles of smooth horizonless geometries, which would greatly

deepen our understanding of black holes, and quantum gravity in general. A review of this can

be found in [11] and [12].
2 By “generalized,” we mean a hyper-Kähler base whose metric is allowed to change its overall

sign in compact regions, thereby flipping the signature from +4 to −4.
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of positive-entropy black holes starting from a Gibbons-Hawking base. Again this is pri-

marily because of computational convenience: Such solutions would be much easier to

obtain explicitly, analyze, and relate to the corresponding CFT microstates.

An obvious place to start would be to examine the merger of two black holes, which is

always irreversible. Nevertheless, such a configuration can preserve at most and SO(3) that

has no tri-holomorphic U(1) subgroups; therefore the merger of two black hole microstates

cannot be described using a GH base metric. On the other hand, the merger of a black hole

with a black ring in its equatorial plane preserves a U(1)×U(1) symmetry. Hence, using a

result of [18], we expect the merger of the corresponding microstates to be described using

a GH base metric.

The merger of a BPS black hole and a BPS black ring can be reversible or irreversible,

depending on the charges of the two objects [19]. One therefore expects the merger of mi-

crostates to result in an zero-entropy BH microstate or an positive-entropy BH microstate3,

depending on the charges of the merging microstates. Moreover, since the merger can be

achieved by keeping the base Gibbons-Hawking, one expects the resulting positive-entropy

BH microstate to have a Gibbons-Hawking base.

The main purpose of this paper is to study the merger of zero-entropy BR microstates

and zero-entropy BH microstates. We construct solutions that describe a large, bubbled

black ring with a bubbling black hole in the center, and reduce some flux parameters

in order to bring them together. We find that, when seen from far away, the merger of

microstates closely parallels the merger of the corresponding classical counterparts. In

particular, the merger happens at the same values of the charges and angular momenta,

and the resulting microstate is always that of a BMPV black hole.

On the other hand, we find that there is a huge qualitative difference between the

behavior of the internal structure of microstates in “reversible” and “irreversible” mergers4.

A “reversible” merger of an zero-entropy BH microstate and an zero-entropy BR microstate

produces another zero-entropy BH microstate. We find that the bubbles corresponding to

3 Obviously, the compound adjectives, “positive-entropy” and “zero-entropy” are intended to

be applied to the black hole and black ring whose microstate geometries we discuss, and not to

the horizonless microstate geometries themselves.
4 With an obvious abuse of terminology, we will refer to such solutions as “reversible” and

“irreversible” mergers of microstates with the understanding that the notion of reversibility refers

to the classical BH and BR solutions to which the microstates correspond.
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the ring simply join the bubbles corresponding to the black hole, and form a bigger bubbled

structure.

In an “irreversible” merger, as the ring bubbles and the black hole bubbles get closer

and closer, we find that the distances between the GH points that form the black hole foam

and the black ring foam also decrease. As one approaches the merger point, all the sizes in

the GH base scale down to zero while preserving their relative proportions. In the limit in

which the merger occurs, the solutions have J1 = J2 <
√
Q1Q2Q3, and all the points have

scaled down to zero size on the base. Therefore, it naively looks like the configuration is

singular; however, the full physical size of the bubbles also depends on the warp factors,

and taking these into account one can show that the physical size of all the bubbles in the

black hole and black ring foams remains the same. The fact that the GH points get closer

and closer together implies that the throat of the solution becomes deeper and deeper, and

more and more similar to the throat of a BPS black hole (which is infinite).

Fig. 1: A heuristic depiction of an irreversible microstate merger. Throughout the

merger the physical size of the bubbles remains fixed, but the throat of the solutions

deepens.

Our investigation therefore shows that Gibbons-Hawking-base microstates of positive-

entropy black holes can be obtained from mergers. Moreover, these microstates appear to

want to have very long throats, and consequently very high red-shifts. As we will see, the

quantization of the fluxes does not allow the scaling to continue ad infinitum; the length

of the throats of microstate solutions only becomes infinite in the classical limit.

Hence, at least for a Gibbons-Hawking base, the crucial difference between zero-

entropy BH microstates and positive-entropy BH microstates obtained from mergers is

the length of the throat. The throat of the zero-entropy BH microstates remains finite
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in the classical limit, while the throat of the positive-entropy BH microstates becomes

infinite. In the rest of this paper we will refer to the microstates of positive-entropy BH’s

as “deep” microstates5, and to the zero-entropy BH microstates as “shallow” microstates.

As we have mentioned above, all the solutions we construct are dual to states of

the D1-D5-P CFT. A heuristic way to describe the states of this system is to consider

a long effective string of total length N1N5 that is broken into component strings, on

which one puts NP units of momentum. The CFT entropy comes from the various ways

of distributing the momentum between the different modes of the component strings. The

typical CFT states, dual to the black hole, have only one component string, that carries

all the momentum; atypical states have more component strings [20,21]. The energy gap

in the CFT is the inverse of the length of the largest component string. One can also

compute the mass gap in the bubbling solutions, as a function of the charges and angular

momentum, and compare it to the gap computed in the CFT. A heuristic analysis then

indicates that the deep microstates with left-moving angular momentum JL are dual to

states with JL component strings of length N1N5/JL. The deepest of the deep microstates

have JL = 1, and therefore appear to be dual to CFT states with a single component

string. While this is not enough to establish that deep microstates are typical – after all,

they might be dual to an atypical distribution of momentum on the component string –

the fact that they are dual to CFT states with one component string makes them very

similar to typical microstates.

In addition to obtaining microstates corresponding to black holes with classically large

entropy, we can use mergers to investigate the “size” of microstates. When a classical black

hole and a classical black ring merge, their horizons touch. Our results indicate that in a

similar fashion, when a bubbled black hole and a bubbled black ring merge, their bubbles

get very close to each other. This shows that the bubbling black hole microstates con-

structed in [1] have the same size and macroscopic features as the corresponding classical

black hole.

Another purpose of this paper is to discuss, in more detail, the construction of bubbled

black holes and black rings outlined in [1], and to analyze more thoroughly the entropy of

the bubbled black holes and black rings with a GH space. Our analysis of mergers can also

be used to find the detailed features of the distribution of the GH points that form bubbled

5 We originally considered calling these microstates “deep-throat microstates” but decided

against it to avoid the obvious tasteless jokes.
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black holes and bubbled black rings, as well as the behavior of the warp factors inside these

solutions, and is important for obtaining a deeper understanding of their physics.

In section 2 we summarize the structure and properties of the five dimensional smooth

horizonless solutions of [2,3]. In section 3 we give an expanded version of the construction

of bubbling black holes and black rings in [1]. We also give some numerical results that

suggest how the GH centers arrange themselves within the bubbling solutions. In section

4 we analyze the merger of microstates analytically, and show that one can rederive the

merger conditions found in [19] for classical rings and holes, using the bubbled geometries.

In section 5 we analyze analytically and numerically the irreversible mergers, which result in

positive-entropy BH microstates. These, to our knowledge, are the first smooth horizonless

solutions that have the same charges and angular momenta as a black hole with a classically

large horizon area. In section 6 we look at some examples of reversible mergers and show

that during such mergers the separation of the ring and the black hole bubbles becomes

very small, resulting in a configuration where the two bubbling structures essentially touch.

In section 7 we make a heuristic AdS-CFT analysis of the deep microstates, and argue that

the deepest microstates correspond to CFT states that have a single component string;

these microstates are therefore in the same class as the typical microstates of this black

hole. Section 8 contains conclusions and suggestions for future research.

2. A review of the bubbling solutions

2.1. The solution

The full eleven-dimensional metric of a BPS black-hole and black-ring solutions has

the form:

ds211 = −
(

1

Z1Z2Z3

)2/3

(dt+ k)2 + (Z1Z2Z3)
1/3

hmndx
mdxn

+

(
Z2Z3

Z2
1

)1/3

(dx2
1 + dx2

2) +

(
Z1Z3

Z2
2

)1/3

(dx2
3 + dx2

4) +

(
Z1Z2

Z2
3

)1/3

(dx2
5 + dx2

6) ,

(2.1)

and the standard approach to their constructing starts by taking the four-dimensional

spatial base metric hmn to be that of flat R
4 [22,9,23,6,10,7].

The corresponding “bubbling” solutions [2,3] are obtained by replacing this flat R
4

by a half-flat, four-dimensional “generalized hyper-Kähler” metric that is asymptotic to

R
4. By “generalized,” we mean that one can use a hyper-Kähler base whose metric is
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allowed to change its overall sign in compact regions, thereby flipping the signature from

+4 to −4. The overall, eleven-dimensional metric is perfectly regular and Lorentzian

essentially because any overall change of sign in the four-dimensional base metric is exactly

compensated by sign changes in the warp factors Zi. [16,2,3].

This opens up a huge array of new possibilities for constructing bubbling black holes

and rings, because there are many, many hyper-Kähler metrics that are asymptotic to R
4

but have compact regions where the metric changes its overall sign6. For practical reasons,

the solutions of [1,2,3] were restricted to the simplest class of generalized hyper-Kähler

geometries: Gibbons-Hawking (GH) metrics whose potential, V , is allowed to be negative.

Mathematically, these metrics are extremely special: They constitute the complete fam-

ily of four-dimensional hyper-Kähler metrics with a tri-holomorphic U(1) isometry. The

general BPS solutions with a positive-definite GH base were obtained in [4,7], and it is

straightforward to adapt these solutions to generalized GH metrics that allow overall sign

changes. In this paper we will work entirely within this class of solutions.

We therefore consider a four-dimensional base metric that has Gibbons-Hawking (GH)

form:

ds24 = V −1
(
dψ + ~A · d~y

)2
+ V (d~y · d~y) , (2.2)

where ~y ∈ R
3 and

V =
N∑

j=1

qj
rj
, ~∇× ~A = ~∇V , (2.3)

with rj ≡ |~y − ~y(j)|. In order for the GH metric to be regular, one must take qj ∈ Z and

for the metric to be asymptotic to that of flat R
4 one must also impose

q0 ≡
N∑

j=1

qj = 1 . (2.4)

The GH metric has non-trivial two-cycles (the bubbles), ∆ij , defined by the fiber coordinate,

ψ, and any line running between a pair of GH points, ~y(i) and ~y(j).

The background three-form potentials in the eleven-dimensional solution are defined

via vector potentials in the four-dimensional GH base.

A = A(1) ∧ dx1 ∧ dx2 + A(2) ∧ dx3 ∧ dx4 + A(3) ∧ dx5 ∧ dx6 , (2.5)

6 Based on the physics of three-charge supertubes [8], one expects generalized hyper-Kähler

metrics with N regions of negative signature to be parameterized by 6N functions of one variable

[2].
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Supersymmetry requires the “dipole field strengths:”

Θ(I) ≡ dA(I) + d
(dt+ k

ZI

)
(2.6)

to be self-dual. One can easily show that if the base has a Gibbons-Hawking metric, then

the ΘI are given by

Θ(I) = −
3∑

a=1

[
∂a

(
V −1KI

)] [
(dψ + A) ∧ dya + 1

2 V ǫabc dy
b ∧ dyc

]
. (2.7)

where KI is harmonic in the R
3 base of the GH space. To have completely non-singular

solutions one must choose these to be sourced only at the singular points of V :

KI =

N∑

j=1

kI
j

rj
. (2.8)

One then finds that the two-form fluxes through ∆ij are given by:

Π
(I)
ij =

(
kI

j

qj
− kI

i

qi

)
. (2.9)

Having chosen the flux parameters, kI
j , the solution is completely fixed by its asymp-

totics and by requiring the absence of any singularities and, in particular, the absence of

singular sources. One introduces functions, LI , and M defined by:

LI = 1 − 1
2
CIJK

N∑

j=1

kJ
j k

K
j

qj

1

rj
, M = m0 + 1

12
CIJK

N∑

j=1

kI
j k

J
j k

K
j

q2j

1

rj
, (2.10)

with

m0 = −1
2 q

−1
0

N∑

j=1

∑

I

kI
j = −1

2

N∑

j=1

∑

I

kI
j . (2.11)

The warp factors, ZI , are then given by:

ZI = LI + 1
2 CIJK V −1KJKK , (2.12)

and the angular momentum vector, k, in (2.1) is:

k = µ (dψ + A) + ω , (2.13)
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with

µ = 1
6 V

−2CIJK KIKJKK + 1
2 V

−1KILI + M , (2.14)

and ω defined by ω = ~ω · d~y, where

~∇× ~ω = V ~∇M − M~∇V + 1
2 (KI ~∇LI − LI

~∇KI) . (2.15)

One needs to solve this equation without introducing Dirac-Misner strings into the metric

and to do this it is convenient to introduce one forms, ωij , associated to each pair of GH

points. The simplest way to define these forms is to choose coordinates so that ~y = (x, y, z)

and ~y(i) = (0, 0, a) and ~y(j) = (0, 0, b), with a > b, and then one sets:

ωij ≡ −(x2 + y2 + (z − a+ ri)(z − b− rj))

(a− b) ri rj
dφ , (2.16)

where tanφ = y/x. The importance of this form is that it has no Dirac strings. The

desired non-singular solution to (2.15) may then be written as

~ω = 1
24 CIJK

N∑

i,j=1

qi qj Π
(I)
ij Π

(J)
ij Π

(K)
ij ~ωij , (2.17)

provided that the bubble equations are satisfied:

1
6
CIJK

N∑

j=1
j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qi qj
rij

= −2
(
m0 qi + 1

2

3∑

I=1

kI
i

)
, (2.18)

for i = 1, . . . , N , and where rij ≡ |~y(i)−~y(j)|. The bubble equations are required to remove

closed timelike curves (CTC’s) in specific, “potentially dangerous” limits7. In general, the

absence of CTC’s requires that one ensure that the following are globally true:

V ZI ≥ 0 , Z1 Z2 Z3 V − µ2 V 2 ≥ 0 , (2.19)

However, in quite a number of examples one finds that the bubble equations suffice to

guarantee the global absence of CTC’s.

Finally, one should note that shifting KI → KI + cIV for some constants, cI , has a

trivial action on the solution and so the parameters, kI
j , have a gauge invariance:

kI
j → kI

j + qj c
I . (2.20)

All the physical quantities must be invariant under this transformation.

7 One can add a constant to V in (2.3), and reduce the resulting smooth five-dimensional solu-

tion to a singular four-dimensional multi-black-hole solution of the type explored in [24,25]. The

“bubble equations” are then equivalent to the “integrability conditions” of [24,25]. Other asymp-

totically four-dimensional configurations that are smooth in five-dimensions and are microstates

of four-dimensional black holes have been explored in [26,27,28].
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2.2. The charges and angular momenta of the solution

To isolate the charges of the solution one should first recall that if V = 1
r , then the

coordinate transformation that takes (2.2) to a standard polar form for R
4 is r = 1

4ρ
2,

where ρ is the standard radial coordinate. Imposing (2.4) means that we have V ∼ 1
r

at

infinity, and so this gives us the proper radial coordinate asymptotically.

To obtain the electric charges measured at infinity, one simply needs to extract the

coefficient of ρ−2 in the expansion of the ZI . It is elementary to see that:

QI = −2CIJK

N∑

j=1

q−1
j k̃J

j k̃
K
j , (2.21)

where

k̃I
j ≡ kI

j − qj N kI
0 , and kI

0 ≡ 1

N

N∑

j=1

kI
j . (2.22)

Note that k̃I
j is invariant under (2.20).

To read off the angular momenta one looks at the asymptotic behavior of k in (2.13)

and extracts the terms that fall-off as 1
ρ2 ∼ 1

4r . Indeed, it is easiest to get the result from

the coefficient of dψ, that is, from the function µ. There are two types of such terms,

simple 1
r terms and the dipole terms arising from the expansion of V −1KI . Following [3],

we introduce the dipoles

~Dj ≡
∑

I

k̃I
j ~y

(j) , ~D ≡
N∑

j=1

~Dj . (2.23)

and then one can obtain the components of the angular momentum from:

k ∼ 1

4 ρ2

(
(J1 + J2) + (J1 − J2) cos θ

)
dψ + . . . , (2.24)

where θ is the angle between ~D and ~y. Expanding the function µ, we find:

JR ≡ J1 + J2 = 4
3 CIJK

N∑

j=1

q−2
j k̃I

j k̃
J
j k̃

K
j , (2.25)

JL ≡ J1 − J2 = 8
∣∣ ~D

∣∣ . (2.26)

While we have put modulus signs around ~D in (2.26), one should note that it does have a

meaningful orientation, and so we will sometimes consider ~JL = 8 ~D.
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These results appear to differ by some factors of two compared to those of [3]. This

is because our conventions are those of [2], which use a different normalization of the

two-form fields.

One can use the bubble equations to obtain another, rather more intuitive expression

for J1 − J2. One should first note that the right-hand side of the bubble equation, (2.18),

may be written as −
∑

I k̃
I
i . Multiplying this by ~y(i) and summing over i yields:

~JL ≡ 8 ~D = −4
3 CIJK

N∑

i,j=1
j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qi qj ~y
(i)

rij

= −2
3 CIJK

N∑

i,j=1
j 6=i

qi qj Π
(I)
ij Π

(J)
ij Π

(K)
ij

(~y(i) − ~y(j))∣∣~y(i) − ~y(j)
∣∣ ,

(2.27)

where we have used the skew symmetry Πij = −Πji to obtain the second identity. This

result suggests that one should define an angular momentum flux vector associated with

the ijth bubble:

~JL ij ≡ −4
3
qi qj CIJK Π

(I)
ij Π

(J)
ij Π

(K)
ij ŷij , (2.28)

where ŷij are unit vectors,

ŷij ≡ (~y(i) − ~y(j))∣∣~y(i) − ~y(j)
∣∣ . (2.29)

This means that the flux terms on the left-hand side of the bubble equation actually have

a natural spatial direction, and once this is incorporated, it yields the contribution of the

bubble to JL.

2.3. The simplest bubbled supertube

For later convenience we summarize the properties of the solution with three GH

points of charges q1 = 1, q2 = −Q and q3 = +Q that corresponds to a zero-entropy black

ring [2]. It is useful to define new, physical variables dI and f I (the dI are equal to the

dipole charges of the ring):

dI ≡ 2 (kI
2 + kI

3) , fI ≡ 2 kI
1 +

(
1 + 1

Q

)
kI
2 +

(
1 − 1

Q

)
kI
3 . (2.30)

Note that dI and f I are invariant under (2.20).

The electric charges of the bubbled tube are:

QI = CIJK dJ fK , (2.31)
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and the angular momenta are:

J1 = −(Q− 1)

12Q
CIJK dI dJ dK + 1

2 CIJK dI dJ fK , (2.32)

J2 =
(Q− 1)

2

24Q2
CIJK dI dJ dK + 1

2 CIJK f I fJ dK . (2.33)

In particular, the angular momentum of the tube is:

JT = J2 − J1 = 1
2 CIJK (f I fJ dK − dI dJ fK) +

(3Q2 − 4Q+ 1

24Q2

)
CIJK dI dJ dK .

(2.34)

The radius, RT , of the corresponding classical black ring, as measured in the R
3 metric of

the GH base, can be obtained from:

JT = 4RT (d1 + d2 + d3) . (2.35)

3. Bubbling black holes and rings with a large number of centers

In [1] we constructed bubbled solutions corresponding to maximally-spinning (zero-

entropy) BMPV black holes, or to maximally spinning BPS black rings. These solutions

have a very large number of GH centers and a priori there to be rather little difference

between bubbling a black hole and bubbling a black ring: the ring microstates have a

blob of GH centers of zero total charge with a GH center away from the blob while the

black hole microstates have all the centers in one blob of net GH charge one. We will see

that this apparently small difference can very significantly influence the solution of the

bubble equations The purpose of this section is to explain in more detail the construction

of microstates in [1], and to investigate numerically the structure of the distribution of GH

centers inside the blobs.

3.1. Microstates of maximally spinning BMPV black holes

We first consider a configuration of N GH centers that lie is a single “blob” and take

all these centers to have roughly the same flux parameters, to leading order in N . To argue

that such a blob corresponds to a BMPV black hole, we first need to show that J1 = J2. If

the overall configuration has three independent Z2 reflection symmetries then this is trivial

because the ~Dj will then come in equal and opposite pairs, and so one has JL = 0. More
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generally, for a “random” distribution8 the vectors ŷij will point in “random” directions

and so the ~JL ij will generically cancel one another at leading order in N . The only way to

generate a non-zero value of JL is to bias the distribution so that there are more positive

centers in one region and more negative ones in another. This is essentially what happens

in the microstate solutions constructed and analyzed by [13,14,15,16]. However, a single

generic blob will have J1 − J2 small compared to |J1| and |J2|.
To compute the other properties of such a blob, we will simplify things by taking

N = 2M + 1 to be odd, and assume that qj = (−1)j+1. Using the gauge invariance,

we can take all of kI
i to be positive numbers, and we will assume that they have small

variations about their mean value:

kI
j = kI

0 (1 + O(1)) , (3.1)

where kI
0 is defined in (2.22). The charges are given by:

QI = −2CIJK

∑

j

q−1
j (kJ

j − qjNk
J
0 ) (kK

j − qjNk
K
0 )

= −2CIJK

( ∑

j

q−1
j kJ

j k
K
j −NkJ

0

∑

j

kK
j −NkK

0

∑

j

kJ
j +N2kJ

0 k
K
0

∑

j

qj

)

= 2CIJK

(
N2kJkK −

∑

j

kJ
j k

K
j q

−1
j

)

≈ 2CIJK

(
N2 + O(1)

)
kJ
0 k

K
0

(3.2)

where we used (3.1) and the fact that |qi| = 1 only in the last step. In the large N limit,

for M theory on T 6 we have

Q1 ≈ 4N2k2k3 + O(1) , Q2 ≈ 4N2k1k3 + O(1) , Q3 ≈ 4N2k1k3 + O(1) . (3.3)

We can make a similar computation for the angular momenta:

JR = 4
3 CIJK

∑

j

q−2
j (kI

j − qjNk
I
0) (kJ

j − qjNk
J
0 ) (kK

j − qjNk
K
0 )

= 4
3
CIJK

( ∑

j

q−2
j kI

jk
J
j k

K
j − 3NkI

0

∑

j

q−1
j kJ

j k
K
j

+ 3N2kI
0k

J
0

∑

j

kK
j −N3kI

0k
J
0 k

K
0

∑

j

qj

)

≈ 4
3
CIJK

(
N − 3N + 3N3 −N3 + O(N)

)
kI
0k

J
0 k

K
0 ,

(3.4)

8 Such a distribution must, of course, satisfy the bubble equations, (2.18), but this will still

allow a sufficiently random distribution of GH points.
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where we used the fact that, for a “well behaved” distribution of positive kI
i with |qj | = 1,

one has:

∑

i

q−1
i kJ

i k
K
i =

∑

i

qik
J
i k

K
i ≈ kJ

0 k
K
0 ,

∑

i

kI
i k

J
i k

K
i ≈ NkI

0k
J
0 k

K
0 . (3.5)

For M theory on T 6 we simply have:

JR ≈ 16N3k1k2k3 +O(N) . (3.6)

For large N we therefore have, at leading order:

J2
1 ≈ J2

2 ≈ 1
4 J

2
R ≈ Q1Q2Q3 , (3.7)

and so, in the large-N limit, these microstates always correspond to a maximally spinning

BMPV black hole. Indeed, we have

J2
R

4Q1Q2Q3
− 1 ∼ O

(
1

N2

)
. (3.8)

Interestingly enough, the value of JR is slightly bigger than
√

4Q1Q2Q3. However, this

is not a problem because in the classical limit this correction vanishes. Moreover, it is

possible to argue that a classical black hole with zero horizon area will receive higher-

order curvature corrections, that usually increase the horizon area; hence a zero-entropy

configuration will have JR slightly larger then the maximal classically allowed value, by

an amount that vanishes in the large N (classical) limit.

3.2. Zero-entropy black ring (supertube) microstates

The next simplest configuration to consider is one in which one starts with the blob

considered above and then moves a single GH point of charge +1 out to a very large

distance from the blob. That is, one considers a blob of total GH charge zero with a single

very distant point of GH-charge +1. Since one now has a strongly “biased” distribution

of GH charges one should now expect J1 − J2 6= 0.

Again we will assume N to be odd, and take the a GH charge distribution to be

qj = (−1)j+1, with the distant charge being the N th GH charge. We will also fix the

gauge by taking kI
N ≡ 0. The blob therefore has 1

2(N − 1) points of GH charge ±1 and at

large scales one might expect it to resemble the three-point solution described above with

Q = 1
2(N − 1). We will show that this is exactly what happens in the large-N limit.
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To have the N th GH charge far from the blob means that all the two-cycles, ∆j N

must support a very large flux compared to the fluxes on the ∆ij for i, j < N . To achieve

this we therefore take:

kI
j = aI

0 (1 + O(1)) , j = 1, . . . , N − 1 , kI
N = −bI0 N . (3.9)

where bI0 is independent of j and

aI
j ≡ kI

j = aI
0 (1 + O(1)) , j = 1, . . . , N − 1 , (3.10)

with

aI
0 ≡ 1

(N − 1)

N−1∑

j=1

aI
j . (3.11)

We also assume that aI
0 and bI0 are of the same order. The fluxes of this configuration are

then:

Π
(I)
ij =

(
aI

j

qj
− aI

i

qi

)
, Π

(I)
i N = −Π

(I)
N i = −

(
aI

i

qi
+ N bI0

)
, i, j = 1, . . . , N − 1 .

(3.12)

For this configuration one has:

kI
0 =

(N − 1)

N
aI
0 − bI0 , k̃I

N = −(N − 1) aI
0 ,

k̃I
j = aI

j + qj (N bI0 − (N − 1) aI
0) , j = 1, . . . , N − 1 .

(3.13)

Motivated by the bubbling black ring of [2], define the physical parameters:

dI ≡ 2 (N − 1) aI
0 , f I ≡ (N − 1) aI

0 − 2N bI0 . (3.14)

Keeping only the terms of leading order in N in (2.21) and (2.25), one finds:

QI = CIJKd
JfK , J1+J2 = 1

2 CIJK(dIdJfK+f IfJdK) − 1
24 CIJKd

IdJdK . (3.15)

Since the N th point is far from the blob, we can take riN ≈ r0 and then the N th

bubble equation reduces to:

1
6 CIJK

N−1∑

j=1

(
aI

j

qj
+N bI0

)(
aJ

j

qj
+N bJ0

) (
aK

j

qj
+N bK0

)
qj
r0

= (N − 1)
∑

I

aI . (3.16)
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To leading order in N this means that the distance from the blob to the N th point, r0, in

the GH space is given by:

r0 ≈ 1
2 N

2

[∑

I

aI

]−1

CIJK aI
0 b

J
0 b

K
0 = 1

32

[∑

I

dI

]−1

CIJK dI (2fJ − dJ ) (2fK − dK) .

(3.17)

Finally, considering the dipoles, (2.23), it is evident that to leading order in N , ~D is

dominated by the contribution coming from the N th point and that:

J1 − J2 = 8 | ~D| = 8N

( ∑

I

aI
0

)
r0 = 4N3CIJK aI

0 b
J
0 b

K
0

= 1
8 CIJK dI (2fJ − dJ ) (2fK − dK) .

(3.18)

One can easily verify that these results perfectly match the properties of the three-

center bubbled supertube constructed in [2], and summarized above. Thus the blob con-

sidered here has exactly the same size, angular momenta, charges and dipole charges as a

zero-entropy black ring.

3.3. Numerical investigation of bubbling solutions

It is extremely instructive to solve the bubble equations numerically for fairly large

values of N because one discovers some interesting qualitative results. Most particularly,

the interior structures of bubbled black holes and bubbled black rings is very different,

at least when all the flux parameters are equal. The black ring blob has zero total GH

charge, and the individual GH charges form tight, neutral clusters that are fairly broadly

spaced. The black hole blob on the other hand has a net GH charge, which prevents the

formation of neutral clusters everywhere. In fact the GH charges do form broadly-spaced

tight, neutral clusters but only in the outer parts of the blob. The excess GH charge can

be found in the deep interior of the blob, where it is “screened” by the neutral clusters.

We solved numerically the bubble equations for a very large number of GH centers

lying on the same axis, with alternating charges qj = ±1. To get the “ring blob” we

took the flux parameters ki to be equal on the first (N − 1) points and adjusted the flux

parameter on the last point so as to move it away from the blob. We generically found the

solution to consist of tightly bound dipoles in the blob and that the spacing between two

neighboring dipoles was at least an order of magnitude larger that the size of an individual

dipole. The ratio of the separation of neighboring dipoles and the size of a dipole grows

larger as the N th “far away” GH point is moved further and further from the blob. Figure

2 shows a typical set of spacings between successive GH points. There are two branches

to this graph: The size of dipoles and the space between neighboring dipoles.
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Fig. 2: A ring distribution for N = 201 points in which the jth point has GH charge

(−1)j+1. There is a fixed flux parameter, k = 1, on first (N − 1) points, and a flux

parameter 20k on the N th point. The width of the ring distribution (the distance from

first to (N − 1)th point) is 49.09. The distance from (N − 1)th to N th point is 376.41.

This graph shows distances between successive GH points. The lower curve shows the

spacing between the (2j − 1)th point and the (2j)th point, j = 1, . . . , 100, forming

(+−) dipole pairs. The upper curve shows the spacing between the (2j)th point and

the (2j+1)th point, j = 1, . . . , 99, representing the separations of neighboring dipoles.

The “far away” point is not shown. Note that the entire distribution shows a set of

100 close (+ -) dipoles. All distances are measured using the flat R
3 part of the GH

metric.

To get a BMPV blob we took all the flux parameters to be equal and sought solutions

where the GH charges alternated along a symmetry axis in R
3. All the solutions we found

had a further reflection symmetry in the distribution of GH charges, and this symmetry

guarantees that ~D ≡ 0, and so J1 = J2. The distribution of spaces between GH points is

completely different from that of the “ring blob.” By construction, the outermost points

had GH charge +1 and we found that the charges formed close dipoles with their nearest

neighbors. Thus the outer part of the distribution tries to form (+−) dipoles on the left and

(−+) dipoles on the right. This cannot be sustained in the interior and so the dipole length

grows and the charges become evenly-spaced towards the middle of the configuration. The

excess GH charge of the blob is thus in the middle and it tends to separate the nearby

dipoles. Figure 3 shows a typical set of spacings between successive GH points in a BMPV

blob. Again there are two branches, one for the (+−)-pairs and another for the (−+)-pairs.

These two branches cross in the center.
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Fig. 3: A BMPV blob with N = 201 points and all flux parameters equal. The

jth point has GH charge (−1)j+1. This graph shows distances between neighboring

GH points. The curve from bottom-left to top-right shows the spacing between the

(2j − 1)th point and the (2j)th point, a (+−)-pair, j = 1, . . . , 100. The curve from

top-left to bottom-right shows the spacing between the (2j)th point and the (2j +1)th

point, a (−+)-pair, j = 1, . . . , 100. Note how the points are evenly spaced in the

middle and form a more diffuse “gas” of close dipoles of opposite orientation at the

edges.

One important consequence of this is that a black-ring blob and a black-hole blob are

very different from each other, despite having similar flux parameters. Moving a single GH

point out of a large blob, might naively appear to be a small perturbation; it can however

result in a huge “phase transition” in the interior structure of the blob. In particular,

moving a single +1 point from the edge of the “BMPV blob” in Figure 3 should result in a

transition to the distribution shown in Figure 2. We will see an example of this in Section

6.

4. Mergers and microstates

Having found some of the microstates corresponding to the maximally-spinning BMPV

black hole and to a supertube (zero-entropy black ring), we now revisit the merger process

of a black ring and a black hole from the perspective of microstates. We begin by recalling

some of the key results of [19].
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4.1. Classical mergers and their bubbled counterparts

Consider the U(1)-invariant configurations of a black ring and a black hole in which

the black hole lies on the axis of the ring, but offset “vertically” from the center. These

solutions were first obtained and studied in [19]. In particular, for fixed macroscopic

charges on the ring and black hole, it was shown how the embedding radius of the ring

must vary as one varies the offset. In this process, one component, J1, of the angular

momentum in the ring plane is conserved, while the other component, J2, changes. The

merger of the black ring with the black hole occurs precisely when JL ≡ J1 − J2 = 0.

Generically such a merger is thermodynamically irreversible and results in a BMPV

black hole (J1 = J2) with a total horizon area that exceeds the sum of the areas of the

two original horizons. There is, however, one possible way to make a reversible merger:

The initial black hole and black ring have to have vanishing horizon area and these could

merge to yield a larger, maximally-spinning (zero-horizon-area) black hole provided that

two conditions are met. First, the ring must merge with the black hole at the equator of

the black hole, so that at the point of merger the solution has a U(1) × U(1) invariance.

Secondly, the charge vectors of the ring and of the black hole must be parallel. Any other

merger will result in an entropy increase.

One can also study the merger by considering a U(1) × U(1) invariant solution de-

scribing a black ring with a black hole in the center [23,6,7]. As the ring is made smaller

and smaller by, for example, decreasing its angular momentum, it eventually merges into

the black hole. At the point of merger, this solution is identical to the merger described

above with the black ring grazing the black-hole horizon. Hence this U(1)×U(1) invariant

solution can be used to study mergers where the black ring grazes the black hole horizon at

the point of merger; all the reversible mergers and some of the irreversible mergers belong

to this class.

In the previous section we have seen how to create bubbled solutions corresponding

to zero-entropy black rings and maximally-spinning black holes. The generic bubbled

solutions with GH base have a U(1) symmetry corresponding to JR ≡ J1 + J2 and if the

GH points all lie on an axis then the solution is U(1) × U(1) invariant. Conversely [18],

all U(1) × U(1) invariant, four-dimensional hyper-Kähler metrics must be of GH form.

We can therefore study the merger of bubbled microstates by constructing U(1) × U(1)

invariant bubbling solutions describing a black ring with a black hole in the center. By

decreasing some of the flux parameters of the solution one can decrease the radius of the
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bubbling black ring and merge it into the bubbling black hole to create a larger bubbling

black hole.

In this section we consider a bubbling black hole with a very large number of GH

centers, sitting at the center of the simplest bubbled supertube [2], generated by a pair of

GH points9. We expect two different classes of merger solution depending upon whether

the flux parameters on the bubbled black hole and bubbled black ring are parallel or not.

These correspond to reversible and irreversible mergers respectively. We will examine both

situations in some detail, particularly when all the GH points lie on an axis and in which

the solution has a U(1) × U(1) symmetry, and indeed find that reversible and irreversible

mergers of microstates have very different physics. First, however, we will establish some

general results about the charges and angular momenta of the bubbled solutions that

describe a bubbled black ring of two GH centers with a BMPV black-hole blob at the

center.

4.2. Some exact results

We begin by seeing what may be deduced with no approximations whatsoever. Our

purpose here is to separate all the algebraic formulae for charges and angular momenta

into those associated with the black hole foam and those associated with the bubbled

supertube. We will consider a system of N GH points in which the first N − 2 points will

be considered to be a blob and the last two points will have qN−1 = −Q and qN = Q. The

latter two points can then be used to define a bubbled black ring.

Let k̂I
0 denote the average of the flux parameters over the first (N − 2) points:

k̂I
0 ≡ 1

(N − 2)

N−2∑

j=1

kI
j , (4.1)

and introduce k-charges that have a vanishing average over the first (N − 2) points:

k̂I
j ≡ kI

j − (N − 2) qj k̂
I
0 , j = 1, . . . , N − 2 . (4.2)

9 Of course it is straightforward to generalize our analysis to the situation where both the

supertube and the black hole have a large number of GH centers. However, the analysis is simpler

and the numerical stability is better for mergers in which the supertube is composed of only two

points, and we have therefore focused on this.
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We also parameterize the last two kI -charges in exactly the same manner as for the bubbled

supertube (see (2.30)):

dI ≡ 2
(
kI

N−1 + kI
N

)
, f I ≡ 2 (N − 2) k̂I

0 +
(
1 + 1

Q

)
kI

N−1 +
(
1 − 1

Q

)
kI

N . (4.3)

One can easily show that the charge (2.21) decomposes into

QI = Q̂I + CIJK dJ fK , (4.4)

where

Q̂I ≡ −2CIJK

N−2∑

j=1

q−1
j k̂J

j k̂
K
j , (4.5)

The Q̂I are simply the charges of the black-hole blob, made of the first (N − 2) points.

The second term in (4.4) is exactly the expression, (2.31), for the charges of a bubbled

supertube with GH centers of charges +1, −Q and Q and k-charges (N − 2)k̂I
0 , k

I
N−1 and

kI
N , respectively. Thus the charge of this configuration decomposes exactly as if it were a

black-hole blob of (N − 2) centers and a bubbled supertube.

There is a similar result for the angular momentum, JR. One can easily show that:

JR = ĴR + dI Q̂I + jR , (4.6)

where

ĴR ≡ 4

3
CIJK

N−2∑

j=1

q−2
j k̂I

j k̂
J
j k̂

K
j , (4.7)

and

jR ≡ 1
2
CIJK

(
f IfJdK + f IdJdK

)
− 1

24
(1 −Q−2)CIJK dIdJdK . (4.8)

The term, ĴR, is simply the right-handed angular momentum of the black-hole blob made

from N−2 points. The “ring” contribution to the angular momentum, jR, agrees precisely

with J1 +J2 given by (2.32) and (2.33) for an isolated bubbled supertube. The cross term,

dIQ̂I is represents the interaction of the flux of the bubbled ring and the charge of the

black-hole blob. This interaction term is exactly the same as that found in [6,7,19] for a

concentric black hole and black ring.

Thus, as far as the charges and JR are concerned, the complete system is behaving

as though it were a black-hole blob of (N − 2) points interacting with a bubbled super-

tube defined by the points with GH charges ±Q and a single point with GH charge +1
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replacing the black-hole blob. Note that no approximations were made in the foregoing

computations, and the results are true independent of the locations of the GH charges.

To make further progress we need to make some assumptions about the configuration

of the points. Suppose, for the moment, that all the GH charges lie on the z-axis at points

zi with zi < zi+1. In particular, the GH charges, −Q and +Q, are located at zN−1 and

zN respectively.

With this ordering of the GH points, the expression for ~JL collapses to:

JL = 4
3 CIJK

∑

1≤i<j≤N

qi qj Π
(I)
ij Π

(J)
ij Π

(K)
ij . (4.9)

This expression can then be separated, just as we did for JR, into a black-hole blob

component, a ring component, and interaction cross-terms. To that end, define the left-

handed angular momentum of the blob to be:

ĴL = 4
3 CIJK

∑

1≤i<j≤N−2

qi qj Π
(I)
ij Π

(J)
ij Π

(K)
ij . (4.10)

Note that

Π
(I)
ij ≡

(
kI

j

qj
− kI

i

qi

)
=

(
k̂I

j

qj
− k̂I

i

qi

)
, 1 ≤ i, j ≤ N − 2 ,

and so this only depends upon the fluxes in the blob.

The remaining terms in (4.9) may then be written in terms of k̂I
j , dI and f I defined

in (4.2) and (4.3). In particular, there are terms that depend only upon dI and f I , and

then there are terms that are linear, quadratic and cubic in k̂I
j (and depend upon dI and

f I). The linear terms vanish because
∑N−2

j=1 k̂I
j ≡ 0, the quadratic terms assemble into Q̂I

of (4.5) and the cubic terms assemble into ĴR of (4.7). The terms proportional to (4.7)

cancel between the terms with j = N − 1 and j = N , and one is left with:

JL = ĴL − dI Q̂I + jL , (4.11)

where jL is precisely the angular momentum, JT , of the tube:

jL ≡ 1
2 CIJK

(
dIfJfK − f IdJdK

)
+

(3Q2 − 4Q+ 1

24Q2

)
CIJK dIdJdK . (4.12)
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Observe that (4.8) and (4.12) are exactly the angular momenta of the simplest bubbled

supertube, (2.32) and (2.33). Again we see the cross-term from the interaction of the ring

dipoles and the electric charge of the blob. Indeed, combining (4.6) and (4.11), we obtain:

J1 = Ĵ1 + j1 , J2 = Ĵ2 + j2 + dI Q̂I , (4.13)

which is exactly how the angular momenta of the classical ring-hole solution decompose

[19]. In particular, the term coming from the interaction of the ring dipole moment to the

black hole charge only contributes to J2.

The results obtained above are independent of whether the blob of N − 2 points is a

BMPV black-hole blob, or a more generic configuration. However, to study mergers, we

will explore from now on configurations in which the blob is a black-hole microstate, with

ĴL = 0. The end result of the merger process is also a BMPV black hole microstate, and

so JL = 0. Therefore, the exact merger condition is simply:

Ω ≡ 1
2 CIJK

(
dIfJfK − f IdJdK

)
+

(3Q2 − 4Q+ 1

24Q2

)
CIJK dIdJdK − dI Q̂I

= 0 .

(4.14)

Using (2.34), this may be written:

JT − dI Q̂I = 0 , (4.15)

which is precisely the condition obtained in [19] for a classical black ring to merge with a

black hole at its equator.

One should note that the argument that led to the expressions (4.11) and (4.12), and

the exact merger condition, (4.14), apply far more generally. In particular we only needed

the fact that the unit vectors, ŷij , defined (2.29), are all parallel for j = N − 1 and j = N .

This is approximately true in may contexts, and most particularly if the line between

the (N − 1)th and N th points runs through the blob and the width of the blob is small

compared to the distance to these two points.

One should also not be surprised by the generality of the result in equation (4.12).

The angular momentum, JT , is an intrinsic property of a black ring, and hence for a zero-

entropy black ring, JT can only depend on the d’s and f ’s, and cannot depend on the black

hole charges (that is, the k̂I
j ). Therefore, we could have obtained (4.12) by simply setting

the black hole charge to zero, and then reading off JT from the simplest bubbling black ring

solution [2] discussed in sub-section 2.3. Hence, one should think about the expression of

JT in (2.34) as a universal relation between intrinsic properties of the bubbled ring: JT , d
I

and f I .
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4.3. Some simple approximations

We now return to a general distribution of GH points, but we will assume that the two

“exceptional points” (the (N − 1)th and N th points) are close together but very far from

the black-hole blob of the remaining (N − 2) points. Set up coordinates in the geometric

center of the black-hole blob, i.e. choose the origin so that

N−2∑

i=1

~ri = 0 . (4.16)

Let r0 ≡ |~rN−1| be the distance from the geometric center of the blob to the first exceptional

point, and let r̂0 be the unit vector in that direction. The vector, ~∆ ≡ ~rN − ~rN−1, defines

the width of the ring. We will assume that the magnitudes ∆ ≡ |~∆| and rj ≡ |~rj | are small

compared to r0. We will also need the first terms of the multipole expansions:

1

|~rN−1 − ~rj |
=

1

r0
+

~rj · r̂0
r20

+ . . .

1

|~rN − ~rj |
=

1

r0
+

(~rj − ~∆) · r̂0
r20

+ . . . .

(4.17)

For simplicity, we will also assume that the two “exceptional points” are co-linear with the

origin so that

rN ≡ |~rN | = r0 + ∆ . (4.18)

The last two bubble equations are then:

γ

∆
−

N−2∑

j=1

qj αj

|~rN − ~rj |
=

∑

I

(
N QkI

0 − kI
N

)
, (4.19)

− γ

∆
+

N−2∑

j=1

qj βj

|~rN−1 − ~rj |
= −

∑

I

(
N QkI

0 + kI
N−1

)
(4.20)

where kI
0 is given in (2.22) and

αj ≡ 1
6
QCIJK Π

(I)
j N Π

(J)
j N Π

(K)
j N

= 1
6 QCIJK

(
kI

N

Q
−
kI

j

qj

) (
kJ

N

Q
−
kJ

j

qj

) (
kK

N

Q
−
kK

j

qj

)
,

(4.21)

βj ≡ 1
6 QCIJK Π

(I)
j (N−1) Π

(J)
j (N−1) Π

(K)
j (N−1)

= − 1
6 QCIJK

(
kI

N−1

Q
+
kI

j

qj

)(
kJ

N−1

Q
+
kJ

j

qj

) (
kK

N−1

Q
+
kK

j

qj

)
,

(4.22)
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γ ≡ 1
6 Q

2CIJK Π
(I)
(N−1) N Π

(J)
(N−1) N Π

(K)
(N−1) N = 1

48 Q
−1CIJK dI dJ dK . (4.23)

It is also convenient to introduce

α0 ≡
N−2∑

j=1

qj αj , β0 ≡
N−2∑

j=1

qj βj . (4.24)

If one adds (4.19) and (4.20) then the terms involving γ cancel and using (4.17) one

then obtains:

N−2∑

j=1

qj

[
αj

(
1

r0
+

(~rj − ~∆) · r̂0
r20

)
− βj

(
1

r0
+
~rj · r̂0
r20

)]
= 1

2

∑

I

dI . (4.25)

One now needs to perform the expansions with some care. Introduce the flux vector:

XI ≡ 2 f I − dI − 4 (N − 2) k̂I
0 , (4.26)

and note that the fluxes between the blob and ring points are given by:

Π
(I)
j (N−1) = −1

4

[
XI +Q−1 dI + 4 q−1

j kI
j

]
, Π

(I)
j N = −1

4

[
XI −Q−1 dI + 4 q−1

j kI
j

]
.

(4.27)

In particular, the difference of these fluxes is simply the flux through the two-cycle running

between the two ring points:

Π
(I)
j N − Π

(I)
j (N−1) =

dI

2Q
= Π

(I)
(N−1) N . (4.28)

For the ring to be far from the black hole, the fluxes Π
(I)
j (N−1) and Π

(I)
j N must be large. For

the ring to be thin (∆ ≪ r0), these fluxes must be of similar order, or Π
(I)
(N−1) N should

be small. Hence we are assuming that dI

2Q is small compared to XI . We are also going

to want the black hole and the black ring to have similar charges and angular momenta,

JR, and one of the ways of achieving this is to make f I , dI and Nk̂I
0 of roughly the same

order.

Given this, the leading order terms in (4.25) become:

N−2∑

j=1

qj

[
(αj − βj)

r0
− αj

∆

r20

]
= 1

2

∑

I

dI . (4.29)

One can then determine the ring width, ∆, using (4.19) or (4.20). In particular, when

the ring width is small while the ring radius is large, the left-hand side of each of these
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equations is the difference of two very large numbers of similar magnitude. To leading

order we may therefore neglect the right-hand sides and use the leading monopole term to

obtain:

β0
∆

r0
≈ α0

∆

r0
=

[ N−2∑

j=1

qj αj

]
∆

r0
≈ γ , (4.30)

and hence (4.25) becomes:

−γ +
N−2∑

j=1

qj (αj − βj) ≈
[

1
2

∑

I

dI

]
r0 . (4.31)

Using the explicit expressions for αj , βj and γ, one then finds:

r0 ≈
[
4

∑

I

dI

]−1[
1
2
CIJK (dIfJfK − f IdJdK)

+

(
3Q2 − 4Q+ 1

24Q2

)
CIJK dIdJdK − dIQ̂I

]
.

(4.32)

This is exactly the same as the formula for the tube radius that one obtains from (2.35)

and (2.34). Note also that we have:

r0 ≈
[
4

∑

I

dI
]−1[

jL − dIQ̂I

]
, (4.33)

where jL the angular momentum of the supertube (4.11). In making the comparison to

the results of [19], recall that for a black ring with a black hole exactly in the center, the

embedding radius in the standard, flat R
4 metric is given by:

R2 =
l6p
L4

[ ∑
dI

]−1 (
JT − dIQ̂I

)
. (4.34)

The transformation between a flat R
4 and the GH metric with V = 1

r
involves setting

r = 1
4
ρ2, and this leads to the relation R2 = 4RT . We therefore have complete consistency

with the classical merger result.

Note that the classical merger condition is simply r0 → 0, which is, of course, very

natural. This might, at first, seem to fall outside the validity of our approximation, however

we will see in the next section that for irreversible mergers one does indeed maintain

∆, rj ≪ r0 in the limit r0 → 0. Reversible mergers cannot however be described in this

approximation, and have to be analyzed numerically. This is the subject of section 6.
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5. Irreversible mergers and scaling solutions

We now show that an irreversible merger occurs in such a manner that the ring radius,

r0, the ring width, ∆, and a typical separation of points within the black-hole blob all limit

to zero while their ratios all limit to finite values. We will call these scaling solutions, or

scaling mergers. As the merger progresses, the throat of the solution becomes deeper and

deeper, and corresponding redshift becomes larger and larger. The high-redshift “deep

microstates” that result are microstates of a BPS back hole with classically large horizon

area.

5.1. Merging a ring and a black hole

We use the solution discussed in the previous section, and we decrease the radius

of the bubbled ring, r0 by decreasing some of its flux parameters. We take all the flux

parameters of the (N − 2) points in the blob to be parallel:

kI
j = k̂I

0 = kI , j = 1, . . . , N − 2 , (5.1)

Further assume that all the GH charges in the black-hole blob obey qj = (−1)j+1, j =

1, . . . , N − 2. We therefore have

Q̂I = 2 (N − 1)(N − 3)CIJK kJkK , ĴR = 8
3

(N − 1)(N − 2)(N − 3)CIJK kIkJkK .

(5.2)

Define:

µi ≡ 1
6

(N − 2 − qi)
−1CIJK

N−2∑

j=1
j 6=i

Π
(I)
ij Π

(J)
ij Π

(K)
ij

qj
rij

, (5.3)

then the bubble equations for this blob in isolation (i.e. with no addition bubbles, black

holes or rings) are simply:

µi =

3∑

I=1

kI , (5.4)

More generally, in any solution satisfying (5.1), if one finds a blob in which the µi are all

equal to the same constant, µ0, then the GH points in the blob must all be arranged in the

same way as an isolated black hole, but with all the positions scaled by µ−1
0

(∑3
I=1 k

I
)
.
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Now consider the full set of N points with ∆, rj ≪ r0. In the previous sub-section

we solved the last two bubble equations and determined ∆ and r0 in terms of the flux

parameters. The remaining bubble equations are then:

(N − 2 − qi)µi +
αi

|~rN − ~ri|
− βi

|~r(N−1) − ~ri|
=

3∑

I=1

(
(N − 2 − qi) k

I +
dI

2

)
, (5.5)

for i = 1, . . . , N − 2. Once again we use the multipole expansion in these equations:

(N − 2 − qi)µi +
(αi − βi)

r0
− αi ∆

r20
=

3∑

I=1

(
(N − 2 − qi) k

I +
dI

2

)
, (5.6)

It is elementary to show that:

αi − βi = 1
8

(jL − dI Q̂I) + γ − 1
8

(N − 2 − qi)CIJK dI kJ XK , (5.7)

where XI is defined in (4.26). If one now uses this identity, along with (4.30) and (4.33)

in (5.6) one obtains:

(N − 2 − qi)µi − 1

r0
CIJK

[
1
8 (N − 2 − qi) d

I kJ XK −
(
1 − αi

α0

)
γ
]

≈ (N − 2 − qi)
3∑

I=1

kI .

(5.8)

Finally, note that:

α0 − αi = Q (N − 2 − qi)CIJK

[
1
32

(XI − 1
Q
dI) (XJ − 1

Q
dJ) kK + 1

6
kI kJ kK

]
, (5.9)

which means that all the terms in (5.8) have a factor of (N − 2 − qi). Hence the bubble

equations (5.5) reduce to:

µi ≈
( 3∑

I=1

kI
)

+
1

r0
CIJK

[
1
8 d

I kJ XK

− α−1
0 Qγ

(
1
32 (XI − 1

Qd
I) (XJ − 1

Qd
J) kK + 1

6 k
I kJ kK

) ]

≈
( 3∑

I=1

kI
)

+
1

r0
CIJK

[
1
8 d

I kJ XK − α−1
0 Qγ

(
1
32 X

I XJ kK + 1
6 k

I kJ kK
) ]
,

(5.10)

where we have used the assumption that XI is large compared to Q−1dI .
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Observe that the right-hand side of (5.10) is independent of i, which means that the

first (N−2) GH points satisfy a scaled version of the equations (5.4) for a isolated, bubbled

black hole. Indeed, if ~rBH
i are the positions of a set of GH points satisfying (5.4) then we

can solve (5.10) by scaling the black hole solution, ~ri = λ−1~rBH
i , where the scale factor is

given by:

λ ≈ 1 +
1

r0

( 3∑

I=1

kI
)−1

CIJK

[
1
8
dI kJ XK − α−1

0 Qγ
(

1
32
XI XJ kK + 1

6
kI kJ kK

) ]
.

(5.11)

Notice that as one approaches the critical “merger” value, at which Ω = jL −dI Q̂I =

0, (5.11) implies that the distance, r0, must also scale as λ−1. Therefore the merger

process will typically involve sending r0 → 0 while respecting the assumptions made in our

approximations (∆, ri ≪ r0). The result will be a “scaling solution” in which all distances

in the GH base are vanishing while preserving their relative sizes.

We have indeed verified this picture of the generic merger process by making quite a

number of numerical computations, one of which we will present in the next subsection.

We tracked one merger through a range where the scale factor, λ, varied from about 4

to well over 600. We have also checked that this scaling behavior is not an artefact of

axial symmetry. We performed several numerical simulations in which the GH points of

the black-hole blob were arranged along a symmetry axis but the bubbled ring approached

the black-hole blob at various angles to this axis. We found that the scaling behavior was

essentially unmodified by varying the angle of approach.

An important exception to the foregoing analysis arises when the term proportional

to r−1
0 in (5.10) vanishes to leading order. In particular, this happens if we violate one of

the assumptions of our analysis, namely, if one has:

XI ≡ 2 f I − dI − 4 (N − 2) kI ≈ 0 , (5.12)

to leading order in Q−1dI . If XI vanishes one can see that, to leading order, the merger

condition is satisfied:

Ω ≡ jL−dI Q̂I = 1
8 CIJK dI

[
XJXK+8 (N−2) kJXK−1

3 Q
−2 (4Q−1) dJdK+16 kJkK

]
≈ 0 ,

(5.13)

and so one must have r0 → 0. However, the foregoing analysis is no longer valid, and so

the merger will not necessarily result in a scaling solution.
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An important example of this occurs when kI , dI and f I are all parallel:

kI = k uI , dI = d uI , f I = f uI , (5.14)

for some fixed uI . Then the merger condition (5.13) is satisfied to leading order, only when

X ≡ (2 f − d− 4 (N − 2) k) vanishes. We will discuss examples of this in the next section,

where we will see that the merger process does not involve scaling and the GH points of

the ring move very close to the GH points of the black hole.

For non-parallel fluxes it is possible to satisfy the merger condition, (5.13), while

keeping XI large, and the result is a scaling solution.

Even if it looks like irreversible mergers progress until the final size on the base van-

ishes, this is an artifact of working in a classical limit an ignoring the quantization of the

fluxes. After taking this into account we can see from (5.10) that r0 cannot be taken

continuously to zero because the dI , f I , XI and kI are integers of half-integers. Hence,

the final result of an irreversible merger is a microstate of a high, but finite, redshift and

whose throat only becomes infinite in the classical limit.

In order to find the maximum depth of the throat, one has to find the smallest allowed

value for the size of the ensemble of GH points. During the irreversible merger all the

distances scale, the size of the ensemble of points will be approximately equal to the

distance between the ring blob and the black hole blob, which is given by (4.33). Since

jL − dIQ̂I is quantized, the minimal size of the ensemble of GH points is given by:

r|min ≈ 1

d1 + d2 + d3
. (5.15)

More generically, in the scaling limit, the GH size of a solution with left-moving angular

momentum JL is

r|min ≈ JL

d1 + d2 + d3
. (5.16)

Since the dI scale like the square-roots of the ring charges, we can see that in the

classical limit, r|min becomes zero and the throat becomes infinite.

5.2. Numerical results for a simple merger

Given that most of the numerical investigations and most of the derivations we have

discussed above use black hole microstate made from a very large number of points, it is

quite hard to illustrate explicitly the details of a microstate merger.
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To do this, we investigate a black hole microstate that is made from three points, of

GH charges −n, 2n+1, and −n, and its merger with a black ring microstate of GH charges

−Q and +Q. This black hole microstate can be obtained by redistributing the position of

the GH points inside the BH blob considered in the previous subsection, putting all the

+1 charges together and putting half of the −1 charges together on one side of the positive

center and the other half on the other side10

We consider a configuration with five GH centers of charges

q1 = −12 , q2 = 25 , q3 = −12 , q4 = −20 , q5 = 20 . (5.17)

The first three points give the black hole “blob,” which can be thought as coming from a

blob of N − 2 = 49 points upon redistributing the GH points as described above. The kI

parameters of the black hole points are:

kI
1 = | q1| k̂I

0 , kI
2 = | q2| k̂I

0 , kI
3 = | q3| k̂I

0 , (5.18)

where k̂I
0 is the average of the kI over the BH points, defined in (4.1). To merge the ring

and the black hole microstates we varied k̂2
0 while keeping k̂1

0 and k̂3
0 fixed:

k̂1
0 =

5

2
, k̂3

0 =
1

3
, (5.19)

We also fixed the ring parameters f I and dI as follows:

d1 = 100 , d2 = 130 , d3 = 80 , f1 = f2 = 160 , f3 = 350 (5.20)

The relation between these parameters and the kI of the ring is given in (4.3), where N−2

(the sum of |qi| for the black hole points) is now |q1| + |q2| + |q3| = 49.

10 Since the k parameters on the BH points are the same, the bubble equations give no obstruc-

tion to moving BH centers of the same GH charge on top of each other.
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Parameters k̂2
0 x4 − x3

x4 − x3

x2 − x1

x2 − x1

x3 − x2

x2 − x1

x5 − x4

JL

Q1Q2Q3 − J2
9
1

R/4

Q1Q2Q399

1 3.0833 175.5 2225 1.001 2.987 215983 .275

2 3.1667 23.8 2069 1.001 3.215 29316 .278

3 3.175 8.65 2054 1.001 3.239 10650 .279

4 3.1775 4.10 2049 1.001 3.246 5050 .279

5 3.178 3.19 2048 1.001 3.248 3930 .279

6 3.17833 2.59 2048 1.001 3.249 3183 .279

7 3.17867 1.98 2047 1.001 3.250 2437 .279

8 3.1795 .463 2046 1.001 3.252 570 .279

9 3.17967 .160 2045 1.001 3.253 197 .279

Table 1: Distances between points in the scaling regime. The value of k̂2
0 is varied to produce

the merger, and the other parameters of the configuration are kept fixed: Q = 20, q1 = q3 =

−12, q2 = 25, k̂1
0 = 5

2
, k̂3

0 = 1

3
, d1 = 100, d2 = 130, d3 = 80, f1 = f2 = 160, f3 = 350. Both

the charges and JR remain approximately the same, with JR ≈ 3.53 × 107.

The charges and JR angular momentum of the solutions are approximately

Q1 ≈ 68.4 × 103, Q2 ≈ 55.8 × 103, Q3 ≈ 112.8 × 103, JR ≈ 3.53 × 107, (5.21)

while JL goes to zero as the solution becomes deeper and deeper. The result of the merger

is a microstate of a BMPV black hole that is 28% below maximal rotation (see the last

column of Table 1.)

Numerically solving the bubble equations (2.18), one obtains the positions xi of the

five points as a function of k̂2
0 . Some of the results are shown in Table 1. As one can

see from the table, a very small increase in the value of k̂2
0 causes a huge change in the

positions of the points on the base. If we were merging classical black holes and classical

black rings, this increase would correspond to the black hole and the black ring merging.

For microstates, this results in the scaling described above: all the distances on the base

become smaller, but their ratios remain fixed.

Analytically verifying that these solutions have no closed timelike curves is not that

straightforward, since the quantities in (2.19) have several hundred terms. However, we

have investigated numerically and graphically for the possible presence of closed time-

like curves, and have found that the equations (2.19) are satisfied throughout the scaling

solutions discussed in this sub-section.
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5.3. A pincer movement: Two rings and a black hole

The scaling solutions that we have constructed so far do not have JL = 0, but only

achieve this in the extreme limit in which r0 → 0. Thus these solutions have the charges of

a black hole of non-zero entropy only in the large-throat limit. While this feature of deep

microstates makes them similar to typical microstates, it is interesting to explore whether

solutions with JL = 0 and Q1Q2Q3 > J2
R/4 must necessarily have long throats, or whether

they can also be shallow.

Constructing solutions with JL = 0 is very simple: One can put identical ring blob

on opposite sides of the black-hole blob. Indeed, one can make Z2 invariant solutions in

this manner and, as we remarked earlier, this guarantees JL = 0. From the perspective of

the asymptotically R
4 base, a ring blob located on axis to the left of the black-hole blob

describes a lack ring in one R
2 plane in R

4, while a ring blob located on axis to the right

of the black-hole blob describes a ring in the orthogonal R
2 plane. We are thus adding two

identical, perpendicular rings to the black hole, thereby guaranteeing J1 = J2.

We will again consider the merger of these rings with the black hole, and show that

having two rings instead of one modifies the analysis above very little. We can again find

a scaling behavior, but now JL = 0 and Q1Q2Q3 > J2
R/4 throughout the merger. Hence,

this microstate will have the charges of a black hole of non-zero entropy when it is shallow

(before the scaling regime), when it is deep, and in the intermediate regime.

Once again we consider a system of N GH points but now the first pair and last pair

are “exceptional,” and correspond to rings. The black-hole blob consists of the (N − 4)

points in the middle:

q1 = Q1 , q2 = −Q1 , qN−1 = −Q2 , qN = Q2 , qj = (−1)j+1 , j = 3, . . . , N − 2 ,

(5.22)

kI
i = kI , j = 3, . . . , N − 2 . (5.23)

As before, it is convenient to define11:

dI
1 ≡ 2

(
kI
1 + kI

2

)
, f I

1 ≡ 2 (N − 4) kI +
(
1 + 1

Q1

)
kI
2 +

(
1 − 1

Q1

)
kI
1

dI
2 ≡ 2

(
kI

N−1 + kI
N

)
, f I

2 ≡ 2 (N − 4) kI +
(
1 + 1

Q2

)
kI

N−1 +
(
1 − 1

Q2

)
kI

N .
(5.24)

11 These definitions are not naturally orthogonal fluxes in cohomology, but they have the virtue

of being symmetric between the rings.
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We now have

Q̂I = 2 (N − 3)(N − 5)CIJK kJkK , ĴR = 8
3

(N − 3)(N − 4)(N − 5)CIJK kIkJkK ,

(5.25)

and we define

QRing,i
I ≡ CIJK dJ

i f
K
i . (5.26)

jR,i ≡ 1
2 CIJK

(
f I

i f
J
i d

K
i + f I

i d
J
i d

K
i

)
− 1

24 (1 −Q−2
i )CIJK dI

i d
J
i d

K
i . (5.27)

Then we find:

Qi = Q̂I + QRing,1
I + QRing,2

I + CIJK dJ
1 d

K
2 . (5.28)

and

JR = ĴR + jR,1 + jR,2 + (dI
1 + dI

2) Q̂I + dI
1Q

Ring,2
I + dI

2Q
Ring,1
I

+ 1
2 CIJK (dI

1d
J
2 d

K
2 + dI

2d
J
1d

K
1 ) .

(5.29)

These formulas agree identically to the formulas that give the charges and angular momenta

of two concentric black rings with a black hole in the middle [7]. One can also obtain similar

expressions for JL, but here we will focus on Z2-invariant solutions and so JL = 0.

Now set

dI
1 = dI

2 = dI , f I
1 = f I

2 = f I , (5.30)

and impose Z2 symmetry in the distribution of GH points. In particular, take the origin

to be the center of the distribution and define:

r0 ≡ |~rN−1| = |~r2| , ∆ ≡ |~rN − ~rN−1| = |~r1 − ~r2| . (5.31)

The analysis for ∆, ri ≪ r0 proceeds in an almost identical manner to the asymmetric

solution described above, but with three modifications:

(i) One shifts N → N − 2 throughout because one now has N − 4 points, as opposed to

N − 2 points, in the black-hole blob.

(ii) The value of r0 is still given by (4.32) and the merger condition is still given by (4.14),

but this is no longer related to JL since the latter is always zero.

(iii) While the expression for r0 is unchanged, the black-hole blob now feels twice the

compression because there are now two rings. Thus (5.10) becomes:

µi ≈
( 3∑

I=1

kI
)

+
2

r0
CIJK

[
1
8
dI kJ XK − α−1

0 Qγ
(

1
32
XI XJ kK + 1

6
kI kJ kK

) ]
.

(5.32)
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Thus to leading order, the two rings do not influence each other and each settles down

as if the other were not there. However the black hole shrinks to about half its previous

size. From numerical simulations, we see some amusing features at sub-leading order. In

particular, when a single ring is present, the distribution of GH points in the black-hole

blob develops a small dipolar asymmetry and the scale factor varies very slightly across

the blob (to first sub-leading order). When two rings are present, the symmetry is restored

and the variation in the distribution of GH points only appears in the quadrupole moments

and the scale factor has only tiny variations across the blob (i.e. to second sub-leading

order).

5.4. The metric structure of the deep microstates

The physical metric is given by (2.1) and the physical lengths on the three-dimensional

base of the GH space are therefore determined by:

ds33 = (Z1Z2Z3)
1/3 V d~y · d~y . (5.33)

The physical lengths are thus determined by the functions, ZIV , and if one has:

(Z1Z2Z3)
1/3 V ∼ 1

r2
, (5.34)

then the solution looks is an AdS2×S3 black hole throat. In the region where the constants

in the harmonic functions become important, this throat turns into an asymptotically flat

R
(4,1) region. Near the GH centers that give the black hole bubbles the function Z1Z2Z3

becomes constant. This corresponds to the black-hole throat “capping off”. As the GH

points get closer in the base, the region where (5.34) is valid becomes larger, and hence

the throat becomes longer.

As one may intuitively expect, in a scaling solution the ring is always in the throat

of the black hole. Indeed, the term “1” on the right hand side of (5.11) originates from

the constant terms in LI and M , defined in (2.10). In the scaling regime this term is

subleading, which implies the ring is in a region where the 1 in the LI (and hence the ZI)

is also subleading. Hence, the ring lies in the AdS throat of the black-hole blob.

Increasing the scale factor, λ, in (5.11) means that the bubbles localize in a smaller and

smaller region of the GH base, which means that the throat is getting longer and longer.

The physical circumference of the throat is fixed by the charges and the angular momentum,

and remains finite even though the blob is shrinking on the GH base. Throughout the
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scaling the throat becomes deeper and deeper; the ring remains in the throat, and also

descends deeper and deeper into it, in direct proportion to the overall depth of the throat.

On a more mechanistic level, the physical distance through the blob and the physical

distance from the blob to the ring are controlled by integrals of the form:

∫
(Z1Z2Z3 V

3)1/6 dℓ . (5.35)

In the throat the behavior of this function is given by (5.34) and this integral is logarithmi-

cally divergent as r → 0. However, the ZI limit to finite values at ~r = ~rj and between two

very close, neighboring GH points in the blob, the integral has a dominant contribution of

the form

C0

∫
|(x− xi)(x− xj)|−1/2 dx , (5.36)

for some constant, C0, determined by the flux parameters. This integral is finite and indeed

is equal to C0 π. Thus we see that the throat gets very long but then caps off with bubbles

of finite physical size.

Since the ring carries charge, its presence will cause the limiting value of the throat

size to jump. Figure 4 shows a representative numerical example. These are plots showing

log(ZIV ) against log(r). In the Coulomb region, away from the ring and the blob, one has

ZI V ∼ QI

r2
, (5.37)

where QI is the charge of the configuration inside a radius r. Therefore the log-log plot

will show such regions as straight lines of gradient −2 with an intercept fixed by log(QI).

Both graphs in Figure 4 show a transition between two such lines, and the “jump” between

the lines is accounted for by the jump in the charge as one encounters the ring. The first

graph shows the behavior of ZIV taken right through the GH points of the ring, while the

second graph shows the behavior ZIV in an orthogonal direction in which one does not

pass near the GH points of the ring. As expected, in both instances, the throat widens as

one passes the ring radius.
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Fig. 4: Typical plots of log(ZIV ) against log(r). The straight lines depict exact

Coulomb behavior for ZI while the actual solutions transition between two such lines

as the ring charge is included. The first graph passes directly through the ring points,

while the second goes in an orthogonal radial direction.

6. Reversible Mergers

6.1. Some numerical results in the merger transition

Once again we performed many numerical simulations for an odd number, N , of co-

linear GH charges. As before, we focused on a system with GH charges qj = (−1)j+1,

j = 1, . . . , N − 2 and qN−1 = −Q, qN = Q. We only considered solutions in which the

charges alternate in sign as one goes along the distribution. Before we discuss the results

we first need a better geometric understanding of this configuration.

We will take (y1, y2, y3) = (x, y, z) and suppose that the line of charges lies along

the z-axis, with the jth point at z = zj . We consider solutions with zj+1 > zj so that

the charges alternate in sign. We will also denote the polar angle in the (x, y) plane by

φ. One should recall that the GH metric requires one to solve for ~A in (2.3) and for the

configuration we are considering we can take

~A · d~y =
N∑

J=1

qj
(z − zj)

rj
dφ . (6.1)

On the z-axis, rj = |z − zj |, and since the charges alternate one has, on the z-axis:

~A · d~y = (−1)ℓ dφ , for zℓ−1 < z < zℓ , ℓ 6= N

~A · d~y = − (2Q− 1) dφ , for zN−1 < z < zN ,
(6.2)

where, for the purposes of the inequality, z0 = −∞, zN+1 = +∞.
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Now recall that the change of variables at infinity that takes the GH metric with

V ∼ 1
r to flat R

4 = R
2 × R

2 with coordinates (u, θ1) and (v, θ2) in each of the R
2 planes

involves taking:

θ1 = 1
2 (ψ + φ) , θ2 = 1

2 (ψ − φ) . (6.3)

This, combined with (6.2), means that the GH fiber defined by (dψ+A) alternates between

being in the (u, θ1) plane and the (v, θ2) plane. In particular, if the two exceptional points

are far away, then there is a long interval (zN−2 < z < zN−1) with GH fiber in the (u, θ1)

plane. Once one pushes this through the complete change of variables, one finds that, at

large scales, such a ring blob resembles a supertube in the (u, θ1) plane. More generally,

whether a blob like this corresponds to a ring in the (u, θ1) plane or the (v, θ2) plane

depends upon whether the large interval on the z-axis has (dψ+A) equal to (dψ+ dφ) or

(dψ − dφ), respectively.

In the simulations we set all the kI
j = +1 in the initial blob (j = 1, . . . , N − 2), and

took dI = d and f I = f , but otherwise arbitrary. We took Q to be fairly large (usually

about 30). We then did many series of simulations in which we adjusted d but kept the

ratio, f/d, fixed. The ring width, ∆, becomes smaller when the values of f/d get larger.

The value of d was adjusted so as to move the two exceptional “black ring” points in

from a great distance from the black-hole blob. The numerical solutions tend to be very

unstable, or rather delicate, particularly when the black ring points are near the bubbling

black hole. This is because there are a great many solutions to the bubble equations in

which points are re-ordered. These solutions are very “close to one another” when bubbles

become small, and the numerical algorithms readily jump between different branches of

the solution space. In spite of this, if one carefully adjusts the solution adiabatically and

uses the previous solution as initial data to find the next solution, one can follow a single

branch in the solution space.

At merger (defined by J1 = J2) we found that the assumption that the two ring points

are at a distance from the blob that is of the same order as the size of r0 in (4.33) is no

longer valid. It turns out that as one comes close to satisfying the merger condition, r0

is still somewhat larger than ri, but ∆/r0 is extremely small. Dropping the ∆/r0 term in

the derivation of the estimate of r0 means that when the merger condition (J1 = J2) is

satisfied, one still has:

r0 ≈ Q−1

[
24

∑

I

dI

]−1

CIJK dIdJdK . (6.4)
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While we have not been very careful in the derivation of this estimate, it turns out to work

rather well in the numerical simulations of mergers with parallel fluxes. For example, for

the result depicted in the first graph of Figure 5, we found that the exceptional points were

37.95 units (taking k = 1) from the center of the blob. The formula, (6.4), gives r0 ≈ 36.68.

We also found that at the merger value one could bring the exceptional points arbitrarily

close to the edge of the blob by taking Q to be large enough. This is also consistent with

(6.4),

In all the numerical simulations, the blob maintained the BMPV profile of Figure 3 so

long as the exceptional points remained relatively far away. However, as the exceptional

points approach the blob closely, the blob undergoes a “phase transition.” If the merger

value of r0 is still significantly larger than the blob size (as it is for the results depicted in

Figure 5) then bringing the exceptional points near the blob entails tracking the solution

past the merger condition. That is, one follows the solution as J1−J2 passes from positive

to negative values. We found that the two exceptional points generically do not enter

the blob (at least on this branch of solution space) but get very close to it, and actually

“steal” the outermost GH center and form a cluster of three points of net GH charge +1.

This cluster then moves away back towards the original distant position of the exceptional

points. Throughout this process J1 − J2 monotonically decreases.

The “theft” of a +1 GH point renders the blob neutral, and makes it to change from

a black-hole blob to a ring blob, with the concomitant redistribution of dipole pairings.

This “unzipping” phase transition in the blob happens extremely quickly as one varies d

below the merger point. Typical results are depicted in Figure 5.

Before the transition the “large interval” lies between zN−2 and zN−1, and so the

black ring points correspond to a ring in the (u, θ1) plane. After the transition, as the

cluster of three charges moves away, the “large interval” now lies between zN−3 and zN−2.

Therefore, at large scales the resulting configuration corresponds to a black hole microstate

surrounded by a black ring microstate in the (v, θ2) plane! Thus we are exploring a branch

of the solution space in which a bubbling supertube in one plane collapses into an extremal

black hole and a then a supertube emerges from the extremal black hole, but now in the

orthogonal plane. All the while, J1−J2 decreases. These obviously all represent reversible

mergers.

There are evidently a vast number of solutions and probably a vast number of branches

in the moduli space of locations of GH points. The branch we explored was probably the
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Fig. 5: These graphs show the distances between neighboring GH points for N = 203,

Q = 30, f = 4d, but with d decreasing from its merger value, d = 114.9074, in the first

graph to d = 114.84 in the top-right, d = 114.825 in the bottom-left and d = 114.80 in

the bottom right. Note how the distributions change between that of a black-hole blob

to that of a ring blob as d changes only by 0.1%. In the first graph the blob diameter

is 14.02 while the space to the first exceptional point is |zN−2 − zN−1| = 30.94. In

the second graph these quantities are 14.46 and 0.999, in the third they are 16.02 and

0.547. In the fourth graph, the “theft” has happened: The blob of N − 3 points has

radius 17.55 and the “large distance” is now |zN−3 − zN−2| = 4.908.

simplest that allowed J1 − J2 to decrease smoothly while preserving the order and co-

linearity of the GH points. There are almost certainly many other solutions in which the

GH points are reordered, perhaps with the exceptional points penetrating more deeply

into the blob. There are also quite probably solutions in which more GH points are stolen

from the blob.

6.2. Estimating the size of shallow microstates from mergers

As we have seen is section 5, deep microstates have very long black-hole-like throats,

and it is clear that they have the same size and macroscopic features as the black hole.

However, it is interesting to explore whether “shallow” microstates, that do not have long
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throats, also have the same macroscopic properties as the actual black hole. A good way

to estimate this size is to probe the shallow microstates using mergers.

The irreversible mergers that we considered in section 5 can, by no means, be con-

sidered “probing”. The merger collapses the foam, resulting in a deep microstate. This is

partially because the “probing ring” had comparable charges to those of the black hole.

To find the “size” of a shallow microstate one needs to merge it with a small probe-like

ring microstate and perform as nearly a reversible merger as possible. The calculations of

the previous sub-section describe exactly such a process.

As we have seen, the reversible merger happens when the ring foam sits in the vicinity

of the black hole foam. Therefore, at the merger point the shallow microstates essentially

touch, resulting in another shallow microstate. In the merger of classical black rings and

classical black holes, the horizons of the two objects also touch at the merger point. Hence,

reaching the horizon of the black hole corresponds in the microstate picture to reaching

the “edge” of the shallow microstates. This indicates that shallow microstate geometries

also have the same size and macroscopical properties as their corresponding classical black

holes.

7. Deep Microstates and Typical Microstates

As we have seen in the previous section, the throats of the deep microstates become

infinite in the classical limit. Nevertheless, taking into account flux quantization one can

find that the GH radius of microstates does not go all the way to zero, but to a finite value

(5.15), which corresponds to setting JL = 1.

One can estimate the energy gap of the solution by considering the lightest possible

state at the bottom of the throat, and estimating its energy as seen from infinity. The

lightest massive particle one can put on the bottom of the throat is not a Planck-mass

object, but a Kaluza-Klein mode on the S3. Its mass is

mKK =
1

RS3

=
1

(Q1Q2Q3)
1

6

(7.1)

and therefore the mass gap in a microstate of size rmin in the GH base is:

∆Er0
= mKK

√
g00|r=rmin

= mKK(Z1Z2Z3)
−1/3|r=rmin

=
rmin

(Q1Q5QP )1/2
. (7.2)
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Since in the case of a ring-hole merger rmin depends on the sum of the dI , its relation

with the total charges of the system is not straightforward. Nevertheless, we can consider

a regime where Q1 ∼ Q5 > QP , and in this regime the dipole charge that dominates the

sum in (5.16) is d3 ≈
√

Q1Q5

QP

. Hence

rmin =
JL

d3
≈ JL

√
QP

Q1Q5
, (7.3)

giving

∆Er0
≈ JL

Q1Q5
. (7.4)

For JL = 1 this matches the charge dependence of the mass gap of the black hole [29].

This M-theory frame calculation is done in the limit Q1 ∼ Q5 > QP , which is the limit

in which the solution, when put into the D1-D5-P duality frame, becomes asymptotically

AdS3 × S3 × T 4. 12 Hence, the mass gap computed in the bulk (7.4), should match the

mass gap of the dual microstate in the D1-D5 CFT.

As it is well known (see [31,32] for reviews) the states of this CFT can be characterized

by various ways of breaking an effective string of length N1N5 into component strings. BPS

momentum modes on these component strings carry JR. The fermion zero modes of each

component allow it in addition to carry one unit of JL. The typical CFT microstates that

contribute to the entropy of the three-charge black hole have one component string [21];

microstates dual to objects that have a macroscopically large JL have the effective string

broken into many component strings [33,34,30]. Hence, the only way a system can have a

large amount JL is to be have many component strings. The CFT mass gap corresponds

to exciting the longest component string, and is proportional to the inverse of its length.

The formula (7.4) immediately suggests a dual for the deep microstates. Consider

a long effective string of length N1N5 broken into JL component strings of equal length.

Each component string can carry one unit of left-moving angular momentum, totaling up

to JL. The length of each component string is

lcomponent =
N1N5

JL
, (7.5)

and hence the CFT mass gap is

∆ECFT ≈ JL

N1N5
. (7.6)

12 As shown in [30], in this limit d1 + d2 + d3 → d3, which justifies going from (5.16) to (7.3).
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This agrees with both the JL dependence and the charge dependence of the bulk mass gap.

While we have been cavalier about various numerical factors of order one, the agreement

that we have found suggests that deep microstates of angular momentum JL are dual to

CFT states with JL component strings. If this is true, then the deepest microstates, which

have JL = 1, correspond to states that have only one component string, of length N1N5.

This is a feature that typical microstates of the three-charge black hole have, and the fact

that deep microstates share this feature is quite remarkable.

Our analysis here has been rather heuristic. It would be very interesting to examine

this issue in greater depth by finding, at least approximate solutions to the wave equation

in these backgrounds, or performing a time-of-flight analysis along the lines of [33,34,15].

8. Final Remarks

We have examined bubbled solutions constructed using a generalized Gibbons-

Hawking base space. We have shown that if the GH points are localized in blobs of total

GH charge +1, then the solutions correspond to microstates of the maximally-spinning

BPS black hole. Similarly, blobs whose total GH charge is zero correspond to zero-entropy

black ring microstates.

We found numerically that inside a bubbling black ring the GH centers form tight

neutral dipole pairs, separated from each other by relatively large distances. On the other

hand, inside the black hole, the dipoles are only tightly bound around the edges, and in

the middle one finds an equally spaced distribution of positive and negative GH charges.

We have then investigated the merger of bubbling black rings and bubbling black holes,

and have found two types of mergers. If the final state has the charges corresponding to a

black hole of classically large horizon area (this would correspond to an irreversible merger

of a black hole and a black ring), then during the merger the distances between the GH

points on the base shrink, while the ratios of all these distances remain fixed. The physical

size of the bubbles that form the solution remains the same, but the throat of the solutions

becomes deeper and deeper. We have therefore called these solutions “deep” microstates.

Classically this scaling goes on forever, until all the distances in the base are zero.

However, the fact that the dipole charges are quantized does not allow one to take them

exactly to the value which would correspond to an infinite throat; hence, the depth of

the microstate is very large but finite for finite charges, and only becomes infinite in the

classical limit.
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When the length of the throat of a deep microstate is very large, this solution more

and more accurately resembles a genuine BPS back hole (which has an infinite throat),

except for the presence of a horizon. This feature of the deep microstates makes them very

attractive candidates for being typical BH microstates.

The similarity of the deep microstates to the typical CFT microstates can also be

observed from the crude AdS-CFT analysis we have attempted in Section 7. We have

argued that deep microstates have the right mass gap to be dual to CFT states described by

one long component string, and are thus similar in this respect to the typical microstates. It

is quite remarkable that the calculation that relates deep microstates of angular momentum

JL to states with JL component strings is independent of the number of GH centers. One

can speculate that solutions with different numbers of GH points may be related to CFT

states that have different distributions of momentum modes on the component strings. It

would be very important to establish whether such a relation exists, and more generally to

undertake an in-depth CFT investigation of deep microstates. This will be very fruitful,

and will hold the key to relating bubbling microstates to their CFT counterparts.

We have also used the merger of a black hole with two concentric black rings to obtain

microstate solutions that correspond to a black hole with classically large entropy but

which can range between shallow and deep microstates. Since the redshift of the shallow

and intermediate solutions does not diverge in the classical limit, it is likely that they are

“less typical” than the deep microstates, or that they are not microstates of the black hole,

but microstates of a configuration of a black hole with two concentric black rings. It would

be very interesting to explore how generic these solutions are, and what their CFT dual

is. It would also be very interesting to try to construct deep black ring microstates (which

would be similar to typical microstates of a black ring), and to analyze the merger of two

deep microstates, or of a shallow and a deep microstate.

We have also analyzed mergers in which no scaling takes place, and which result in

“shallow” microstates. We have found that during these mergers two shallow microstates

join, forming a larger shallow microstate. We have used this fact to estimate the size of

shallow microstates, and to argue that for the maximally-spinning black hole, the bubbles

extend to the location of the would-be classical horizon. This is a strong indication that

the shallow microstate geometries also have features that typical BH microstates should

have.

While the Gibbons-Hawking hyper-Kähler geometries are simple and “highly com-

putable,” it is likely that to make significant further progress in describing and counting the
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microstates of even ordinary BMPV black holes (with non-maximal angular momentum),

we will have to get some deeper understanding of the broader class of four-dimensional

generalized hyper-Kähler geometries. An obvious first step is to look at geometries that

still possess a U(1) isometry, but one that is not tri-holomorphic. Such geometries are

determined by the SU(∞) Toda equation [35,36]. In particular, we expect this class of

solutions to describe more general microstates of black holes and black rings, and perhaps

even axially aligned families of such objects. Such geometries will also describe the bubbled

versions of supertubes with arbitrary charge densities [37] and perhaps with shape modes

that are restricted to a plane. As we remarked in the introduction, such solutions are also

needed to describe the merging of microstates of two co-axial BMPV black holes.

Even more generally, supersymmetry merely requires that the base be hyper-Kähler,

and so the most general, and presumably by far the most numerous solutions will have

no isometries at all. It would be useful to see if twistor methods or generalized Legendre

transformations [38,39,40,41] could be adapted to this problem. These methods linearize

the Monge-Ampére equation that underlies the general hyper-Kähler metric, but in practice

it is hard to obtain explicit metrics from this method. On the other hand, if one is trying to

quantize and count such metrics then this may well be the natural way to proceed. Another

way to obtain more general families of microstate geometries would be to look for solutions

that have a nontrivial metric on the T 6, and cannot be reduced to five dimensions [34,17].

There is evidently a considerable number of interesting geometries yet to be discovered

and studied, and these geometries lie at the heart of understanding the interior structure

of black holes.
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Appendix A. More Details on the Entropy of the Foam

When a foam has a very large number of centers, one can obtain many solutions with

the same charges and angular momenta, but which have different flux parameters. In
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[1] we estimated the entropy of such arrangements (which we referred to as “topological”

entropy) and found that it is proportional to Q1/4. Since all the details of this estimate

were not given in [1] we devote this Appendix to this task.

If we work in M theory on T 6, then (3.3) implies that a black hole foam has

∑
k1

i =
1

2

√
Q2Q3

Q1
, (A.1)

and similarly for
∑
k2

i and
∑
k3

i . Hence, the total charges do not depend on the number,

GH charges or individual kI
i of the GH points, but only on the sums of the ki. In [1] we

found that the non-trivial entropy coming simply from the many possibilities of choosing

the positive, half-integer, k1
i subject to the constraint (A.1) is

S = 2π

√
1

6

(
Q2Q3

Q1

)1/2

. (A.2)

Naively there should be similar factors coming from partitioning k2
i and k3

i , which would

lead to a “topological” entropy :

Stopological = 2π





√
1

6

(
Q2Q3

Q1

)1/2

+

√
1

6

(
Q1Q2

Q3

)1/2

+

√
1

6

(
Q1Q3

Q2

)1/2


 . (A.3)

There are, however some subtleties. First, the partitioning of k1
i , k2

i and k3
i is not

completely independent. A bubble will collapse unless all three fluxes are non-zero, and so

we should count the ways of having non-zero partitions of all the kI
i over N bubbles and

then sum over N . It is, however, relatively easy to show that this additional constraint

only modifies the entropy (A.3) by terms that are logarithmic in the charges.

To see this, it is convenient to define:

g(z, q) ≡
∞∏

n=1

1

(1 − z qn)
=

∞∑

N=1

dN (z) qN . (A.4)

The coefficient of zm in dN (z) is the number of (non-zero) partitions of N into m positive

integers. The counting function we want is:

G(w, z; q1, q2, q3) ≡ g(z, q1) g(w, q2) g(z
−1w−1, q3)

=
∞∑

N1,N2,N3=1

dN1N2N3
(w, z) qN1

1 qN2

2 qN3

3 .
(A.5)
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To count the entropy one must find the coefficient of w0z0 in dN1N2N3
(w, z), where NJ =

(Q1Q2Q3)
1/2/QJ . Selecting these powers of w and z guarantees that all the partitions are

taken over the same number of bubbles. One can perform the asymptotic analysis of this

partition function using steepest descent methods13. One finds that for large NJ , one has

dN1N2N3
(w, z) ∼ exp

(
2

(√
N1 Li2(z) +

√
N2 Li2(w) +

√
N3 Li2(z−1w−1)

))
, (A.6)

provided that z, w lie in appropriate regions around z = w = 1. The functions, Li2, are

standard dilogarithms. One can extract the coefficient of w0z0 by contour integrals, but it

is easy to see that the leading exponential behavior of any such integral is dominated by

the value of (A.6) at z = w = 1, and using Li2(1) = π2

6 , one arrives at (A.3).

There is a simple, intuitive way of arriving at this result. The coefficients, dN (z), in

(A.4) are polynomials of degree N in z. The value dN (1) grows as exp(2π
√
N/6). Thus,

a “typical coefficient” in the polynomial, dN (z), grows as N−1 exp(2π
√
N/6). Therefore,

restricting to a single power of z simply leads to log(N) corrections to the entropy.

The second subtlety is that, given the k1
j , there are also further constraints on k2

j and

k3
j imposed by the global absence of CTC’s. These conditions are somewhat more difficult

to handle but we believe that the bubble equations, combined with some suitable positivity

conditions on the fluxes, will suffice to guarantee the conditions in (2.19), and hence that

(A.3) is correct to leading order. Independent of these subtleties and the constraints on

k2
j and k3

j for a given set of k1
j , we see from (A.2) alone that the topological entropy grows

as Q1/4.

As we discussed in [1], these calculations indicate that the topological entropy is not

enough to account for the entropy of the black hole; to capture the latter one would have

to consider microstates that do not reduce to four dimensional multi-center solutions, and

that are determined by arbitrary functions [33,34,43].

13 See, for example, [42], pp 116–118.
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