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Dilepton production near partonic threshold in transversely polarized �pp collisions
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It has recently been suggested that collisions of transversely polarized protons and antiprotons at the
GSI could be used to determine the nucleon’s transversity densities from measurements of the double-spin
asymmetry for the Drell-Yan process. We analyze the role of higher-order perturbative QCD corrections in
this kinematic regime, in terms of the available fixed-order contributions as well as of all-order soft-gluon
resummations. We find that the combined perturbative corrections to the individual unpolarized and
transversely polarized cross sections are large. We trace these large enhancements to soft-gluon emission
near partonic threshold, and we suggest that with a physically motivated cutoff enhancements beyond
lowest order are moderated relative to resummed perturbation theory, but still significant. The unpolarized
dilepton cross section for the GSI kinematics may therefore provide information on the relation of
perturbative and nonperturbative dynamics in hadronic scattering. The spin asymmetry turns out to be
rather robust, relatively insensitive to higher orders, resummation, and the cutoffs.
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I. INTRODUCTION

The partonic structure of polarized nucleons at the
leading-twist level is characterized by the unpolarized,
longitudinally polarized, and transversely polarized parton
distribution functions f, �f, and �f, respectively [1]. In
contrast to the distributions f and �f, we have essentially
no knowledge from experiment so far about the transver-
sity distributions �f, even though there are now first in-
dications [2] that some of them are nonvanishing. The �f
were first introduced in [3]. They are defined as [1,3–5] the
difference of probabilities for finding a parton of flavor f at
scale � and light-cone momentum fraction x with its spin
aligned ( "" ) or antialigned ( #" ) to that of the transversely
polarized nucleon:

�f�x;�� � f""�x;�� � f#"�x;��: (1)

By virtue of factorization theorems [6,7], the parton
densities can be probed universally in a variety of inelastic
scattering processes for which it is possible to separate
(‘‘factorize’’) the long-distance physics relating to nucleon
structure from a partonic short-distance scattering that can
be calculated in QCD perturbation theory. It was realized a
long time ago [1,3,4] that due to its chirally-odd structure,
transversity decouples from inclusive deeply-inelastic
scattering, but that inelastic collisions of two transversely
polarized nucleons should offer good possibilities to access
transversity. In particular, the Drell-Yan processes pp!
l�l�X, p �p! l�l�X �l 	 e;�� were identified as prom-
ising sources of information on transversity [8–10]. This is
so because there is no gluon transversity distribution at
leading twist [1,4]. For the Drell-Yan process, the lowest-
order partonic process is q �q! �
, with gluonic contribu-
tions to the unpolarized cross section in the denominator of
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the transverse double-spin asymmetry

ATT 	
�"" � �"#

�"" � �"#
(2)

only arising as higher-order corrections. Therefore, ATT
may be sizable for the Drell-Yan process, in contrast
to other hadronic processes such as high-transverse-
momentum prompt photon and jet production [4,11–14]
which in the unpolarized case are largely driven by gluons
in the initial state and are hence expected to have a very
suppressed ATT .

Clean information on transversity should be gathered
from polarized proton-proton collisions at the BNL
Relativistic Heavy Ion Collider (RHIC) where the Drell-
Yan process is a major focus [15]. In pp collisions, how-
ever, the Drell-Yan process probes products of valence
quark and sea antiquark distributions. It is possible that
antiquarks in the nucleon carry only little transverse polar-
ization since, due to the absence of a gluon transversity, a
source for the perturbative generation of transversity sea
quarks from g! q �q splitting is missing. In addition, at
RHIC energies and for Drell-Yan masses of a few GeV, the
partonic momentum fractions are fairly small, so that
the denominator of ATT is large due to the small-x rise of
the unpolarized sea quark distributions. Thus, even for the
Drell-Yan process, the spin asymmetry ATT at RHIC will
probably be at most a few percent, as theoretical studies
have shown [9,10,16].

It has recently been proposed to add polarization to
planned �pp collision experiments at the GSI, and to per-
form measurements of ATT for the Drell-Yan process [17–
20]. This is a very exciting idea, since unique information
on transversity could be obtained in this way. The results
would be complementary to what can be obtained from
-1  2005 The American Physical Society



1See, for example, the review in Ref. [25] and interesting
recent work [26] that rederives some of these results in the
context of the soft-collinear effective theory [27].
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RHIC measurements. First of all, in �pp collisions the
Drell-Yan process mainly probes products of two quark
densities, �q� �q, since the distribution of antiquarks in
antiprotons equals that of quarks in the proton. In addition,
kinematics in the proposed experiments are such that rather
large partonic momentum fractions, x� 0:5, are probed.
One therefore accesses the valence region of the nucleon.
Estimates [19–21] for the GSI-PAX and ASSIA experi-
ments show that the expected spin asymmetry ATT should
be very large, of order 40% or more.

It is important, however, to keep in mind that the kine-
matic region to be accessed in the first stage of the GSI
experiments, with Drell-Yan masses M of 1–4 GeV or so,
but a center-of-mass energy of only

���
S

p
� 5:3 GeV for the

baseline fixed-target program, is not really the ‘‘classic’’
regime where parton model ideas, factorization, and per-
turbative QCD are a priori expected to provide adequate
descriptions. This is of course crucial since the interpreta-
tion of ATT in terms of transversity relies exactly on these
concepts. To be more precise, at high energies and large
dilepton invariant massM the cross section factorizes [6,7]
into convolutions of parton densities and perturbative par-
tonic hard-scattering cross sections, as mentioned above.
Schematically,

M4 d�

dM2 	
X
a;b

fa � fb �
M4d�̂ab
dM2 �O

�
�
M

�
p
: (3)

For simplicity, we have considered here the unpolarized
cross section, and we also have integrated over the rapidity
of the lepton pair and only focused on the total Drell-Yan
cross section. We also have not written out the precise form
of the convolutions, which will be given below. For the
moment, we are interested only in the important features
visible in Eq. (3). The quantities one wants to determine
from measurement of the left-hand side of Eq. (3) are the
parton distributions fa; fb. The partonic cross sections,
�̂ab, for the reactions ab! �
X may be calculated in
QCD perturbation theory. Their expansion in terms of the
strong coupling constant �s�M� reads

d�̂ab 	 d�̂�0�
ab �

�s�M�

�
d�̂�1�

ab �

�
�s�M�

�

�
2
d�̂�2�

ab � . . . ;

(4)

corresponding to lowest order (LO), next-to-leading order
(NLO), and so forth. The earlier studies [19,20] for the
Drell-Yan process at GSI energies used LO hard-scattering
cross sections to estimate the expected spin asymmetries.
Depending on kinematics, however, the higher-order cor-
rections may be very important. As we will show below,
this is the case for the planned GSI measurements. In
addition, as indicated in Eq. (3), factorization of the had-
ronic cross section in terms of twist-2 distributions is of
course not exact, but holds only to leading power in M.
There are corrections to the (dimensionless) cross section
M4d�=dM2 that are down by inverse powers of the hard
114007
scale, that is, of the form ��=M�p with some p and some
hadronic mass scale � [22]. These power corrections will
depend also on � 	 M2=S and are generally expected to
increase with increasing �. The measured spin asymmetry
ATT can only be reliably interpreted in terms of the trans-
versity densities if the higher-order and power corrections
can either be shown to be small in the accessible kinematic
domain, and/or if they are sufficiently well understood. The
aim of this paper is to address primarily the question of
how large the higher-order QCD corrections to the Drell-
Yan process are in the GSI kinematic regime. To this end,
we will apply the technique of threshold resummation, to
which we now turn.

As we mentioned above, � is typically very large for the
GSI kinematics, 0:2 & � & 0:7. This is a region where
higher-order corrections to the partonic cross sections are
particularly important. � 	 1 sets a threshold for the reac-
tion, and as � increases toward unity, very little phase space
for real-gluon radiation remains in the partonic process,
since most of the initial partonic energy is used to produce
the virtual photon. Virtual and real-emission diagrams then
become strongly imbalanced, and the infrared cancella-
tions leave behind large logarithmic higher-order correc-
tions to the partonic cross sections, the so-called threshold
logarithms. At the kth order in perturbation theory, the
leading logarithms are of the form �ksln

2k�1�1� z�=�1�
z�, where z 	 �=xaxb is the partonic analogue of �. For
sufficiently large z, perturbative calculations to fixed order
in �s become unreliable, since the double logarithms
compensate the smallness of �s�M� even if M is of the
order of a few GeV. The fact that the parton distributions
are steeply falling functions of the momentum fractions
xa;b means that the threshold region is actually emphasized
in the cross section, even if � itself is still rather far away
from one. If � is close to unity, as is the case for much of the
GSI kinematics, the region of large z & 1 completely
dominates, and it is crucial that the terms �ksln2k�1�1�
z�=�1� z� be resummed to all orders in�s. Such a ‘‘thresh-
old resummation’’ was originally developed for the Drell-
Yan process [23,24] and subsequently applied to a variety
of more involved partonic processes in QCD.1 It turns out
that the soft-gluon effects exponentiate, not in z space
directly, but in Mellin-N moment space, where N is the
Mellin-moment conjugate to z. The leading logarithms
(LL) in the exponent are of the form �kslnk�1�N�, sublead-
ing logarithms [next-to-leading logarithms (NLL)] of
�ksln

k�N�. In this paper we will use NLL-resummed per-
turbation theory to analyze the importance of higher-order
corrections to the Drell-Yan cross section in the kinematic
regime to be explored at the GSI.
-2
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There is a close relation between resummation and the
nonperturbative power corrections. Taking into account
nonleading logarithms and the running of the coupling,
resummation always leads to a perturbative expression in
which the scale of the coupling reflects the value of the
transform variable. Because of the singularity of the per-
turbative effective coupling at �QCD, the resulting expres-
sions are ill defined [28]. The analysis of these ambiguities
for Drell-Yan cross sections [29,30] suggests a series of
nonperturbative corrections [29], generically suppressed
by even powers of the pair mass M but enhanced by the
moment variable N, N2=M2. As we shall see, for GSI
fixed-target energies, the effective values of N are so large
that the first few power corrections will not suffice for the
Drell-Yan cross section. We will therefore rely on a some-
what different approach, to be presented in more detail
elsewhere, and cut off unphysical dependence on low
momentum scales. The result for a large portion of dilepton
masses M will be a cross section with moderated, but still
significant enhancements relative even to next-to-next-to-
leading order calculations, which we take as a conservative
prediction based on perturbation theory. Experimental re-
sults on these cross sections should shed light on the
interrelations between fixed-order, all-order, and nonper-
turbative corrections in hadronic scattering.

The remainder of this paper is organized as follows.
Section II will present the basic framework for our calcu-
lations and will introduce the partonic threshold region. In
Sec. III, we provide all ingredients for the NLL resumma-
tion of the threshold logarithms, and we propose also a new
infrared-regulated expression for the form of nonperturba-
tive corrections suggested by perturbative resummation. In
Sec. IV we then present phenomenological results for the
regions of interest in GSI measurements.
2Starting from next-to-next-to-leading order (NNLO) there are
contributions from qq scattering as well.
II. PERTURBATIVE CROSS SECTION AND THE
THRESHOLD REGION

The spin-dependent cross section for dilepton produc-
tion by two transversely polarized hadrons is defined as

�d��
d�d�

�
1

2

�
�d�""

d�d�
�
�d�"#

d�d�

�
; (5)

where the superscript "" ( "# ) denotes parallel (antiparallel)
setting of the transverse spins of the incoming hadrons. We
have used the customary Drell-Yan scaling variable � 	
M2=S with M the invariant mass of the lepton pair and S
the center-of-mass energy squared. � is the azimuthal
angle of one of the leptons, counted relative to the axis
defined by the transverse polarizations. For simplicity, we
have integrated over all rapidities of the lepton pair. At
high M, the cross section factorizes into convolutions of
the transversity distributions �f with the corresponding
transversely polarized partonic hard-scattering cross sec-
tions [7]:
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�d�����
d�d�

	
X
a;b

��0�
ab���

Z 1

�

dxa
xa

Z 1

�=xa

dxb
xb

�fa�xa; �2�

� �fb�xb; �
2��!ab

�
z � �=xaxb;

M2

�2
; �s���

�
;

(6)

where � collectively denotes the factorization and renor-
malization scales, and where we will specify the ��0�

ab���
below. Because of the odd chirality of transversity, and
since there is no transversity gluon density, q �q annihilation
is the only partonic channel, up to next-to-leading order.2

Its cross section is calculated in QCD perturbation theory
as a series in �s:

�!ab�z; r; �s� 	 �!�0�
ab�z� �

�s
�
�!�1�

ab�z; r�

�

�
�s
�

�
2
�!�2�

ab�z; r� � . . . ; (7)

where r 	 M2=�2. Since we will not consider very high
energies and dilepton masses, only photons contribute as
intermediate particles. The lowest-order [LO, O��0s�] pro-
cess thus is q" �q" ! �
 ! l�l�, for which

�!�0�
q �q�z� 	 ��1� z�; ��0�

q �q��� 	
�2e2q
9S

cos�2��: (8)

The first-order term �!�1�
q �q is known and reads [31]

�!�1�
q �q�z; r� 	 CF

�
4z
�
ln�1� z�
1� z

�
�
�
2z lnz
1� z

�
3z ln2z
1� z

� 2�1� z� �
�
�2

3
� 4

�
��1� z�

�

�
2z

�1� z��
�
3

2
��1� z�

�
lnr

�
; (9)

where CF 	 4=3 and the ‘‘�’’ distribution is defined as

Z 1

0
dz�g�z���f�z� 	

Z 1

0
dzg�z��f�z� � f�1��: (10)

Since resummation is performed in Mellin-moment
space, we take a Mellin transform of the hadronic cross
section:

d��N

d�
�

Z 1

0
d��N�1

�d��
d�d�

: (11)

The cross section algebraically factorizes under moments,
-3



3We note that the threshold resummation for the Drell-Yan
process has been worked out even to next-to-next-to-leading
logarithmic accuracy, see [32].
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d��N

d�
	 �0

X
q

�qN��2�� �qN��2�
�
1�

�s���
�

�!�1�;N
q �q �r�

�

�
�s���
�

�
2
�!�2�;N

q �q �r� � . . .
�
; (12)

where the Mellin moments of the transversity distributions
�q and the higher-order corrections �!�k�

q �q are defined as
usual,

�qN��2� 	
Z 1

0
dxxN�1�fq�x;�2�;

�!�k�;N
q �q �r� 	

Z 1

0
dzzN�1�!�k�

q �q�z; r�:
(13)

The moments of the first-order correction �!�1�
q �q in Eq. (9)

read in the MS scheme [31]:

�!�1�;N
q �q �r� 	 CF

�
2

N�N � 1�
� 2S21�N� � 6�S3�N� � $�3��

� 4�
2

3
�2 �

�
3

2
� 2S1�N�

�
lnr

�
: (14)

The sums appearing here are defined by

Sk�N� �
XN
j	1

1

jk
: (15)

Their analytic continuations to arbitrary Mellin-N are

S1�N� 	  �N � 1� � �E;

S3�N� 	
1

2
 00�N � 1� � $�3�;

(16)

where  �z� is the digamma function, �E 	 0:5772 . . . is the
Euler constant, and $�3� � 1:202 057.

We mention that formulas analogous to the above hold
for the unpolarized case. The main difference is that in the
unpolarized case beyond LO there are contributions from
initial-state gluons to the Drell-Yan cross section. In the
kinematic region we are interested in here, these are rather
unimportant. All details for the unpolarized case to NLO
may, for example, be found in Ref. [9].

The threshold region corresponds to z! 1 or N ! 1.
At large N, the moments of the NLO correction become

�!�1�;N
q �q �r� 	CF

�
2ln2� �N�� 4�

2

3
�2�

�
3

2
� 2 ln� �N�

�
lnr

�

�O

�
1

N

�
; (17)

where

�N 	 Ne�E: (18)

One can see the double-logarithmic corrections
/ �sln2� �N� near threshold, associated with the logarithmic
term � ln�1� z�=�1� z� in Eq. (9). At higher orders, there
are corrections of the form �kslnl� �N� with l � 2k. We
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emphasize that the behavior of the unpolarized partonic
cross section near threshold is exactly the same as Eq. (17).
This is related to the fact that the large logarithms are due
to the emission of soft gluons, which is spin independent.
Thanks to the simple structure of the LO Drell-Yan pro-
cess, the constant (N-independent) pieces which are partly
associated with virtual corrections are identical as well for
the transversely polarized and unpolarized cases, provided
both are treated in the same factorization scheme.

We now turn to the resummation of the leading and next-
to-leading threshold logarithms to all orders in �s.
III. RESUMMED CROSS SECTION

In Mellin-moment space, threshold resummation for the
Drell-Yan process results in the exponentiation of the soft-
gluon corrections. To NLL,3 the resummed formula is
given in the MS scheme by

�!res;Nq �q �r; �s���� 	 exp�Cq�r; �s�����

� exp

(
2
Z 1

0
dz
zN�1 � 1
1� z

�
Z �1�z�2M2

�2

dk2T
k2T

Aq��s�kT��

)
; (19)

where

Aq��s� 	
�s
�
A�1�
q �

�
�s
�

�
2
A�2�
q � . . . ; (20)

with [33]:

A�1�
q 	 CF; A�2�

q 	
1

2
CF

�
CA

�
67

18
�
�2

6

�
�
5

9
Nf

�
;

(21)

where Nf is the number of flavors and CA 	 3. The coef-
ficient Cq�r; �s���� collects mostly hard virtual correc-
tions. It is a perturbative series and reads

Cq�r; �s���� 	
�s
�
CF

�
�4�

2�2

3
�
3

2
lnr

�
�O��2s�:

(22)

We note that it was shown in [34] that these corrections
also exponentiate.

Equation (19) as it stands is ill defined because of the
divergence in the perturbative running coupling �s�kT� at
kT 	 �QCD. The perturbative expansion of the expression
shows factorial divergence, which in QCD corresponds to a
powerlike ambiguity of the series. It turns out, however,
that the factorial divergence appears only at nonleading
powers of momentum transfer. The large logarithms we are
-4
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resumming arise in the region [24] z � 1� 1= �N in the
integrand in Eq. (19). One therefore finds that to NLL they
are contained in the simpler expression

2
Z M2

M2= �N2

dk2T
k2T

Aq��s�kT�� ln
�NkT
M

� 2
Z �2

M2

dk2T
k2T

Aq��s�kT�� ln �N

(23)

for the second exponent in (19). This form, to which we
will return below, is used for ‘‘minimal’’ expansions [35]
of the resummed exponent.

A. Exponents at NLL

In the exponents, the large logarithms in N now occur
only as single logarithms, of the form �kslnk�1�N� for the
leading terms. Subleading terms are down by one or more
powers of ln�N�. Knowledge of the coefficients A�1;2�

q in
114007
Eq. (19) is enough to resum the full towers of LL terms
�ksln

k�1�N�, and NLL ones �kslnk�N� in the exponent. With
the coefficient Cq one then gains control of three towers of
logarithms in the cross section, �ksln2k�N�, �ksln2k�1�N�,
�ksln

2k�2�N�.
We now give the explicit formula for the expansion of

the resummed exponent to NLL accuracy. From Eqs. (19)
and (23) one finds [35,36]

ln�!res;Nq �q �r; �s���� 	 Cq�r; �s���� � 2 ln �Nh
�1����

� 2h�2���; r�; (24)

where

� 	 b0�s��� ln �N: (25)

The functions h�1;2� are given by
h�1���� 	
A�1�
q

2�b0�
�2�� �1� 2�� ln�1� 2���; (26)

h�2���; r� 	 �
A�2�
q

2�2b20
�2�� ln�1� 2��� �

A�1�
q b1
2�b30

�
2�� ln�1� 2�� �

1

2
ln2�1� 2��

�

�
A�1�
q

2�b0
�2�� ln�1� 2��� ln�r� �

A�1�
q �s���
�

ln �N ln�r�; (27)

where

b0 	
1

12�
�11CA � 2Nf� b1 	

1

24�2
�17C2A � 5CANf � 3CFNf�: (28)

The function h�1� contains all LL terms in the perturbative series, while h�2� is of NLL only. We note that the resummed
exponent depends on the factorization scales in such a way that it will compensate the scale dependence (evolution) of the
parton distributions. This feature is represented by the last term in (27). One therefore expects a decrease in scale
dependence of the cross section from resummation. The remaining � dependence in the second to last term in (27) results
from writing the strong coupling constant as

�s�kT� 	
�s���

1� b0�s��� ln�k2T=�
2�
�O��s���2��s��� ln�k2T=�

2��n� (29)

when doing the NLL expansion of the exponent. For this term, � represents the renormalization scale.
As was shown in Refs. [30,37], it is possible to improve the above formula slightly and to also correctly take into account

certain subleading terms in the resummation. To this end, we rewrite Eqs. (24)–(27) as

ln�!res;Nq �q �r; �s���� 	
1

�b0
�2�� ln�1� 2���

�
A�1�
q

b0�s���
�
A�2�
q

�b0
�
A�1�
q b1
b20

� A�1�
q lnr

�

�
�s
�
CF

�
�4�

2�2

3

�
�
A�1�
q b1
2�b30

ln2�1� 2�� � B�1�
q
ln�1� 2��

�b0

� ��2A�1�
q ln �N � B�1�

q �

�
�s���
�

lnr�
ln�1� 2��

�b0

�
; (30)
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where B�1�
q 	 �3CF=2. The last term in Eq. (30) is the LL

expansion of the termZ M2= �N2

�2

dk2T
k2T

�s�kT�
�

��2A�1�
q ln �N � B�1�

q �: (31)

Since the factor ��2A�1�
q ln �N � B�1�

q � is the large-N limit of
the moments of the LO splitting function for transversity,
�PN , the term in Eq. (31) may be viewed as an evolution of
the parton distributions between scales � and M= �N. This
suggests to modify the resummation by replacing [30,38]

��2A�1�
q ln �N � B�1�

q � ! �PN � CF

�
3

2
� 2S1�N�

�
(32)

in Eq. (30). To see the improvement resulting from this, we
expand the resummed formula in Eq. (30), after the re-
placement (32), to first order in �s��� and find:

�!res;Nq �q �r; �s� 	 1�
�s
�
CF

�
4 ln� �N�S1�N� � 2ln2� �N� � 4

�
2

3
�2 �

�
3

2
� 2S1�N�

�
lnr

�
�O��2s�:

(33)

This term correctly gives the large-N pieces of the NLO
cross section in Eq. (17), but it goes beyond that by also
reproducing all contributions � ln� �N�=N in Eq. (14), the
latter arising from the expansion S1�N� 	 ln� �N� �
1=�2N� �O�1=N2�.

The unpolarized resummed partonic cross section in
Mellin-moment space is practically identical to the trans-
versely polarized one in Eq. (19), since the coefficients
A��s� andCq�r; �s� are spin independent and thus the same
for the unpolarized and transversely polarized cases. A
very small difference arises in the replacement in
Eq. (32), in which for the unpolarized case one of course
has to use the unpolarized LO splitting function. In addi-
tion, one also should take into account the singlet mixing in
the evolution [30] which, however, is very small in the
kinematic region in which we are interested.

B. Far-infrared resummed cross section

We will see in the phenomenology section below that
perturbative resummation as formulated so far in Eqs. (19)
or (23) predicts very large enhancements of the lowest-
order cross section, sometimes by orders of magnitude.
There is good reason to believe that this enhancement is
only partly physical. The large corrections arise from a
region where the integral in the exponent becomes sensi-
tive to the behavior of the integrand at small values of kT .
As long as �QCD � M= �N � M, the use of NLL perturba-
tion theory may be justified, but when jNj becomes so large
that kT goes down to nonperturbative scales, we may well
question the self-consistency of perturbation theory. We
now turn to the question of how this ‘‘far-infrared’’ limit
should be treated in resummed perturbation theory. Our
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discussion here will be brief, and we will only present one
model that addresses the far-infrared limit. A more detailed
study of this very interesting regime will be presented in a
future publication.

We seek a modification of the perturbative expression
Eq. (19) that excludes the region in which the absolute
value of kT is less than some scale �0 >m�. We think of
�0 as the scale beyond which the true mass spectrum of
QCD replaces perturbation theory, regulating all soft and
collinear singularities, so thatm� should be thought of only
as a lower limit for �0. To implement this idea, we will
adopt a modified resummed hard scattering, which repro-
duces NLL logarithmic behavior in the moment variable N
so long as M= �N >�0 but ‘‘freezes’’ once M= �N <�0. If
nothing else, this will test the importance of the region
kT � �QCD for the resummed cross section. If N were real
and positive, we could simply replace the first exponent in
(23) by

4
Z M

/�M= �N;�0�

dkT
kT

Aq��s�kT�� ln
�NkT
M

; (34)

where

/�a; b� 	 max�a; b�; (35)

and where �0 then serves to cut off the lower logarithmic
behavior. To provide an expression that can be continued to
complex N, we choose

/�a; b� 	 �ap � bp�1=p; (36)

with integer p. This simple form is consistent with the
minimal expansion given above, and it also allows for a
straightforward analysis of the ensuing branch cuts in the
complex-N plane. Vanishing �0 corresponds to the stan-
dard minimal form (23). For definiteness, and for simplic-
ity, we choose p 	 2 in this paper. We will continue to use
the expansions in Eq. (24), but redefining � in Eq. (25) by

� 	 b0�s��� ln �N �
1

2
b0�s��� ln

�
1�

�N2�20
M2

�
: (37)

This form has the advantage that it generates only even
power corrections in the ratio N2=M2, when this quantity is
not too large [30]. We will investigate below the modera-
tion of the perturbative increase provided by the cutoff �0.

C. Matching to the NLO cross section, and inverse
Mellin transform

As we have discussed above, the resummation is
achieved in Mellin-moment space. In order to obtain a
resummed cross section in z space, one needs an inverse
Mellin transform. This requires a prescription for dealing
with the singularity in the perturbative strong coupling
constant in Eqs. (19) and (23) or in the NLL expansion,
Eqs. (26) and (27). We will use the minimal prescription
developed in Ref. [35], which relies on use of the NLL
-6
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expanded form Eqs. (26) and (27), and on choosing an
appropriate contour in the complex-N plane. In the stan-
dard minimal prescription, based on Eqs. (23) and (25) this
contour is chosen to lie to the left of the ‘‘Landau’’ singu-
larities at � 	 1=2 in the Mellin integrand, which are far to
the right in the N plane. With the modified variable � of
Eq. (37), however, branch cuts from � 	 1=2 reside on the
imaginary axis in the N plane (and so do branch cuts that
arise when the argument of the logarithm in Eq. (37)
vanishes). We again choose our inverse contour as

�d���res�

d�d�
	

Z CMP�i1

CMP�i1

dN
2�i

��N
d���res�;N

d�
; (38)

where CMP is any positive number. All singularities are
then to the left of the contour. We keep the Mellin contour
114007
parallel to the imaginary-N axis. The result defined by the
minimal prescription has the property that its perturbative
expansion is an asymptotic series that has no factorial
divergence and therefore no ‘‘built-in’’ powerlike ambigu-
ities. Power corrections may then be added, as phenom-
enologically required, and in a sense our cutoff
prescription does exactly this.

When performing the resummation, one of course wants
to make full use of the available fixed-order cross section,
which in our case is NLO [O��s�]. Therefore, a matching
to this cross section is appropriate, which may be achieved
by expanding the resummed cross section to O��s�, sub-
tracting the expanded result from the resummed one, and
adding the full NLO cross section:
�d���match�

d�d�
	

X
q; �q

��0�
q �q���

Z CMP�i1

CMP�i1

dN
2�i

��N�qN��2�� �qN��2�
�
�!res;Nq �q �r; �s���� � �!res;Nq �q �r; �s����









O��s�

�

�
�d���NLO�

d�d�
: (39)
In this way, NLO is taken into account in full, and the soft-
gluon contributions beyond NLO are resummed to NLL.
Any double-counting of perturbative orders is avoided. As
we will see below, however, matching is almost academic
in the present calculation since the NLO-expansion of the
resummed cross section agrees to within 0.1% with the full
NLO one for the kinematics relevant here. We also note
that whenever we will use the form (37) with a nonvanish-
ing cutoff �0, we will perform the matching using the
expansion �!res;Nq �q �r; �s����jO��s� in (39) evaluated at
�0 	 0.

IV. PHENOMENOLOGICAL RESULTS

Starting from Eq. (39), we are now ready to present
some first resummed results at the hadronic level. This is
not meant to be an exhaustive study; rather we should like
to investigate the overall size and relevance of the resum-
mation effects. For this reason, we only consider the cross
section d2�=dMd�, integrated over all rapidities. This
should be sufficient to study the main effects. In experi-
ment one will eventually study rapidity distributions in
order to better pin down the x dependences of the trans-
versity densities. Our resummation could be extended to
this case using techniques developed in [39]. We also note
that the charmonium resonances will dominate over a part
of the spectrum that we will consider. For our case study
we will just ignore this, but we remind the reader that a
complete treatment of the dilepton spectrum will eventu-
ally also require the incorporation of charmonium produc-
tion and its resummation effects.

We will investigate �pp collisions at four different ener-
gies. Each of these may eventually be realized at the GSI.
The first two are in the fixed-target mode, relevant for the
initial stage of �pp physics at the GSI, when antiprotons
will be scattered off proton targets at energies in the range
15 GeV & E �p & 25 GeV. For definiteness, we will con-
sider S 	 30 GeV2 and S 	 45 GeV2. This is also the
regime in which the theoretical description is most chal-
lenging. The second regime is for an asymmetric collider,
with Ep 	 3:5 GeV and E �p 	 15 GeV, corresponding to���
S

p
	 14:5 GeV. Finally, we will consider a symmetric

collider with Ep 	 E �p 	 15 GeV (
���
S

p
	 30 GeV). In all

calculations below, we choose the renormalization and
factorization scales as � 	 M.

A. Unpolarized cross section near partonic threshold

We start by considering the unpolarized cross section.
For some of the kinematic regions described above, Drell-
Yan experiments at the GSI would enter uncharted terri-
tory, and it will be crucial to develop confidence that the
theoretical framework is understood. An important test
would be a comparison to precise measurements of the
unpolarized cross section.

For our unpolarized calculations we will use the NLO
(MS scheme) GRV parton distributions throughout [40]. In
the unpolarized case, we are in the fortunate situation that
even the full NNLO corrections to the partonic Drell-Yan
cross section are available [41], which we will incorporate
in our studies. These should in principle be used in con-
junction with a set of NNLO parton distributions, which
became available recently [42] after the computation of the
three-loop evolution kernels [43]. The main purpose of our
present studies, however, is to see how well the soft-gluon
-7
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FIG. 1 (color online). ‘‘K factors’’ relative to LO as defined in Eqs. (40) and (41) for the Drell-Yan cross section in fixed-target �pp
collisions at S 	 30 GeV2 (left) and S 	 45 GeV2 (right), as functions of lepton pair invariant massM. The symbols denote the results
for the exact NLO and NNLO calculations.

4Note that the normalization factor ��0�
q �q in Eq. (8) becomes

2�2e2q=9S in the unpolarized case.
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terms we are resumming reproduce also the NNLO cor-
rections to the cross section. For this it is sufficient to stick
to our use of NLO parton densities.

Figure 1 shows the effects of the higher orders generated
by resummation, for the fixed-target cases with S 	
30 GeV2 and S 	 45 GeV2. We define a resummed ‘‘K
factor’’ as the ratio of the resummed (matched) cross
section to the LO cross section,

K�res� 	
d��match�=dMd�

d��LO�=dMd�
; (40)

which is shown by the solid line in Fig. 1. As can be seen,
K�res� is very large, meaning that resummation results in a
dramatic enhancement over LO, sometimes by over 2
orders of magnitude. It is then interesting to see how this
enhancement builds up order by order in the resummed
cross section. We expand the matched resummed formula
to NLO and beyond and define the (here, not matched)
‘‘soft-gluon K factors’’

Kn �
d��res�=dMd�jO��ns �

d��LO�=dMd�
; (41)

which for n 	 1; 2; . . . give the additional enhancement
due to the O��ns � terms in the resummed formula.
Formally, K0 	 1, while K1 	 K�res� up to the effects of
matching at NLO. The results for K1;2;3;4;6;8 are also shown
in Fig. 1. One can see that there are very large contributions
even beyond NNLO, in particular, at the higherM. Clearly,
the full resummation given by the solid line receives con-
tributions from high orders. The symbols in Fig. 1 show the
associated K factors for the exact NLO and NNLO calcu-
lations, respectively. One can see that these agree ex-
tremely well with the O��s� and O��2s� expansions of
the resummed cross section. In fact, the agreement be-
tween the full NLO result and the O��s� expansion of
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the resummed cross section is better than 0.1% over the
whole range in M shown. Thus the matched resummed K
factor K�res� of Eq. (40) is also numerically very close to
K1 as defined in (41). We note that the replacement in
Eq. (32) helps somewhat in this comparison, in particular,
at NNLO it leads to a relative improvement of a few
percent. From the comparison we may conclude that the
terms that we resum to all orders strongly dominate the
cross section.

In Fig. 2, we show similar results for the two collider
modes at

���
S

p
	 14:5 and 30 GeV. One can see that for a

fixed Drell-Yan mass M the corrections become much
smaller, since one is much further away from partonic
threshold than for the fixed-target cases. Also, the conver-
gence of the perturbative series occurs somewhat more
rapidly. As before, the agreement between the O��s� and
O��2s� expansions of the resummed cross section and the
exact NLO and NNLO calculations is very good, demon-
strating the relevance of the resummed result.

In Figs. 3 and 4 we show the actual unpolarized cross
sections M3d�=dM corresponding to the results shown in
Figs. 1 and 2 at (exact) fixed orders (LO, NLO, NNLO) in
perturbation theory, and for the NLL-resummed case. Here
we have integrated over all azimuthal angles �.4

One may wonder whether any sign of the need for large
corrections beyond NLO can be found in previous Drell-
Yan data [44]. The measurements at the lowest

���
S

p
we are

aware of are from the CERN WA39 [45] experiment and
were made in ��-Tungsten scattering. The pion energy
was E� 	 39:5 GeV, higher than what is considered for
the fixed-target mode at the GSI, but still quite far below
the collider energies. Figure 5 shows the data, along with
-8
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FIG. 3 (color online). Unpolarized cross sections d2�=dM at S 	 30 GeV2 (left) and S 	 45 GeV2 (right) at LO, NLO, NNLO, and
NLL-resummed, as functions of lepton pair invariant mass M.
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our results at LO, NLO, NNLO, and NLL-resummed. We
are using the parton distributions for the pion of [46]. It is
hard to draw definite conclusions from the comparison in
Fig. 5, partly because the experimental uncertainties are
rather large, and also because the pion parton densities are
not known accurately. Nevertheless, it is interesting to
observe that the data points at the highest dimuon mass
M are quite consistent with large perturbative resummation
effects.

Given the large, not to say huge, size of some of the
enhancements, we now turn to the same ratios computed
using the exponent (34) with the modified lower limit on
the kT integral, which regulates its infrared behavior. For
simplicity, we will only show results for relatively small
values of the cutoff scale �0 in (37). Of course, different
choices give different results, but we should think of �0 as
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FIG. 6 (color online). K factors relative to LO as in Fig. 1, at S 	
the effect of a lower cutoff �0 	 300 MeV for the kT integral in th
comparison. The symbols denote the results for the exact NLO and
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a kind of factorization scale, separating perturbative con-
tributions from nonperturbative. Thus changes in�0 would
be compensated at least in part by changes in a nonpertur-
bative function. On the other hand, a very strong sensitivity
to �0 can reasonably be interpreted as indicating that
perturbative resummation alone cannot give a reliable
estimate for the cross section. Our interest here, therefore,
is primarily to illustrate the modification of the perturba-
tive sector, which we do by choosing �0 	 0:3 GeV and
0:4 GeV. Results for the K factor with these values of �0
are shown in Figs. 6 and 7, compared to the same NLO,
NNLO, and resummed factors shown above at the relevant
energies and pair masses M. We hope to study the �0
dependence more extensively elsewhere, in connection
with possible nonperturbative corrections.

The ratios of the new resummed but infrared-regulated
cross sections to the LO one show a smoother increase than
the pure minimal resummed cross sections. This difference
is particularly marked at the lower center-of-mass energies
in Fig. 6, with only a modest enhancement over NNLO
remaining at �0 	 0:3 GeV, and even lower at 0.4 GeV.
We note that the NLO and NNLO expansions of the
resummed cross section turn out to be much less affected
by the cutoff �0 than the full resummed cross section. At
the higher energies of Fig. 7, the regulated resummed
curves follow the unregulated curves far above NNLO,
with much reduced sensitivity to �0. We interpret these
results to indicate a strong sensitivity to nonperturbative
dynamics at the lower energies, and much less at the
higher. We therefore take the predictions of large enhance-
ments due to high order perturbation theory more seriously
in the latter case, even while keeping in mind the WA39
measurements of Fig. 5 above, which suggest that large
corrections, perturbative or not, should not be ruled out
a priori. Data over the entire kinematic regime considered
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here would certainly shed a unique light on the transition
between long- and short-distance effects in hadronic
scattering.

B. Spin asymmetry ATT

Before we can perform numerical studies of ATT we
need to make a model for the transversity densities in the
valence region. Here, guidance is provided by the Soffer
inequality [47]

2j�q�x;Q2�j � q�x;Q2� � �q�x;Q2�; (42)

which gives an upper bound for each �q. Following [13,14]
we utilize this inequality by saturating the bound at some
low input scaleQ0 ’ 0:6GeV using the NLO GRV [40] and
GRSV (‘‘standard scenario’’) [48] densities q�x;Q20� and
�q�x;Q20�, respectively. For Q>Q0 the transversity den-
sities �q�x;Q2� are then obtained by solving the evolution
equations with the NLO [31,49] evolution kernels. We
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FIG. 8 (color online). Spin asymmetry ATT�� 	 0� at LO, NLO a
45 GeV2 (right). The dash-dotted lines show the effect of a lower c
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refer the reader to [13,14] for more details on our model
distributions.

We will now investigate to what extent the large pertur-
bative corrections we found for the unpolarized Drell-Yan
cross section cancel in the spin asymmetry ATT , Eq. (2).
We have mentioned earlier that the resummation factors
(19) for the q �q cross section are the same in the unpolar-
ized and transversely polarized cases if both are treated in
the same factorization scheme. Resummation effects
would therefore cancel if the spin asymmetry were in
Mellin-moment space. The convolution with the parton
distributions and the inverse Mellin transform will affect
the cancellation somewhat, but one still expects the spin
asymmetry to be very robust. Indeed, the results for ATT at
LO, NLO, and resummed to NLL (with and without the
cutoff�0), shown in Figs. 8 and 9 for the four energies that
we consider, confirm this. We show

ATT 	
d��=dMd�
d�=dMd�

(43)
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as a function of M. For simplicity we set � 	 0 here;
extension to other � is straightforward by taking into
account the cos�2�� dependence displayed in Eq. (8).

Aside from a slight deficit in the curves at lower M (and
slight excess at higher M) with unmodified minimal re-
summation at the lower S, all curves, including the LO,
NLO, and regulated resummed asymmetries all lie within a
few percent of each other. We note that to NLO this robust-
ness of ATT was found also for �pp collisions at higher
energies [50].

We can shed some light on why the asymmetry is
modestly but significantly shifted for the unregulated per-
turbative resummed cross section with respect to the other
cases shown. First, we observe that smaller momentum
fractions xa;b in the factorized cross section are associated
with the cross section at smaller pair mass M, where the
spin asymmetry is slightly smaller. Therefore, any effect
that tends to drive momentum fractions particularly close
to their minimum values, at z 	 1, will tend to decrease the
asymmetry. We note, however, that because the valence
quark distributions are decreasing functions of the x’s, and
because they are the same for both hadrons, we might
anticipate that the average values hxai 	 hxbi are not far
from their symmetric values, xa 	 xb 	

���
�

p
at partonic

threshold. In fact, this turns out to be a surprisingly accu-
rate estimate, even at lowest order, as can be readily
verified from Fig. 10, where we plot hxi for LO, NLO,
and the unregulated (�0 	 0) and regulated (�0 	
300 MeV) resummed cross sections. In this figure hxi is
found by performing the integral for the unpolarized cross
section with an extra factor xa in the integrand, and by
dividing by the cross section itself.

Beyond lowest order, the hard-scattering cross section is
further enhanced at partonic threshold (z 	 1), and we
would expect that large perturbative enhancements, such
as those associated with the plus distribution of Eq. (9),
would force the average partonic center-of-mass energy
114007
still closer to threshold, and hence reduce the asymmetry
even further. We should observe, however, that the hard-
scattering function is not a positive-definite cross section,
but rather a sum of plus distributions, given at first non-
trivial order in Eq. (9). At NLO, for example, the positive
contribution at z 	 1 is from a delta function associated
with virtual corrections, while the real-gluon contribution,
ln�1� z�=�1� z�, is actually negative, due to the subtrac-
tion of collinear divergences in the calculation of the hard
scattering [23,24]. We therefore cannot interpret hxa;bi as
averages in the usual sense. In any case, we do see a more
significant decrease in hxi, computed above, for the un-
-12
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FIG. 11 (color online). Effect on the unpolarized Drell-Yan
cross section at S 	 30 GeV2 due to rescaling of the parton
distributions as in Eq. (44). The solid line shows the result for the
resummed cross section as in Fig. 3, the dotted and dashed lines
are for Q 	 5 and 10 GeV, respectively, in Eq. (44).
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regulated resummed cross section than for fixed order. In
fact, the values derived in this manner are below

���
�

p
, which

would be the lower limit for a positive-definite hard-
scattering function, and at the highest M, even below �,
which is the lower limit of the integration range for the x’s.
The caveat against a literal interpretation of hxi notwith-
standing, it is reasonable to interpret the modest decrease
in the asymmetry for the unregulated resummed cross
section as resulting from a hard-scattering function that is
exceptionally peaked near z 	 1 in this case.

C. Use of DIS parton distribution functions

We recall that throughout this study, we have used the
NLO parton distribution functions of Ref. [40]. Especially
given the large effects we have found with resummation,
we should revisit the use of ‘‘unresummed’’ parton distri-
butions in our study. The momentum fractions probed in
the parton distributions become very large in the fixed-
target regime, as shown by Fig. 10. One may wonder here
to what extent the parton distributions themselves should
include resummation effects. The densities we use have
been determined mostly from an analysis of data from
deeply-inelastic scattering (DIS), in which however no
resummation of large-N logarithms was included. It is
known that soft-gluon resummation effects in DIS are
rather unimportant, except at moderate photon virtuality
Q2 and very large x [51,52]. Nonetheless, we will give a
rough estimate of the quantitative effect on the Drell-Yan
cross section that might occur if one used parton densities
determined from an analysis of the DIS data including
resummation. We follow [51] to determine a model set of
‘‘MS-resummed’’ valence distributions qN;res (in Mellin-
moment space) by demanding that their contributions to
the DIS structure function F2 match those of the corre-
sponding NLO densities at a fixed scale Q. This is ensured
by ‘‘rescaling’’ the parton densities:

qN;res�Q2� 	 qN;NLO�Q2�
CNLO2 �N;Q2�

Cres2 �N;Q2�
; (44)

where CNLO2 and Cres2 are the perturbative NLO and NLL-
resummed quark coefficient functions for F2, respectively,
which may be found in [51] for example. We choose Q in
Eq. (44) fairly large, so that it is in a region where resum-
mation effects are expected to be small and NLO to yield a
good description of F2. For illustration, we use two differ-
ent values, Q2 	 25 GeV2 and Q2 	 100 GeV2. The an-
satz (44) then represents an estimate of the likely change in
the parton distributions from resummation in DIS, and the
parton densities qN;res may be used for calculating the
Drell-Yan cross section. The result is shown in Fig. 11,
where we repeat the resummed cross section from Fig. 3,
and display the effects on the cross section for the two
choices of Q. A moderate decrease of the resummed cross
114007
section is found. We note that this effect becomes smaller
at the collider energies, for a given M.

V. CONCLUSIONS

We have verified that perturbative corrections associated
with partonic threshold are large for dilepton production in
the kinematic region being considered for proton-
antiproton collisions at GSI. The close agreement between
the fixed-order expansions of threshold-resummed cross
sections and exact fixed-order calculations suggests that
the resummation is physically relevant, and significantly
enhances the unpolarized Drell-Yan cross sections beyond
fixed orders. At the same time, the transverse-spin asym-
metries whose measurement is suggested for these experi-
ments, are remarkably insensitive to shifts in the overall
normalization. In summary, perturbative corrections ap-
pear to make the cross sections larger independently of
spin. They would therefore make easier the study of spin
asymmetries, and ultimately transversity distributions.

We also have shown that at the lower energies consid-
ered, the resummed cross section decreases markedly when
an infrared cutoff is used to regulate contributions from
soft-gluon emission in the far-infrared region. We have
shown how to incorporate such a cutoff as a generalization
of minimal resummation. At the lower energies, a strong
sensitivity to the cutoff suggests that the large enhance-
ments found with unregulated perturbative resummation
arise from an unwarranted extension of perturbation theory
into the soft region At the same time, it is interesting to
note that quite substantial K factors survive almost un-
changed by infrared regulation at the higher energies con-
sidered. This suggests that the measurement of the
unpolarized dilepton cross section will shed light on the
relationship between fixed orders, perturbative resumma-
tion, and nonperturbative dynamics in hadronic scattering.
-13
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