Начало > The Soft Supersymmetry-Breaking Lagrangian: Theory and Applications > Plots |
Possible mechanisms for chargino decay. |
Feynman Rules after redefining the gluino filed so that gluino mass is real and the phase shows up at the vertices. |
How phases enter from gluino production. |
Gluino production and decay. Phase factors enter at the vertices, as described in the text. |
Caption not extracted |
$-\sqrt{2}g_3 {T^a}_{jk} \big[ G^{-1}( {\Gamma^{SCKM}_{qL})}_{I\alpha} \cdot P_R - G{({\Gamma^{SCKM}}_{qR})}_{I\alpha} P_L\big]$ |
$- \sqrt{2} g_3 {T^a}_{kj}(G{(\Gamma^{SCKM}_{qL})}_{I\alpha}^* P_L - G^{-1}{(\Gamma^{SCKM}_{qR})}^*_{I\alpha} P_R)$ |
$g_2 \gamma^{\mu}(O_{ij}^L P_L + O_{ij}^R P_R)$ |
$-e\gamma^{\mu}$ |
$\frac{g_2}{\cos\theta_W} \gamma^\mu[O_{ij}^{\prime L} P_L + O_{ij}^{\prime R} P_R]$ |
$\frac{g}{\cos\theta_W} \gamma^u(O_{ij}^{\prime \prime L}P_L + O_{ij}^{\prime \prime R}P_R)$ |
$ ig_3 f_{abc}\gamma^\mu $ |
$ -i\frac{g_2}{\sqrt{2}}{(P_d - P_u)}^\mu F_{\alpha\beta}^{1}$ |
Caption not extracted |
$ -i \frac{g_2}{\cos\theta_W}F_{\alpha\beta}^{2I}(P_\beta - P_\alpha)^\mu(T_{3I} - e_I \sin^2\theta_W)$ |
$ \frac{g_{2}^{2}}{2} \eta_{\mu\nu} (\Gamma_{qL}^{SCKM})_{I\alpha}^{*}(\Gamma_{qL}^{SCKM})_{I\beta}$ |
Caption not extracted |
$-\frac{g_{2}^{2}}{\sqrt{2}} \frac{y_{Q}\sin^2\theta_W}{\cos\theta_W} \eta_{\mu\nu}F_{\alpha\beta}^{1}$ |
Caption not extracted |
$\frac{g^2}{\cos^2\theta_W}F_{\alpha\beta}^{2I}(T_{3I} - e_{I} \sin^2\theta_W)^2 $ |
Caption not extracted |
$ g_{3}^{2}(\frac{1}{3}\delta_{ab} {\mathbf{1} }+ d_{abc}T^c)g_{\mu\nu} $ |
Caption not extracted |
$2g_{3}e e_{\widetilde{q}_\alpha}T_{ij}^{a} $ |
Caption not extracted |
One-loop diagram which can induce FCNCs. |