Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

000704268 001__ 704268
000704268 003__ SzGeCERN
000704268 005__ 20210716005601.0
000704268 0248_ $$aoai:cds.cern.ch:704268$$pcerncds:CERN$$pcerncds:hep-ph$$pcerncds:CERN:FULLTEXT$$pcerncds:FULLTEXT
000704268 0247_ $$2DOI$$a10.1016/j.physrep.2004.08.032
000704268 035__ $$9SPIRES$$a5761298
000704268 035__ $$9arXiv$$aoai:arXiv.org:hep-ph/0312378
000704268 035__ $$9Inspire$$a636520
000704268 037__ $$9arXiv$$ahep-ph/0312378$$chep-ph
000704268 037__ $$aCERN-TH-2003-182
000704268 037__ $$aFERMILAB-PUB-03-228-T
000704268 037__ $$aMCTP-03-39
000704268 037__ $$aSHEP-03-25
000704268 041__ $$aeng
000704268 084__ $$2CERN Library$$aTH-2003-183
000704268 088__ $$aCERN-TH-2003-182
000704268 088__ $$aFERMILAB-Pub-2003-228-T
000704268 088__ $$aMCTP-2003-39
000704268 088__ $$aSHEP-2003-25
000704268 100__ $$aChung, D.J.H.$$uCERN$$uWisconsin U., Madison
000704268 245__ $$aThe Soft Supersymmetry-Breaking Lagrangian: Theory and Applications
000704268 260__ $$c2005
000704268 269__ $$aGeneva$$bCERN$$c30 Dec 2003
000704268 300__ $$a275 p
000704268 500__ $$aComments: 273 pages; 35 figures; submitted to Physics Reports
000704268 500__ $$9arXiv$$a273 pages; 35 figures; submitted to Physics Reports
000704268 520__ $$aAfter an introduction recalling the theoretical motivation for low energy (100 GeV to TeV scale) supersymmetry, this review describes the theory and experimental implications of the soft supersymmetry-breaking Lagrangian of the general minimal supersymmetric standard model (MSSM). Extensions to include neutrino masses and nonminimal theories are also discussed. Topics covered include models of supersymmetry breaking, phenomenological constraints from electroweak symmetry breaking, flavor/CP violation, collider searches, and cosmological constraints including dark matter and implications for baryogenesis and inflation.
000704268 520__ $$9arXiv$$aAfter an introduction recalling the theoretical motivation for low energy (100 GeV to TeV scale) supersymmetry, this review describes the theory and experimental implications of the soft supersymmetry-breaking Lagrangian of the general minimal supersymmetric standard model (MSSM). Extensions to include neutrino masses and nonminimal theories are also discussed. Topics covered include models of supersymmetry breaking, phenomenological constraints from electroweak symmetry breaking, flavor/CP violation, collider searches, and cosmological constraints including dark matter and implications for baryogenesis and inflation.
000704268 595__ $$aCERN-TH
000704268 595__ $$aLANL EDS
000704268 595__ $$aOA
000704268 65017 $$2SzGeCERN$$aParticle Physics - Phenomenology
000704268 65027 $$2arXiv$$aParticle Physics - Theory
000704268 65027 $$2arXiv$$bAstrophysics and Astronomy
000704268 690C_ $$aCERN
000704268 690C_ $$aARTICLE
000704268 693__ $$aNot applicable$$eNot applicable
000704268 695__ $$9LANL EDS$$aHigh Energy Physics - Phenomenology
000704268 700__ $$aEverett, L.L.$$uFlorida U.$$uCERN
000704268 700__ $$aKane, G.L.$$uMichigan U., MCTP
000704268 700__ $$aKing, S.F.$$uSouthampton U.
000704268 700__ $$aLykken, Joseph D.$$uFermilab
000704268 700__ $$aWang, Lian-Tao$$uWisconsin U., Madison
000704268 710__ $$5TH
000704268 720__ $$aWang, Lian-Tao
000704268 773__ $$c1-203$$pPhys. Rep.$$v407$$y2005
000704268 859__ $$fdanielchung@wisc.edu
000704268 8564_ $$uhttp://weblib.cern.ch/abstract?CERN-TH-2003-182
000704268 8564_ $$uhttp://lss.fnal.gov/archive/preprint/fermilab-pub-03-228-t.shtml$$yFermilab Library Server (fulltext available)
000704268 8564_ $$uhttp://lss.fnal.gov/archive/2003/pub/fermilab-pub-03-228-t.pdf
000704268 8564_ $$81004631$$s2471563$$uhttps://cds.cern.ch/record/704268/files/arXiv:hep-ph_0312378.pdf
000704268 8564_ $$81004599$$s3636$$uhttps://cds.cern.ch/record/704268/files/fg5.png$$y00007 Feynman Rules after redefining the gluino filed so that gluino mass is real and the phase shows up at the vertices.
000704268 8564_ $$81004600$$s4159$$uhttps://cds.cern.ch/record/704268/files/fg6.png$$y00008 How phases enter from gluino production.
000704268 8564_ $$81004601$$s1793$$uhttps://cds.cern.ch/record/704268/files/fg7.png$$y00009 Gluino production and decay. Phase factors enter at the vertices, as described in the text.
000704268 8564_ $$81004602$$s3179$$uhttps://cds.cern.ch/record/704268/files/fg2.png$$y00006 Possible mechanisms for chargino decay.
000704268 8564_ $$81004603$$s3328$$uhttps://cds.cern.ch/record/704268/files/pfig26.png$$y00035 Caption not extracted
000704268 8564_ $$81004604$$s3282$$uhttps://cds.cern.ch/record/704268/files/pfig24.png$$y00033 Caption not extracted
000704268 8564_ $$81004605$$s3273$$uhttps://cds.cern.ch/record/704268/files/pfig25.png$$y00034 $2g_{3}e e_{\widetilde{q}_\alpha}T_{ij}^{a} $
000704268 8564_ $$81004606$$s2049$$uhttps://cds.cern.ch/record/704268/files/pfig21.png$$y00030 $\frac{g^2}{\cos^2\theta_W}F_{\alpha\beta}^{2I}(T_{3I} - e_{I} \sin^2\theta_W)^2 $
000704268 8564_ $$81004607$$s3681$$uhttps://cds.cern.ch/record/704268/files/pfig23.png$$y00032 $ g_{3}^{2}(\frac{1}{3}\delta_{ab} {\mathbf{1} }+ d_{abc}T^c)g_{\mu\nu} $
000704268 8564_ $$81004608$$s1925$$uhttps://cds.cern.ch/record/704268/files/pfig20.png$$y00029 Caption not extracted
000704268 8564_ $$81004609$$s2304$$uhttps://cds.cern.ch/record/704268/files/pfig16.png$$y00025 $ -i \frac{g_2}{\cos\theta_W}F_{\alpha\beta}^{2I}(P_\beta - P_\alpha)^\mu(T_{3I} - e_I \sin^2\theta_W)$
000704268 8564_ $$81004610$$s32542$$uhttps://cds.cern.ch/record/704268/files/figure22.png$$y00004 Reheating temperature upper bound constraints from BBN as a function of the gravitino mass taken from \cite{Holtmann:1998gd}. The various ``high'' and ``low'' values refer to the usage of observationally deduced light nuclei abundances in deducing the upper bound. Hence, the discrepancy can be seen as an indication of the systematic error in the upper bound constraint from observational input uncertainties.
000704268 8564_ $$81004611$$s5605$$uhttps://cds.cern.ch/record/704268/files/fcnc.png$$y00037 One-loop diagram which can induce FCNCs.
000704268 8564_ $$81004612$$s9262$$uhttps://cds.cern.ch/record/704268/files/photinoan.png$$y00036 The annihilation of a pair of photinos into an electron-positron pair via a $t$-channel exchange of a left-handed scalar electron. The arrows on the lines label the direction of fermion number propagation. The arrows appearing together with the momenta label the direction of momentum flow.
000704268 8564_ $$81004613$$s1243$$uhttps://cds.cern.ch/record/704268/files/pfig2.png$$y00011 Caption not extracted
000704268 8564_ $$81004614$$s50207$$uhttps://cds.cern.ch/record/704268/files/DDandIDandmod.png$$y00003 Taken from \cite{Bertin:2002ky}, the left figure shows the direct detection scalar elastic scattering cross section for various neutralino masses, and the right figure shows the indirect detection experiments' muon flux for various neutralino masses. The scatter points represent ``typical'' class of models. Specifically, the model parameters are \protect\( A_{0}=0,\tan \beta =45,\mu >0,m_{0}\in [40,3000],m_{1/2}\in [40,1000].\protect \) The dotted curve, dot dashed curved, and the dashed curve on the right figure represents the upper bound on the muon flux coming from Macro, Baksan, and Super-Kamiokande experiments, respectively. This plot should be taken as an optimistic picture, because the threshold for detection was set at 5 GeV, where the signal-to-noise ratio is very low in practice.
000704268 8564_ $$81004615$$s53660$$uhttps://cds.cern.ch/record/704268/files/10pmap.png$$y00000 mSUGRA/CMSSM parameter space exclusion plots taken from \cite{Ellis:2003cw}, in which \protect\( A_{0}=0\protect \) and other parameters are as shown. The darkest ``V'' shaped thin strip corresponds to the region with \protect\( 0.094\leq \Omega h^{2}\leq 0.129\protect \), while a bigger strip with a similar shape corresponds to the region with \protect\( 0.1\leq \Omega h^{2}\leq 0.3\protect \). (There are other dark strips as well when examined carefully.) The triangular region in the lower right hand corner is excluded by \protect\( m_{\widetilde{\tau }_{1}}<m_{\widetilde{\chi }^{0}}\protect \), since DM cannot be charged and hence is a neutralino \protect\( \widetilde{\chi }^{0}\protect \)). Other shadings and lines correspond to accelerator constraints. In the lower figure ( \protect\( \mu <0\protect \)), most of the DM favored region below \protect\( m_{1/2}<400\protect \) GeV is ruled out by the \protect\( b\rightarrow s\gamma \protect \) constraint. In the upper figure, the medium shaded band encompassing the bulge region shows that the region favored by dark matter constraints is in concordance with the region favored by \protect\( g_{\mu }-2\protect \) measurements. The Higgs and chargino mass bounds are also as indicated: the parameter space left of these bounds is ruled out. Unless excluded by accelerator constraints, the region below the darkest {}``V'' region is not excluded, but is not cosmologically interesting due to the small relic abundance.
000704268 8564_ $$81004616$$s1953$$uhttps://cds.cern.ch/record/704268/files/pfig19.png$$y00028 $-\frac{g_{2}^{2}}{\sqrt{2}} \frac{y_{Q}\sin^2\theta_W}{\cos\theta_W} \eta_{\mu\nu}F_{\alpha\beta}^{1}$
000704268 8564_ $$81004617$$s1944$$uhttps://cds.cern.ch/record/704268/files/pfig18.png$$y00027 Caption not extracted
000704268 8564_ $$81004618$$s2069$$uhttps://cds.cern.ch/record/704268/files/pfig17.png$$y00026 $ \frac{g_{2}^{2}}{2} \eta_{\mu\nu} (\Gamma_{qL}^{SCKM})_{I\alpha}^{*}(\Gamma_{qL}^{SCKM})_{I\beta}$
000704268 8564_ $$81004619$$s1250$$uhttps://cds.cern.ch/record/704268/files/pfig3.png$$y00012 $-g_2 (V_{IJ}^{CKM})^*(\Gamma_{DL}^{SCKM})_{J\alpha}^* U_{i1}^* \cdot P_L +\frac{g_2}{\sqrt{2}m_W \cos\beta} (V_{IJ}^{CKM})^* (\Gamma_{DR}^{SCKM})^*_{J\alpha}m_J^d U_{22}^* \cdot P_L$ $+\frac{g_2}{\sqrt{2} m_W \sin\beta} (V_{IJ}^{CKM})^* (\Gamma_{DL}^{SCKM})_{J\alpha}^* m_I^u V_{i2} \cdot P_R$
000704268 8564_ $$81004620$$s2216$$uhttps://cds.cern.ch/record/704268/files/pfig15.png$$y00024 Caption not extracted
000704268 8564_ $$81004621$$s2236$$uhttps://cds.cern.ch/record/704268/files/pfig14.png$$y00023 $ -i\frac{g_2}{\sqrt{2}}{(P_d - P_u)}^\mu F_{\alpha\beta}^{1}$
000704268 8564_ $$81004622$$s3365$$uhttps://cds.cern.ch/record/704268/files/pfig13.png$$y00022 $ ig_3 f_{abc}\gamma^\mu $
000704268 8564_ $$81004623$$s1570$$uhttps://cds.cern.ch/record/704268/files/pfig12.png$$y00021 $\frac{g}{\cos\theta_W} \gamma^u(O_{ij}^{\prime \prime L}P_L + O_{ij}^{\prime \prime R}P_R)$
000704268 8564_ $$81004624$$s1597$$uhttps://cds.cern.ch/record/704268/files/pfig11.png$$y00020 $\frac{g_2}{\cos\theta_W} \gamma^\mu[O_{ij}^{\prime L} P_L + O_{ij}^{\prime R} P_R]$
000704268 8564_ $$81004625$$s1523$$uhttps://cds.cern.ch/record/704268/files/pfig10.png$$y00019 $-e\gamma^{\mu}$
000704268 8564_ $$81004626$$s1368$$uhttps://cds.cern.ch/record/704268/files/pfig7.png$$y00016 $-\sqrt{2}g_3 {T^a}_{jk} \big[ G^{-1}( {\Gamma^{SCKM}_{qL})}_{I\alpha} \cdot P_R - G{({\Gamma^{SCKM}}_{qR})}_{I\alpha} P_L\big]$
000704268 8564_ $$81004627$$s1230$$uhttps://cds.cern.ch/record/704268/files/pfig6.png$$y00015 $-\sqrt{2} g_2 {(\Gamma_{UL}^{SCKM})}_{I\alpha}^*[T_{3I}N_{i2}^* - \tan\theta_W(T_{3I} - e_I)N_{i1}^*] \cdot P_L + \sqrt{2} g_2 \tan\theta_W{(\Gamma_{UR}^{SCKM})}_{I\alpha}^* N_{i1} \cdot P_R$ -$ \frac{g_2\;m_I^u}{\sqrt{2} m_W \sin\beta}(N_{i4}{(\Gamma_{UL}^{SCKM})}_{I\alpha}^* \cdot P_R +N_{i4}{(\Gamma_{UR}^{SCKM})}_{I\alpha} P_L.)$
000704268 8564_ $$81004628$$s1236$$uhttps://cds.cern.ch/record/704268/files/pfig5.png$$y00014 $-\sqrt{2} g_2 {(\Gamma_{UL}^{SCKM})}_{I\alpha}[T_{3I}N_{i2} - \tan \theta_W(T_{3I} - e_I)N_{i1}] \cdot P_R + \sqrt{2} g_2 \tan \theta_W{(\Gamma_{UR}^{SCKM})}_{I\alpha} N^*_{i1} \cdot P_L$ -$ \frac{g_2\;m_I^u}{\sqrt{2} m_W \sin\beta}(N^*_{i4}{(\Gamma_{UL}^{SCKM})}_{I\alpha} \cdot P_L +N^*_{i4}{(\Gamma_{UR}^{SCKM})^*}_{I\alpha} P_R.)$
000704268 8564_ $$81004629$$s1240$$uhttps://cds.cern.ch/record/704268/files/pfig4.png$$y00013 $+g_2 V_{JI}^{CKM} (\Gamma_{UL}^{SCKM})_{J\alpha}^* V_{i1}^* \cdot C^{-1} P_L -\frac{g_2}{\sqrt{2}m_W \cos\beta} V_{JI}^{CKM}(\Gamma_{UL}^{SCKM})_{J\alpha}^* m_I^d U_{i2} \cdot C^{-1} \cdot P_R$ $-\frac{g_2}{\sqrt{2}m_W \sin\beta} V_{JI}^{CKM} (\Gamma_{UR}^{SCKM})^* m_J^u V_{i2}^*\cdot C^{-1} P_L$
000704268 8564_ $$81004630$$s76904$$uhttps://cds.cern.ch/record/704268/files/edel.png$$y00002 Typical exclusion plot taken from \cite{Benoit:2001zu}. The region above the curves are excluded. The closed curve represents the \protect\( 3\sigma \protect \) positive detection region of DAMA experiment.
000704268 8564_ $$81004632$$s1264$$uhttps://cds.cern.ch/record/704268/files/pfig1.png$$y00010 \normalsize  $-g_2(V^{CKM})_{IJ}(\Gamma_{DL}^{SCKM})_{J\alpha}U_{i1} \cdot P_R$ $+\frac{g_2}{\sqrt{2} m_W cos\beta}(V^{CKM})_{IJ}(\Gamma_{DR}^{SCKM})_{J\alpha}m_J^d U_{i2} \cdot P_R$ +$\frac{g_2}{\sqrt{2}m_W \sin\beta}(V^{CKM})_{IJ}(\Gamma_{DL}^{SCKM})_{J\alpha}m_I^u V_{i2}^* \cdot P_L$
000704268 8564_ $$81004633$$s13373$$uhttps://cds.cern.ch/record/704268/files/figcarenariotto.png$$y00005 The leading diagrams contributing to the CP-violating currents that eventually sources the quark chiral asymmetry. The diagram a) corresponds to the right-handed squark current $J_R^\mu$ and the diagram b) corresponds to the higgsino current $J_{{\tilde H}}^\mu$. The effective mass terms correspond to $m_{LR}^2 =Y_t (A_t H_u - \mu^* H_d)$ and $\mu_a = g_a (H_d P_L + \frac{\mu}{|\mu|}H_u P_R)$ where $P_{L,R}$ are chiral projectors and $g_a=g_2$ for $a=1,2,3$ and $g_a=g_1$ for $a=4$.
000704268 8564_ $$81004634$$s44633$$uhttps://cds.cern.ch/record/704268/files/10nmap.png$$y00001 mSUGRA/CMSSM parameter space exclusion plots taken from \cite{Ellis:2003cw}, in which \protect\( A_{0}=0\protect \) and other parameters are as shown. The darkest ``V'' shaped thin strip corresponds to the region with \protect\( 0.094\leq \Omega h^{2}\leq 0.129\protect \), while a bigger strip with a similar shape corresponds to the region with \protect\( 0.1\leq \Omega h^{2}\leq 0.3\protect \). (There are other dark strips as well when examined carefully.) The triangular region in the lower right hand corner is excluded by \protect\( m_{\widetilde{\tau }_{1}}<m_{\widetilde{\chi }^{0}}\protect \), since DM cannot be charged and hence is a neutralino \protect\( \widetilde{\chi }^{0}\protect \)). Other shadings and lines correspond to accelerator constraints. In the lower figure ( \protect\( \mu <0\protect \)), most of the DM favored region below \protect\( m_{1/2}<400\protect \) GeV is ruled out by the \protect\( b\rightarrow s\gamma \protect \) constraint. In the upper figure, the medium shaded band encompassing the bulge region shows that the region favored by dark matter constraints is in concordance with the region favored by \protect\( g_{\mu }-2\protect \) measurements. The Higgs and chargino mass bounds are also as indicated: the parameter space left of these bounds is ruled out. Unless excluded by accelerator constraints, the region below the darkest {}``V'' region is not excluded, but is not cosmologically interesting due to the small relic abundance.
000704268 8564_ $$81004635$$s1587$$uhttps://cds.cern.ch/record/704268/files/pfig9.png$$y00018 $g_2 \gamma^{\mu}(O_{ij}^L P_L + O_{ij}^R P_R)$
000704268 8564_ $$81004636$$s1345$$uhttps://cds.cern.ch/record/704268/files/pfig8.png$$y00017 $- \sqrt{2} g_3 {T^a}_{kj}(G{(\Gamma^{SCKM}_{qL})}_{I\alpha}^* P_L - G^{-1}{(\Gamma^{SCKM}_{qR})}^*_{I\alpha} P_R)$
000704268 8564_ $$81004637$$s1926$$uhttps://cds.cern.ch/record/704268/files/pfig22.png$$y00031 Caption not extracted
000704268 8564_ $$897599$$s6501$$uhttps://cds.cern.ch/record/704268/files/0312378.figcarenariotto.ps.gz$$yAccess to fulltext document
000704268 8564_ $$897600$$s39778$$uhttps://cds.cern.ch/record/704268/files/0312378.figure22.ps.gz$$yAccess to fulltext document
000704268 8564_ $$897601$$s2146116$$uhttps://cds.cern.ch/record/704268/files/0312378.pdf$$yAccess to fulltext document
000704268 8564_ $$897601$$s981236$$uhttps://cds.cern.ch/record/704268/files/0312378.ps.gz$$yAccess to fulltext document
000704268 901__ $$uCERN
000704268 916__ $$sn$$w200401$$ya2005
000704268 960__ $$a13
000704268 961__ $$c20100417$$h1141$$lCER01$$x20040106
000704268 963__ $$aPUBLIC
000704268 970__ $$a002419878CER
000704268 980__ $$aARTICLE