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Abstract

The coupling of the Z boson to quarks is studied in a sample of about 3.5 million

hadronic Z decays collected by the L3 experiment at LEP from 1991 to 1995. The

forward-backward quark charge asymmetry is measured by means of a jet charge

technique. From the measured asymmetries, the e�ective weak mixing angle is
determined to be

sin2 �W = 0:2327� 0:0012(stat.)� 0:0013(syst.):
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1 Introduction

The Standard Model of electroweak interactions [1] predicts a mixing between the two mediators

of neutral currents. Consequently, the coupling constants of the Z boson acquire a dependence

on the weak mixing angle sin2�W. Measuring the forward{backward asymmetries in Z boson

decays therefore allows to determine sin2�W.

In the process e+e� ! q�q the distribution of the quark production angle, �, relative to the

e� beam direction, can be parametrised by

d�

d cos �
� 1 + cos2 � +

8

3
A
q
fb cos � : (1)

At lowest order, for a centre-of-mass energy,
p
s, equal to mZ the forward{backward asymmetry

becomes

A
q
fb(mZ) =

3

4
AeAq; Af =

2vfaf

v2f + a2f
: (2)

Higher-order weak corrections are taken into account by replacing the couplings vf and af by
e�ective couplings �vf and �af which are related to the e�ective weak mixing angle, sin2 �W [2],

by

�vf=�af = 1� 4jQf j sin2 �W : (3)

In contrast to the leptonic �nal states, the analysis of hadronic �nal states is complicated by
the fragmentation process, which obscures a charge measurement of the original quarks. In
addition hadronic �nal states are a mixture of up- and down-type quark pairs, reducing the

sensitivity of the forward{backward asymmetry measurement to the value of sin2 �W. Previous
measurements of the quark charge asymmetry have been performed at LEP [3{5].

This paper describes the measurement of the quark charge asymmetry in a sample of about

3.5 million hadronic Z decays. The data were collected between 1991 and 1995 by the L3 exper-
iment at centre{of{mass energies around the Z peak, corresponding to an integrated luminosity
of 135 pb�1. A jet-charge technique [6] is used to identify the quark charge signs.

The analysis is performed as follows: a avour-averaged probability to correctly identify the

charge sign of the quarks is determined from the data. This is used to extract raw asymmetries.
These raw asymmetries are �tted, in the Standard Model framework, to determine the value

of sin2 �W. For the data taken in 1994 and 1995 the identi�cation of heavy avours is used to

increase the sensitivity to sin2 �W and to measure the b�b forward{backward asymmetry, Ab
fb,

in a more model-independent way.

2 Event Selection

The data is collected with the L3 detector [7] and is analysed separately for each year and

centre{of{mass energy point. Hadronic events are selected by cuts similar to those used in
Reference [8]:

� visible energy: 0:5 � Evis=
p
s � 1:5

� transverse energy imbalance: Etran=Evis � 0:5
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� longitudinal energy imbalance: Elong=Evis � 0:5

� number of calorimetric energy deposits: Ncl > 13

� polar angle of the thrust axis: j cos �tj < 0:85.

The events are further divided into two hemispheres separated by the plane perpendicular to

the thrust axis. For the analysis only events are considered which have at least two tracks

reconstructed in one hemisphere and at least one track in the other one. Tracks in the central

tracker are required to have a measured transverse momentum between 1 and 50 GeV and to

originate from the interaction point.

In Table 1 the centre{of{mass energy, the collected luminosity and the number of events

used in the following analysis are listed for each period.

The Monte Carlo samples of hadronic Z decays used for fragmentation studies are generated

using the PYTHIA/JETSET program [9]. The samples of e+e� ! �+��() and e+e� !
e+e�q�q events used in the evaluation of the background contamination are generated with the

KORALZ [10] and the DIAG36 [11] programs, respectively. These backgrounds contributions

are small: 0.3% and 0.2%. The response of the L3 detector is modelled with the GEANT [12]

detector simulation program which includes the e�ects of energy loss, multiple scattering and

showering in the detector materials and in the beampipe.

3 Measurement Techniques

3.1 Jet{Charge Measurement

The thrust axis is used to estimate the direction of ight of the quark{pair produced in the Z
decay. For each hemisphere, de�ned by the thrust axis, the jet charge is given by

Qh =

P
i qiwi

Ntrk

h = F;B; (4)

where forward (F) and backward (B) are de�ned with respect to the direction of the e� beam.
The index i runs over all tracks per hemisphere, Ntrk. The charge and weight per track are

qi and wi, respectively. The weight is determined from the track momentum component along
the thrust direction, p

k
i , and the track charge confusion, C, as

wi = jpki j� � (1� C(�i)) : (5)

The track charge confusion depends on the azimuthal angle, �i, of the track, and is estimated

using leptonic �nal state data. An event is called forward ifQF is larger thanQB. The parameter
�, which is a free parameter of the method [6], is set to 0.4 to maximise the probability, PS, for

a correct assignment of the event being forward or backward.

The jet charge de�ned in Eqn. (4) is used to discriminate between jets originating from
positively and negatively charged quarks. Denoting the jet charge of positively and negatively

charged quarks by Q+ and Q�, respectively, it is assumed that the distributions of Q+ and Q�

are Gaussians and have mean values di�ering by a charge separation �Q, variances �Q and a

correlation �. Then the probability PS is given by

PS =
1p
2�

Z 1

x0

e�
1

2
x2dx; x0 =

��Q
�Q
q
2(1� �)

: (6)
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The quantities �Q and �Q are extracted from the data in the following way: A distribution

Q is constructed, equal to the sum of the Q+ and Q� distributions. For the variance of this

distribution, V (Q), and the correlation coe�cient, �, the following relations hold:

V (Q) = �2Q +
1

4
�2Q ;

��2Q = <Q+Q�> � <Q+><Q�> : (7)

The brackets denote the mean value of the distribution. From these relations the charge sepa-

ration is determined to be

�2Q =
4(�V (Q)+ < Q>2 � <Q+Q�>)

1 + �
: (8)

Because the Q distribution also represents the sum of the QF and QB distributions, and as

<QFQB>=<Q+Q�>, �Q and �Q can be calculated using these quantities, measured on data,

and the correlation coe�cient �, which is the only quantity that is determined from Monte

Carlo events. In Figure 1 the Monte Carlo distributions of the jet charges of the positive and

negative quark hemispheres are shown; also the Q distribution is compared to the data.
Applying the same method to a sample of fully simulated Monte Carlo events, the estimated

PS values are shown to reproduce well the fractions of a correct charge assignment, Pgen, as
determined using generator-level information. This is shown in Figure 2 which includes also the
distribution obtained for the data taken in 1993. A good agreement between the Monte Carlo

values is obtained, except for the �rst bin. The discrepancy observed here is an artefact of the
comparison, caused by the migration of events between forward and backward directions due
to the thrust axis angular resolution. This a�ects the evaluation made using generator-level

information, but not the procedure used to extract sin2 �W where the resolution is accounted
for in the �t to determine the raw asymmetries. Typical average values of PS are 64.0% in 1991

and 66.5% in 1994.
These low values of PS are mainly due to fragmentation e�ects. The charge identi�cation

using a jet charge technique assumes that the highest-energy particles produced in the hadro-

nisation carry the information of the sign of the charge of the original quark. This charge

information is diluted for several reasons:

� Primary mesons1) may be neutral, which is more likely for down{type quarks than for
up{type ones. This is due to the possibility to create s�s pairs in the fragmentation process,

in addition to u�u and d�d.

� Up-type quarks are more likely to produce charged than neutral baryons; the converse is
true for down-type quarks. This reduces the correlation between jet charges and quark

charges for down-type quarks relative to up-type quarks.

� The decay of mesons, in particular in case of heavy avour mesons, distributes the mo-

mentum among several particles.

The di�erences in PS among the avours caused by these e�ects are estimated using Monte
Carlo event samples. The relevant parameters of the JETSET hadronisation model on which

these estimates depend are given in Section 4.2.

1)The primary meson of a jet is a bound state of the original quark/antiquark and the antiquark/quark of

the �rst quark pair produced in the hadronisation.
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3.2 Flavour Tagging Method

For the data taking periods where the silicon microvertex detector was operational (1994 and

1995) an impact parameter avour tagging method, described in detail in Reference [13], is

used to distinguish decays of the Z into heavy quarks. The distance of closest approach in

the transverse plane to the primary vertex of the event is calculated for each track. The

corresponding error is evaluated taking into account both the uncertainties on the vertex and

those on the track parameters. A sign is given to the impact parameter, according to the

position of the intersection between the track and the jet direction with respect to the primary

vertex. The tracks with negative impact parameters are likely to be fragmentation tracks. From

the impact parameters and their errors the probability of the individual tracks to originate from

the interaction point is estimated. The probability, PE, that there is no secondary vertex is

evaluated by combining all the tracks of the event. The discriminator, Dtag, used to tag quark

avours is given by Dtag = � log10(PE). The Dtag distribution is shown for 1995 data in

Figure 3(a).

4 Measurement of Asymmetries

4.1 Extraction of Raw Asymmetries

The data taken in each year and at each centre-of-mass energy point are considered separately.

In addition, the data taken on the Z peak in 1994 and 1995 are split into 8 samples, corre-
sponding to di�erent values of Dtag. Bins are chosen in order to contain similar numbers of

events per bin.

In each of these samples an unbinned maximum likelihood �t is performed to the distribution
of

x = sign(QF �QB)j cos �tj : (9)

The variable x represents with a probability PS the direction of ight of the positive quark
originating from the Z decay with respect to the e� beam direction. The likelihood function is

then calculated from the expected angular distribution for a given Araw
fb :

L(Araw
fb ) =

NevtY
i=1

f(xi; A
raw
fb ); f(x;Araw

fb ) = 1 + ax2 +
6 + 2a

3
Araw
fb (2PS(x)� 1)x : (10)

The coe�cient a = 0:952 � 0:009 is introduced to account for the deformation of the polar

angular distribution due to QCD corrections [14], and is avour-independent to a good approx-
imation. The thrust axis angular resolution is accounted for by convoluting expression (10)
with a Gaussian.

The raw asymmetries, Araw
fb , which result from the �t, correspond to a linear combination

of the forward{backward asymmetries Aq
fb introduced in Eqn. (1):

Araw
fb =

X
q

Qq

jQqjfq�q(1� Cq)A
q
fb ; fq = "qRq=

X
q0

"q0Rq0 (11)

where the Cq are avour-dependent QCD corrections [14], the "q are the selection e�ciencies

of the various avours in the sample, and the Rq = �(e+e� ! q�q)=
P

q0 �(e
+e� ! q0 �q0) are the
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relative cross sections. The avour biases, �q, take into account the di�erence in the probability

for correct charge assignment between the avours and are given by

�q =
2Pq � 1

2PS � 1
; (12)

where the Pq are scaled to yield the same average PS as obtained from the data. A Monte Carlo

study showed that the polar angular dependence of the �q can be neglected.

The raw asymmetries measured in 1994 and 1995 for the 8 bins of the tagging variable Dtag

are listed in Table 2. Also given are the fractions of uds, c, and b events for each Dtag bin.

The avour biases depend on the performance of the tracking and are therefore determined

for each year separately. For example, values found for the �ve quark avours in 1994 are:

�u=1.41, �d= 0.88, �s= 1.07, �c= 0.85 and �b= 0.87.

4.2 Experimental Systematic Errors

The detector introduces uncertainties in the measurements both because of possible intrin-

sic asymmetries and because of the systematic uncertainty on the determination of PS. The

following contributions are studied, and the results are summarised in Table 3:

� Angular acceptance: The uncertainty introduced by the detector acceptance is largely

reduced by the use of an unbinned maximum likelihood technique. Due to this technique
the selection e�ciency as a function of x is irrelevant provided it is symmetric in x, and
thus does not introduce systematic uncertainties. In order to study residual e�ects at

the edges of the tracking devices the measurement is repeated for di�erent values of the
acceptance cut.

� Tracking performance and detector material: Asymmetries in the detector response
can only bias the measurement if the performance of the tracking is di�erent in the forward

and backward regions and for positively and negatively charged tracks. Studies of the
tracking system, in particular of the alignment of the ladders of the silicon microvertex
detector, show no signi�cant e�ect.

The quark avours may be a�ected by the track selection criteria in di�erent ways, as they

fragment with di�erent momentum spectra and di�erent secondary decay characteristics.

Therefore the raw asymmetry measurements are repeated varying the selection criteria

for tracks used in the jet charge calculation. The following track parameters are studied,
and statistically signi�cant variations in the raw asymmetries are considered as systematic

uncertainties:

{ The cut on the minimum transverse momentum is varied between 800 MeV and
1.2 GeV.

{ The cut on the maximum transverse momentum is lowered from 50 to 30 GeV.

{ The requirements on the minimal track length, on the track quality and the matching
to the interaction point are tightened.

Positively and negatively charged particles are known to have di�erent interaction cross
sections with the detector materials. To investigate this e�ect, the measurement is re-

peated with positively charged tracks only. No signi�cant di�erences are found.
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For 1994 and 1995 data the di�erence in b tagging e�ciency between data and Monte

Carlo is taken into account by using the average value. The systematic uncertainty,

estimated to be half the di�erence, has no signi�cant e�ect.

� Event selection: The e�ect of background contamination from other processes is negli-

gible. The uncertainties due to the event selection cuts are evaluated by cut variations.

� Vertex position displacements and beam tilts: For the data taken in 1994 and 1995

the directions of calorimetric clusters used to determine the thrust axis refer to the event

vertex position as measured using the silicon microvertex detector. For the data taken

before 1994 the longitudinal event vertex position was not available, and its nominal

position was assumed; the corresponding error on the thrust axis calculation leads to a

systematic uncertainty of 0.008% on the raw asymmetries.

The e�ects of the slight tilts of the LEP beams with respect to the z axis of the L3

detector were investigated and found to be negligible.

� Errors on correlations: The main source of uncertainty on the calculation of the prob-
ability PS is the error on the correlation between the jet charges in the two hemispheres.

The correlation coe�cient � is extracted from Monte Carlo simulation. The variation of
its value with the fragmentation model parameters is taken into account. A relative error
of 30% on the values of � is estimated.

The values of PS are determined from data. Consequently they are known with limited
statistical accuracy only. Their statistical errors cause uncertainties on the raw asymmetry

measurements, which are also included in Table 3.

4.3 Theoretical Uncertainties

Theoretical uncertainties enter the determination of Ab
fb and sin2 �W through Eqn. (11) by

uncertainties on the QCD corrections, Cq, and on the avour biases, �q.

To evaluate the e�ect due to the uncertainty on the QCD corrections, Cq, the prescriptions

given in Reference [14] are followed. The full corrections given therein are applied since no
requirement on the shape of the event is used. The resulting error on sin2 �W is negligible.

The probability of correct charge assignment of the individual avours is sensitive to pa-
rameters describing the hadronisation process [9]. All of these parameters are tuned on LEP

data and are known with limited precision only. They are varied in ranges similar to those in

References [3,15{19] and the resulting changes in the avour biases are considered as systematic

uncertainties. Parameters inuencing the avour biases are:

� The QCD scale parameter �QCD (varied between 240 and 325 MeV);

� The invariant mass cut-o� of parton showers Mmin (varied between 0.55 and 1.0 GeV);

� Baryon production: the rate of di-quark relative to single quark production P (qq)=P (q)

(varied between 0.09 and 0.12), and the parameter in the so-called popcorn model [20] de-

scribing how often baryon production is accompanied by the production of high-momentum

mesons (varied between 0 and 1);
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� General fragmentation parameters: the ratio of vector / (vector + pseudoscalar) meson

production Pq (varied between 0.4 and 0.8 for u and d quarks, between 0.5 and 0.7 for

s quarks, and between 0.65 and 0.85 for c and b quarks), the width of the transverse

momentum distribution �q (varied between 360 and 420 MeV), and the rate of s�s pairs

produced in the fragmentation process relative to u�u and d�d pairs, s (varied between

0.27 and 0.32);

� The a and b parameters in the Lund symmetric fragmentation function for light avours

(varied between 0.14 and 0.28, and 0.73 and 0.82, respectively);

� The average energy fraction carried by hadrons fragmented from heavy avours, <xE>c

and <xE>b (varied between 0.476 and 0.492 and 0.705 and 0.713, respectively);

� The B oscillation parameter xd(varied between 0.6 and 0.7).

To evaluate the e�ect of these uncertainties, a simpli�ed Monte Carlo simulation is used.

The avour biases �q are calculated for the values of the parameters listed.

To ensure that the simpli�ed simulation gives reliable results, a reweighting technique is

alternatively applied to a sample of fully simulated Monte Carlo events in case of variations
of �QCD, < xE >c and < xE >b. The uncertainties obtained from the full simulation are in

agreement with those derived from the simpli�ed simulation. The resulting uncertainties on
the Ab

fb and sin2 �W measurements (see the following Section) are given in Table 4.
The covariance matrix of the �q originating from the parameter uncertainties is derived.

The errors and correlations are found to be the same for all data periods. The sum of the
individual covariance matrices is listed in Table 5.

5 Results

5.1 Forward{Backward b Quark Asymmetry

For the data taken in 1994 and 1995, when the silicon microvertex detector was operational,

the b-quark forward-backward asymmetry, Ab
fb, is determined using Eqn. (11). To obtain Ab

fb

from the raw asymmetry, the contributions from the remaining avours are subtracted:

Ab
fb = �Araw

fb �Pq 6=bQq=jQqjfq�q(1� Cq)A
q
fb

fb�b(1� Cb)
: (13)

The values for Rb, Rc, and Ac
fb at

p
s = mZ are taken from Reference [21], and only their small

energy dependence is inferred from the Standard Model; the branching ratios and asymmetries

for the light avours are taken from the Standard Model.

The measurement is performed on b-quark enriched sample requiring Dtag > 1:5, corre-
sponding to a purity fb = 78% and an e�ciency "b = 55%. Fig. 3(b) shows the b e�ciency

and purity as a function of the cut value.

The measured forward{backward asymmetries at the three di�erent center of mass energies

are

Ab
fb = 4:95� 5:23� 0:40%

p
s = 89:45 GeV (14)

Ab
fb = 9:31� 1:01� 0:55%

p
s = 91:24 GeV (15)

Ab
fb = 11:37� 3:99� 0:65%

p
s = 92:99 GeV (16)
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Figure 4 compares the measurements to the Standard Model expectations for sin2 �W =

0:2315 [15]. The measurements are combined, following Reference [15], to give a determination

of the pole asymmetry

A
0;b
fb = 9:55� 1:07(stat.)� 0:55(syst.)% : (17)

This corresponds to a value of sin2 �W = 0:2329�0:0019�0:0010, consistent with the combined

value given below.

The correlations with the other forward{backward asymmetries and branching ratios and

the central values used for the measurement are listed in Table 6.

5.2 E�ective Weak Mixing Angle

To determine sin2 �W a �2 �t to the raw asymmetries is performed using the MINUIT pro-

gram [22], the �2 being de�ned as:

�2 = (
�!
A ��!Ath) bV �1(

�!
A ��!Ath) : (18)

where
�!
A and

�!
Ath denote the measured and predicted raw asymmetries, respectively.

�!
Ath is

obtained using Eqn. (11), where the Rq and A
q
fb are calculated using the ZFITTER program [23].

The covariance matrix bV takes into account the statistical errors and the experimental and
theoretical uncertainties with their correlations. The result of the �t for the e�ective weak

mixing angle is

sin2 �W = 0:2327� 0:0012(stat.)� 0:0013(syst.) : (19)
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year
p
s (GeV) L (nb�1) Nsel (10

3)

88.48 739.3 3.1

89.47 766.1 6.1

90.23 748.4 10.6

1991 91.24 7258 172.5

91.97 648.1 12.5

92.97 731.0 8.2

93.72 750.1 5.8

1992 91.29 20473 480.1

89.44 8538 67.6

1993 91.24 15172 363.8

93.03 8806 96.8

1994 91.22 44550 967.8

89.45 7391 53.4

1995 91.31 10101 234.9

92.99 8275 89.4

Table 1: Centre{of{mass energy,
p
s, integrated luminosity, L, and number of selected events,

Nsel, for the 15 data periods.

Dtag range 1994 1995 "usd "c "b

Araw
fb (%) Araw

fb (%)

<0.06 {2.70�0.79 {1.33�1.53 0.245 0.134 0.0328

0.06-0.18 {3.47�0.86 {3.68�1.70 0.201 0.132 0.0364

0.18-0.30 {3.48�0.96 {1.32�1.95 0.147 0.114 0.0379

0.30-0.54 {1.64�0.80 0.62�1.64 0.183 0.180 0.0777

0.54-0.78 {3.26�1.00 0.35�2.05 0.0985 0.129 0.0772

0.78-1.26 {1.27�0.93 1.14�1.95 0.0833 0.158 0.148

1.26-2.20 {3.50�1.00 {1.57�2.03 0.0347 0.117 0.240

>2.20 {7.17�1.10 {6.71�2.14 0.0047 0.0349 0.348

Table 2: Measured asymmetries, Araw
fb , and fraction of Z ! q�q decays, "q, in 8 bins of the

tagging discriminant for the 1994 and 1995 peak data.
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Source Contribution to �Araw
fb (%)

1991 1992 1993 1994 1995

PS statistical error 0.06 0.026 0.033 0.012 0.012

� uncertainty 0.008 0.009 0.008 0.007 0.004

Acceptance cut 0.15 0.057 0.012 0.012 0.028

Tracking performance 0.34 0.072 0.20 0.081 0.13

Event selection 0.10 0.076 0.082 0.064 0.030

Vertex uncertainties 0.008 0.008 0.008 { {

Total 0.40 0.12 0.22 0.10 0.14

Table 3: Details of the experimental systematic errors on the raw asymmetry Araw
fb .

Parameter �Ab
fb (%) � sin2 �W (�104)

�QCD 0.07 1.8

Mmin 0.08 1.8

Baryon production 0.17 4.0

Fragmentation: general 0.19 4.9

Fragmentation: light avours 0.21 1.6

< xE >c 0.08 4.0

< xE >b 0.19 5.1

B oscillations 0.12 0.1

Total 0.43 9.5

Table 4: E�ect of the uncertainties on parameters of the hadronisation process on Ab
fb (forp

s = 91:24 GeV) and sin2 �W.

�q Vqq0

q/q0 u d s c b

u 0.062 1.00 0.15 0.14 0.42 0.44

d 0.059 1.00 0.49 0.15 0.25

s 0.046 1.00 -0.03 0.20

c 0.060 1.00 0.56

b 0.045 1.00

Table 5: Errors, �q, assigned to the avour biases �q and their correlations, Vqq0.
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Quantity Value Derivative (%)

Ac 0.0681 16.8

Ad;s 0.0940 {4.5

Au 0.0602 4.7

Rb 0.2170 {42.6

Rc 0.1733 6.3

Table 6: Input parameters assumed for the measurement of the b-quark forward{backward

asymmetry. For each quantity x, the partial derivative @Ab
fb=@x is also given.
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Figure 1: Q+ and Q� distributions obtained from Monte Carlo. Also their sum is compared to
the sum of the QF and QB distributions for 1994 data.
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Figure 2: Probability of a correct charge assignment versus jcos�tj. The solid and open points
represent the calculated PS values for 1993 data and Monte Carlo, respectively; the histogram

represents the fraction of a correct charge assignment, Pgen, as evaluated using the Monte Carlo
generator information.
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Figure 3: Performance of the avour tagging algorithm: (a) Dtag distribution in data and
MC. The contribution of the events with b quarks is indicated by the hatched histogram. (b)

e�ciencies (") for the di�erent avours as a function of the Dtag cut value based on Monte Carlo

calculations. The index l denotes the light avours. For b quarks also the e�ciency obtained

from data is given, as well as the purity (fb) obtained from Monte Carlo.
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Figure 4: Ab
fb measurements as a function of centre-of-mass energy. The points represent the

measurements made on 1994 and 1995 data; the error bars indicate the statistical uncertainties
only. The line represents the Standard Model prediction for sin2 �W = 0:2315.
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