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ABSTRACT

Multi-channel dynamical amplitudes can have CDD poles
when viewed as the solution of the appropriate one channel
inelastic problem. Manifestations of this phenomenon are in-
vestigated. The technique is to work via the eigenamplitudes
in terms of which the essential many-channel dynamics take a
simple form; for them, individual Levinson's theorems are
derived. On applying the method, it is found that for a wide
class of cases, the phenomenon always occurs in at least one
channel and, in many cascs, further analysis enables one to
say in which one. A speculative application is made to SU

3
bootstraps.
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I. INTRODUCTION

1)

calculations in a single channel with prescribed inelasticity do not

It has recently been pointed out that the results of dynamical

always agree with those of a related meny-channel calculation. The pur-—
pose of thig paper is to present an analvasis of this phenomenon 2>,

A precise statement of the effect can be given as follows :
suppose that A11 is the amplitude and W the inelasticity in channel
one of a many-channel system. Then, if ™M and the left-hand discontinuity
of A1 are used to calculate an amplitude, A, 1in a dynamic one-channcl
inelastic calculation, in general A;4A11° To get equality, one has to

introduce a CDD pole.

Such considerations clearly have important bearing on the hypothesis
that all particles of high energy physics are composite, for compositeness
is now seen to be a relative concept. One now has the choice of asking
is such and such 4 particle a dynamical bound state or resonance in this
or that set of channels or, alternatively, is it dynamic in any set of
channelsz. The possibility opens that particle democracy although formally
existing might in practice display oligarchic tendencies and some particle
be more dynamic than others. IEvery bootstrap hypothesis embodies a choice

of channelgs in which the dynamical calculation is to be done.

In the discussion to follow, a one-channel inelastic calculation
will generally be taken to mean an application of the method of Frye and
Warnock 5 (FW)° This employs an N/D representation in which argD=
= -Red . TPor brevity, the phrases failure of IV and success of FW will
be used to designate the situations where respectively there are or are
not one-channel CDD poles in A11, Some brief comments will also be A)
made on one—channel calculations using the method of Chew and Mandelstam
(CM)o This is the appropriate method when the input information on the
omitted channels is not ’ﬁ» but R= G;Ot/.g . It should‘not‘be thought
that the IW method receives more attention because it has more troubles:
rather, it is because the troubles are easier to chart. It should be

1)

situation studied consists of n two-body channels.

remarked that in this paper as elsewhere , the underlying many-channel
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Several analyses of the one-channel many-chennel non~equivalenée
have appeared 5>° The present one i1s based on the use of eigenamplitudes
and repeated application of Levinson's theorem as a criterion of dynami-
cality. A chain of arguments is developed leading from dynamical many-
channel solutions to dynamic eigenamplitudes and so to the guestion e
whether the physical one-channel amplitudes are in turn dynemical. The
latter are expressible as linear sums of eigenamplitudes and their phasec s
changes from threshold to infinite energy are to be the criterion. The
problem is thus reduced to a study of the phase development of a vector
sum of individual vectors with prescribed phase behaviour. Sufficient
conditions for success and failure are stated which essentially say that
if one of the individual vectors is always longer than the rest then its
phase behaviour predominates. (This result, which is stated precisely
in Section IVs will be termed the crank-shaft theorem.) The general
conclusion is that fallure results when there is a many-channel bound
state or resonance and the physical channel under consideration is . in-
sufficiently strongly coupled to the resonating eigenamplitude. That
is not to say that the phenomenon should be thought of as a weak coupling

effect. In fact, the interchannel coupling can be large.

The arrangemen®t of the rest of the paper is as follows. In
Section IT some simple examples are presented which show how fallure can

arise. These fall into two classes — weak coupling examples which fur-
nish an immediate intuitive feeling for the phenomenon and, second,
instances with coincident thresholds. These latter serve as an intro-
duction both as to the general results and methods which follow. The
next four Sections are devoted to establishing the general techniques.

In Section III, the Levinson thcorem for one-channel (FW) and (CM)
amplitudes is discussed. In Section IV, the diagonalization of the many-— *
channel S matrix is presented and in Section V a form of Levinson's

theorem for the cigenamplitudes is derived. These results are then -
applied in Section VI to derive the crank-shaft theorem - a general

criterion of the success or failure of FW calculations. Throughout
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this portion of the paper, the two-clhiannel cage io treated in generality
and whenever possible results are proved for n channels with n2> 2.

In particular, in contrast tc the second set of examples of Section IT,
distinct thresholds are assumed. Thig allows in general a rich complexity
in the relations between the eigenamplitudes and the physical amplitudes
and as a result less detailed statements can be made than for the equal
threshold case. In Section VII, it is shown that under a regime of
moderate interchannel coupling (moderate in the sense of not too strong)9
the unequal threshold case is not qualitatively different from that of
coincident thresholds and stronger statements can be made., The weak
coupling example of Section II is then re-analyzed from the eigenamplitude
viewpoint. The crank-shaft analysis for the CM method is sketched in
Section VIII, and this concludes the general discussion. In Section IX,

a speculative application of the present results to SU5 symmetric boot-

straps is outlined. In the final Section, some comparisons are made with

other work.
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II. EXAMPLES OF THE FATILURE OF FW

In this Section, certain specific examples are given in which an
attempt to calculate a bound state by the FW method would fail. The
reason for introducing these examples here is that they can be presented
without the detailed formalism which will be developed in later Sections,

and which will enable certain general criteria of failure to be stated.

The <technique, in these examples, will be %o suppose a two-—channel
system to be dynamically soluble by a matrix N/D method, in which spe-
cified bound states occur, but no CDD poles. The effective inelasticity,
ﬂ?, could then be calculated. An FW system could be set up, in which the
left-hand discontinuity of t119 the amplitude in channel one, is supplied,
together with the inelasticity ’? . The question is whether the solution
of the CDD pole free FW equations agrees, or not, with It can

fail to do so if ¢

11°
499 considered as a one—channel FW amplitude, has one

or more CDD poles. The examples of failure will be cases in which t11

has no CDD pole in the two channel system, but has one such pole in the

one—-channel FW calculation.

In Section III, it will be shown that if certain conditions are

satisfied by the discontinuity of and by W? , the FW solution

g
11
satisfies Levinson's theorem, in the form

-

-

{
\

=0

r
(g

I

2 )= T (- ng) (1I.1)
whe re 511(s) is the phase shift, as a function of s, the energy
squared, e is the numbef of CDD poles, and ap the number of bound
states. The convention 511 (threshold) = 0 is adopted. The criterion
of a dynamical calculation is the absence of (DD poles, so that failure
of such a calculation is equivalent to nc;éO? that is, to non—-observance

of the relation

Ke cgn(%) = *T\AB (11.2)

Accordingly, examples will be sought for which (II.2) is violated by the

channel one amplitude.
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As a first example, considsr the case of weak intecrchannel coupling,

in which there is a bound state in channel two. Then, writing
_ - =
t=ND (11.3)

the channel one amplitude has the form

t _ A2 T Aﬁz ]>24
AA (11.4)

I//‘M yZ.Q_ - )/,2]‘/‘24

Since the channels are weakly coupled, one can write all the diagonal

elements of N and D in the form

a2 ‘ A \
M, = N * O(A)  etc, . (11.5)

where ﬁ) is some interchannel coupling parameter and the quantities N19
D19
will be of order ‘A . Then

etc., ; refer to the case of zero coupling. The off-diagonal elements

A4

t = M’/Z + O(.%z) (11.5)

except in the neighbourhood of zerog of D1 and D In the example,

o
it is supposed that D2 has a zero, corresponding to a bound state in

channel two in the absence of interchannel coupling, but that D1 has
not. Let the position of this zerc be § =8 Then both the numerator
and denominator in (II.4) will have zeros at different values of s near

S when ,) is small. If S, is below the threshold of channel one,

the pole of A11 near s will correspond to a bound state in channel
one.,

From (II.G) it can be seen that the phase of t11 will be close
to that of t1 = N1/D1 for small A\ , and that for sufficiently small,

but non-zero A , the phase at infinity will be the same. However,
there is no bound state in the uncoupled amplitude t1, so that, by

Levinson's theorem, its phase at infinity is zero. Hence

65/855/5
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Re S (o) =0 (11.7)

but, since t11 has a bound state, the FW method would fail in channel
one. The zero that was induced in the numerator of (II.4) is in fact a
CDD pole of the one—channel amplitude. If 8, is above the channel one
threshold, t11 has a resonance, but no return of Re 511 through ﬂ-/Z,
and the FW method fails again. This example will be examined further in

Section VII.

As a second examble9 consider the case in which the thresholds are
coincident. It will not be necessary in this case to make a weak coupling
assumption. The S matrix can be diagonalized in the physical region
in terms of eigenphase shifts by means of an energy dependent orthogonal

similarity transformation. Thus, in particular,

. 2. 8(2)

2 2087
205 e +ﬁ e (11.8)

M e 21 S =«

AA

tit

whore C¥2+/32 =1, and 5<i)(s) are the eigenphase shifts. The
re_ation (II.8) holds in the physical region: but it can be continued
into the complex s plane, a procedure that will be studied in detail

in Section IV. A form of Levinson's theorem for the eigenamplitudes will

be proved in Section V.

Suppose again that there is a bound state in eigenchannel Iwo
only. Thus, by Levinson's theorem
~(/|)
S s )= 0
(11.9)
§% (s0) ==
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Clearly, 311 has a bound state, so that success or failure of the IV

method depends on whether Re éa1(aa)= -7  or Re 5}1

(II.8), it can be scen that c(2(s) & %+ for all physical s dimplics

(w)= 0. From

success and cKz(s) >'% implies failure. This fact can be visualized

o215 11

by thinking of ~7 as the sum of a long and a short vector.

This situation can be realized in a simple example by replacing the
left-hand cut of each tij by a pole with residue T i and common

position. Then the paramcters of the diagonalization are

ol 3 _ <1,
) . T4 II.10
X% -7 / - 1 ( )
22 AA
and
. —_ 2 1
(1 2] oL ! ' 'EA~.IZ%) T’l /2
[ 2 -
T = oA 22 T ( ) P! (T1.11)
2 .
where Tj(l) are thce residues of the corresponding poles of the eigen-

amplitudes. For coincident thresholds the numbering of the eigenamplitudes
T -7

is arbitrary and the convention ! (2) > | (1) will be adopted. Suppose

T (1)

is not. Then a striking feature of (II,10) is that success or failure of

that T‘(Z) is large enough to produce a bound state, but that

FW for physical channel one (and the converse for channel two) depends
simply on 7 11 22 rgz, This condition does not require that the off
diagonal residue T 10 be small. Hence, the example provides a contra-
diction to the condition for success given in BCS, namely that ‘7722
should not be strong enough to producec a bound state when Tﬂ12 = 0,

One can check that the resuliing amplitudes do not have complex poles on

the physical sheet.

Certain simple examples of the phenomenon of failure of an inelastic

calculation have been adduced in this Section in the two cases :
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a) distinct thresholds but weak couplings

" b) coincident thresholds and possibly strong coupling.

The case of strong coupling with distinct thresholds is more complicateds

and statements will be made in this more general situation in Section VI.
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ITT,  LEVIUSON'S THEOREY WITI TNLTASLICTIY

As hag been noted in the Intreducticn, the methold of calculating
a one—channel inelastic scattering amplitude depends on the input infor—

mation available. TIf one is provided with the inelasticity factor, given

by
| G .
-~ 1ol
K = R (111.1)

Got
4)

then the;relevant.equafiqns are those. of Chew and- Mandelstam “. Here

cgtot is the total and‘,(gJGI the elastic cross—section. If the effect

of the other channels is represented by the inelasticity

" (s) = "@'TUW' 5‘3(9‘: P Ge(s)  (ur2)

then one can use either the method of Fryevand Warnoék 3) of that of
Froissart 6>a‘ Here 5\1(5) is the phase shift of the 1'th partial
wave, whnich becomes complex above the lowest inelastic threshold,‘ k is

the c.m.s. momentun, and G;:r(s) is the reaction cross—section.

In this Section, the methods of CM and FW will be considered in
some detail. In fact, it will prove easier to state conditions for
success or failure of a dynamical calculation in the FW system (section VI)

than for the CM system (Section. VIII).

The problem to be considered is the set of cohditions under which
the dynamical calculation of an amplitude is possible, given the left-
hand cut discontinuity and, in the one case R(s), in the other 4? (s),
A calculation breaks down if a CDD pole occurs, for then the parameters
of the pole are not fixed by the input information. .The investigation
therefore concerns the occurrence or absence of CDD poles. In this
Section, a form of Levinson's theorem that holds in the absence of CDD
poles will be discussed, so that the remainder of the work is reduced to

asking whether Levinson's theorem, in this form, is violated.
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10,

In the CH method, the partial wave amplitude A(s) ~is written in

the form
Als) = N(s) /D) (111.3)

in which D(s) has the right-hand cut, and on which its phase is minus
that of A(s). Then N(s) has only the left-hand cut. The CM equations
lead to the following integral equation for N(s)

ed i
/V(S)~ Bis) + _,4 galsi BCS)('-B(S)jg(s')R(s)/I/(S')(IILA.-)
S'-5
by
where
P T Acs)
‘ A S
BGs) = T j s (11I.5)
o s'-

1
sed lower than any of the inelastic thresholds. If (III.4) has a solution,

D(s) is then calculable from

here f’(s) = d(s-s1) /s and s is the threshold of the channel, suppo-

oo

R (I A/ t
4 gcr(S‘ p(s) Ris') M(s')
%

D(s)= 1= - P (II1.6)

Bquations (III.4)-(III.6) have been written without CDD poles; and a
necessary condition for them to be dynamical is that a unique solution

exists.

In the FW method, on the other hand, a decomposition

(III1.7)

A(s) = N(s)/Dis)
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11,

is made, in which D(s) carriecs e rigivt-nand cut, as before, but on
which its phase is -Re 51(8)0 Then N(s) has both a right and a left-

hand cut. FW derive the following integral equetion for IKBN(D) :

oo
1L m(s) =, vk
ki RA(s)= Bis) %yds' B(s) - B(s) o) 2 Re N(s) (111.8)
A+Y (s 5 S'- 5 A Cs)
]
where
Co
= ;A= (59
BGs)= = fdsi IWA(S) b Dds’ 2 )
s'-s " 2pte)(s=s)
Ly
Then B(S) is given in terms of the solution of (;II,B) by
OO ; !
5(5) = % jo*( ?(S:/- 2 Re /V('S.} (1I7.10)
s S /14’7(5)

Again, for & dynamical system, the CDD pole free equations (III.8)-

(III.10) must have a unique solution.

The form of Levinson's theorem thut is relevant to a discussion

of a dynamical CM system is
Floo) — 50(5,,}: - T g (I11.11)

where @ (s) = argA(s), and ny is the number of zeros of D(s) on

the physical sheet. For a FW system, the Levinson theorem is

Ke S’(oo) - §(s,) = ‘"77:'72 (111.12)

where 6 (s) is the phase shift, and EB is the number of zeros of

D(s), The integer Ops or EB’ is interpreted as the number of dynamical

bound states in the CM, or FW methods, respectively.
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12.

For (III.11) and (III.12) to hold, certain conditions must be
satisfied by the input quantities. The domains of wvalidity of the two
equations are not co-extensive, although in many simple models both
equations are satisfied (with nB:zﬁB)° In a forthcoming publication 7>,
certain sufficient conditions will be given under which R(s) - ® and
4?(5) -0 as s — ® 8), In genera15 however, this involves introducing
a subtraction into the N/D equations, and the consequent necessity of
specifying a subtraction constant. In this paper it will be sufficicnt
to restrict aftention to the cases R(s) -1 and 1-%(s) — 0, since
these relations are satisfied by all the examples considered (in which

only a finite number of channels contribute)o

Sufficient conditions for the observance of (III,11) are

—s-7
) IBGs)j<Cs® ”“

(b) L RUS) = 1

S—>vco

C 1is a constant. On the other hand, conditions under which (III.12)

holds are :

(3) / i(s)]< C S £ 0

for s,<s< ®, (II1.14)

3  J4-me)| <) s 550

where C, D are constants.
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13.

IV, DIAGONALIZATICON O THE S MADTKIXL

In this Section the problem of diagonalizing a many-channel scatter-

ing matrix will be considered. Suppose that S 1s the scattering matrix

which is already diagonal in all the congerved quantities (total angular

momentum, isospirn, etc.). Then the matrices T and t will be defined

by ,
) ' ' . 4& ,7
S=A+ 2T =A4+2ig tg™ (1v.1)
Here j’ is the phase space matrix
S-S |72 V.2
Sia ~ 3 ( ) v-2)

S
where 1 s, is the threshold energy of the k'th channel.

In this paper, only a finite number of two-body channels will be
considered. Moredver, the formalism will be displayed for the simple
case of two channels, although it is readily generalized to the n

channel case.

Suppose that there are two channels and two threshold s = s

= 1
and s = S5 in general distinct. The matrix T can be diagonalized
above the higher threshold, S5 by a real, orthogonai, energy dependent
matrix O 9)° Thus one can write

—(4)
/ ) 1 1 7
—_ . 4 a4 12 / P
> = —a) :OTO“"OS’/Z( §u 0
0 / / - -t’lj T,
(1v.3)

for s

1%
[¢]
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14.

where

T« P gy e
O:(“(j O() wa X TF =4 (1V.4)

The quantities T(l) and the related S(l) (= 1+21T(l)) have a key-role
throughout the paper. It is of interest to display the physical matrix

elements tij in terms of the diagonalized quantities T(1) and T(Q).
Equation (IV.3) gives
2 ) 2 —
- / (2)
¢ L +p
~ (A) (2)
r—* _ o ] - T
75, tyy = ﬁ( / (1v.5)
2 — (A 2 —(2)
g t,= T+
2 22

The elements of the diagonalizing matrix O are given in terms of the

t matrix elements by

L) = A (e [T ")

o (1v.6)
2 : 2, 7 72
ges) = & (4= [0 )
where the function K(s) satisfies
‘ 1 .
K(s)= 2 545 'tAZS) , (1v.7)

_ (s
aim(s) %, -tzzs)
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15.

n(i)(;\

The eigenamplitucdes T 2) oboy o vory simple unitary condition

above the higher threshold

Ton T(I) _ / 7-—(.?/ l?\'

(1v.8)

so that one can write

. ({) -
. ) . () ~ 0 (1v.9)
FlL e e § (=74
where the g(:i)(s)7 which will be termed "eigenphase-shifts', are real

for 82 £ s ®.

The analytic properties of the T(l)(s) are not always as simple
-as those of the Tij(s). For (IV.5) gives

T = e 1, - U \se, t,

g, Y~———~ (1v.10)
T =gt - /& \ge taz

so that the T(i)(s) can have, in addition to the "unitary cut"

Sy < 5 £ wy, any cuts arising from branch structure in the analytic
continuations of A(s) and ég(s)o A branch point occurs in A(s) and
}g(s) whenever K(s) = #i *). To calculate the positions of all such
branch points would require a detailed knowledge of the tij(s). The
cuts of & (s) and fg (s) 4in the s plane are taken to be the mapping
of the cuts in the K plane defined in Fig. 3. Suppose that a complex
branch point occurs at s =8, oﬁ the physical sheet. Then a branch
cut must extend on some arc from so_ to the conjugate branch point

sz, It is of importance to distinguish the case in which the "diagona-

lization cut" [i.e., a cut in T(i)(s) arising from < (s) and ;3 (s)]

L\
) Of course, <X(s) and /g(s) have also all the branch points of the
physical amplitudes [Ef., (IV.6) and (IV.?Z]. For simplicity these
are not emphasized here.
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16.

does not cross the unitarity cut, Sy £ s< ®, from the cases in which
such crossing occurs. If there is no cut crossing, the most general
branch structure which can be induced, in the case that K(s) =1 at

only one point s = Sy is shown in Pig. 1. Beside the complex cut
labelled (1), the real cut (2) is possible if, for instance, the branch
point s. is of the square root type (as it is for two-particle exchange);

L

but not if St is a logarithm branch point (as for one-particle exchange).
Figure 2 shows an example of a diagonalization cut which crosses the

unitarity cut between s1 and & Crossing can only occur above s = S

2° 2

if K(s) - o at some point, for on s, < s« ® & and B are real.

2——

Another way of looking at the eigenamplitudes T(1) and T(2> is,
as can be seen from Eqs. (IV.10) and (IV.6), that they can be considered

as different branches of one and the same analytic function.

It should be noted that due to the vanishing of the phase space
factors g)i’ the S matrix elements satisfy the equations Sii =1
and Sij =0 for j #4i at the ith threshold s = S One of the
eigen amplitudes therefore coincides with the ith physical amplitude
at its threshold. In the case of no cut crossing, one is thus furnished

- with a natural labelling for the eigenamplitudes.

In this paper, in order to simplify the discussion, the case in
which the extra diagonalization cuts do not intersect the unitarity cut
will be treated exclusively. c(z(s) and FS2(S), considered through
(IV.6) as functions of K(s), can be defined on a K plane cut as

shown in Fig. 3, with Re (1+K2)“2 defined to be positive on sheet I,

negative on sheet II. As s changes from s to s K(s) undergoes

9
a complex excursion, beginning and ending at 1K = 0. 2Paths (1) and (2)
in Pig. 3 illustrate two possibilities. Path (1) corresponds to a case
in which no diagonalization cut crosses the unitarity cut ?etween Sy
o° Then, from the definition of sheet I of (1+K2)_§, it follows

from (IV.6) that

and s

2 2
- o ( (
/126 s) > ?e ﬁ (5‘) v(IV,‘H)

for

S

A

<5<,
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17.

If, in addition, K(S) does not bogome infinite on s

PP 2, : o
(T(s) > RS s (1v.12)
' ' ng S ¢ ©o -

—

‘ Path (2) in Fig. 3 illustrates one of the cases that have been
excluded from the present discussion. For, in order that A (s) return
to unity at s = S5 it will suffer a discontinuity as the cut in the

(1)

K plane is crossed. This will give rise¢ to discontinuities in T
and T(Z), through (IV.10) : that is, a diagonalization cut intersects

the unitarity cut between g = Sy and s = Sy

The eigenamplitudes have a key role in the present analysis
because 1t is to them that the eséentialvdynamical features can be
attributed. Thus, except for accidental degeneracies, each many channel
bound state or resonance is reproduced in just one eigenamplitude. It

"is therefore evident that a form of Levinson's theorem for eigenamplitude

will provide a powerful tool for investigating many-channel dynamics.
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18.

V. LEVINSON'S THEOREM FOR EIGENAMPLITUDES

The next task is to investigate Levinson's theorem for the eigen-
phases. Suppose that the tij defined in (IV.1) are calculated by a
matrix N/D calculation, in which the equations are dynamical with non-
singular left-hand cuts. Precisely, it is assumed that all left-hand

cut integrals Bij(s) satisfy

e _ 4
ENCTIE (v.1)

for S < S £ oo J £E>0

(as in (III.13) and (III.14) for the one channel inelastic equations),

and in the sense that there are no CDD poles. Then the determinant

det D(s) — 4 S — oo (v.2)

Moreover, det D(s) has, by assumption, no poles; and eéch zero is

to be associated with a bound state.

From the definitions of the matrices N and D
+= VD1 (v.3)

one has the matrix relations

D=t"W = ¢ T SN (v.4)

v -4 == <«
using the notation of (IV.1) and (IV.3). Taking determinants of both

sides

-4
detD = (Te ) (T T 7 det & (v.5)
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19.

On *the unitarity cut, det N is real, so that
(det D) = = 3§ 7.6
oy i (V.6)
where
5(;/ = arq ( Tm/ ) (v.7)
3 $ .

and § (i)(s1) is defined to be zero. In Eq. (V.7) the "natural"
labelling (see Section IV) is assumed whereby T‘“’/ coincides at
threshold with Tii and the dividing cut of the factor S?i then
serves to remove the kinematic zero of T i). Since det D has no
poles, and each zero corresponds to a bound state, (V.2) and (V.6) lead

to

() A 5 )
zoplan g 28 .o

L
where :in(%) means the‘total number of bound states in all channels L

By introducing further assumptions, it is possible to analyze
the composite Levinson relation (V.8) into statements about each eigen-
phase shift individually. PFirst, it will be assumed that each zero of
det Dy, which corresponds to a bound state, is simple. Furthermore,
any such zero is plausibly associated, through (V.5), with a simple
pole of‘just one diagonal element T i . The possibility that several
of the T(i) have poles or zeros, or that det N has a zero, can be
shown to be unlikely. In the first place, a coincident zero of det D
and det N implies, as in the one-channel case, that certain elements
of N must satisfy homogeneous Fredholm equations. This almost never
happens, since the spectrum of a Fredholm kernel is discrete. The
possibility remains that more than one T(i) mnight have a pole (possibly

multiple), while others have zeros, in such a way that the product in
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20.

(V.B) gives a simple pole. In the two-channel case, such a contingency
is ruled out by the assumption that the physical amplitudes Tij have
only simple poles : in the many-channel case a contradiction is not
involved, but the possibility requires the satisfaction of detailed
conditions and it seems that its sccurrence could only be a coincidence.
Thus 1t is natural to associate a pole of a particular T<i)
with a bound state. Suppose that one writes

(v)

— ) .
! ,/?; = ,/€b<”) (V.9)

One channel N/D equations are to be written down, in which D(l)(s)
7o\

has only the unitarity cut, while N'7/(s) carwies the left-hand cut-

and any diagonalization cuts. The phase of D<l)(s) on its cut is

defined to be - g<i)(s), Then, it follows from (V.1) that

)
DSy = 4 S — Oo (v.10)
so that
(v ) w A (L)
vy o~ Y "‘% 5 {o0) C o (vat1)

(1)
B
of ODD poles. Summing (V.11)

. 2\
Here n is the number of zeros of D<l)(s) and ngl/ is the number

’ (“) —_ Z_.Y'i_~ .::-—i
P2 ”ﬁB Co- I i (v.i2)

v

From (V.8) it is clear that one must have ngl) = 0, so that (V.11) is
replaced by
() (o)
N T (vV.13)
B Ti

which is the required form of Levinson's theorem for the eigenphases

§) (o).
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VI. THE CRANK-SHAFT THEOREN

In the precoding Sections 1I1.-V. the tools have bzen assembled.
They will now be employed for their predestined task which was to state
conditions under which a one-channsl calculation would fail. When the
thresholds are coincident, it is possible in terms of a simple inequality
on the diagonalization coefficients to specify in which channel failure
would occur; when the thresholds are distinct,; one can in general assert

only that failure would occur in channel one or channel two (or both).

Equation (IV.S) can be rewritten as follows

C(tna . '(}__)
"VZ@‘Z"SA-'I - O(/?_. e?.l < + /32. eZI é
e . Yy S0l
/)? @2-.52'7- - r@?. 6?_\5('* 0(2 62‘ (S\ (VI.J])

Acoordiﬁg to Levinson'!s theorem, €5(1>(a)) and é;(2>(u)) are both

zero modulo Tl . Thus (VI.1) implies

ﬂ? (oo )= A4

5“ (CXD) = O wod T
" (vi.2)

giz(w) = O ~ped T

In general, for a finite number of channels, Levinson's theorem for the
eigenamplitudes implies no inelasticity at s = @. This is an important

consideration in other contexts.

to the physical

5(i)

Tﬂe problem now is to relate the eigenphases
phase shifts égi at s = . The first step in the solution is t¢
observe that if there exists some s, > s, such that c%2(s) >>F52(s)

for all sRé s< ®, then

2
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§ul02) = §lee) v (v1.3)
N ('lfjoo) o T
where
$,(Sz) - 5“’(52)
e [ RS
and
. 52 () — $7s)
= —

T

Here [:XZI means the nearest integer to AR If, on the other hand,
o(z(s) < ﬁz(s) for all s_<¢ s £ w, (VLB) must be altered by inter-
changing S 1 and é;(z), These simple results follow from a geome-
trical interpretation of (VI.1) E@n application of what will be termed
the crank-shaft theorem (CST)].

In the simple case in which both thresholds are coincident (s1 = s2)7

(1) g (2

and none of the diagonalization cuts of T intersect the

unitarity cut Sy £ 8< ®, 1t has been shown that
2 @2 - £ <
X(s) > (S) forall S £ S& O (VI.4)

/

Furthermore; by definition

. (a {2)
$,05) = 5,,(5) = $7¢) = dcsr=o0 (VI.5)

Thus, setting Sp= S, in (VI.3), one has
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and | (VI.6}
- 2 :
§y,(=) = 07 (0o)

Suppose that there is a dynamical bound state in c¢igenchannel two, but
none in eigenchannel one. Then Levinson's theorem for the elgenphase

shifts gives

5(”(00} =0
(VI.7)
Stlafoo) = -T
so that (VI.6) gives
5/1/}(00) =0
(vi.8)
522 (Co) = =TI

However, from (VI°1) it is clear that in general both physical channels
have a bound state. Hence this bound state cannot be calculated dynami-
cally in channel one, although it can be obtained from a CDD pole free
FW calculation in channel two. Summarizing, the condition (VI.4), or
the equivalent assumption that no diagonalization cuts intersect the
unitarity cut, is sufficient to ensure that a bound state arising from
a pole in eigenchannel two cannot be calculated in physical channel one.
Spécific realizations of this phenomenon have already been given in

Section IT.
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Next, the more complicated case in which the thresholds S, and

S are distinct will be considered, again with the assumption that no

2
diagonalization cut intersect the cut s1é s< ®. Some care is needed

in the phase conventions. As in (V.?), one has

S(si)= 5 s 1=0 (v1.9)

The physical phase shifts are defined to be zero at their respective

thresholds

o Si=0
4 (VvI.10)

5,205, ) =0

The simple relations (VI.6) no longer hold : however, it is
possible to derive a single composite relation even when the thresholds
are distinct (again in the case of no diagonalization cut intersection).

Above the higher threshold, the unitarity condition is

5*5 = (vi.11)

which can be rewritten in terms of the matrix +t +that was introduced

in (III.1) as

- 4 T
t-t = t gt  (vI.12)
2t

For s, %t s £ ,, on the other hand, (VI.12) is modified by replacing
¢, = 2(S~S2)/S by zero. This gives

t[“’v\.t/,,,: S—:" ’t/‘/‘}?-
* £ 5§ <8
T tﬁz.: g; thﬂ 1%2‘ S,& 8 2

. VI.13)
T By, T 5} )tﬂz}l (

22
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Moreover, (IV.1) gives

: A (VI.14)

. - - . - - . .
and for s,4 8 < 5., S’ = il ?ri. The firet equation (VI.13) implies,
1= - 72 2 ta 2 :
ssing
T vya ¢
m = € Ao 9y (VI.15)

that the physical channel one. phase shift' 6 11 "is real below szo

The second eguation (VI°13) showg that t12 has the phase d 19°

Hence one can write
_ Y
T, = {7 R e (V1.16)
/e :
where R 1is some rcal number. Finally, the third ejuation (VI.13) gives

. —_ ~ 2.
Re I, = R (VI.17)
The T matrix has the form
¢ ; c \\
YA o . e
[ e S, TiRe
1: - (vI.18)

s, | .
\ i Re -—RZ(/\+Lwﬁ‘So)

where %P is a real angle.‘ Prom (IV.3)

det T = olet é (V1.19)

so that, combining (V.7) and (VI.18), this gives
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-i R’ - 4/\;"\(5/“/‘_‘- '3?) N )-«LA)T(L e z?z(éw )
Yo @ L - (VI.20)

Equating phases.on both sides of fhis equation [%aking account of the
conventions at s = s, given in (VI.9) and (vI.10)], one has unambi-

guously

(A
5/1/1 = ?e_( } 5@’) for all S,£5K6, (VI.21)

Above the higher threshold, when (VI.11) is in force, one has

Q{df(Av/lf?v‘LT) o{at(/uz\ ) | (v.22)

i.e. . (A) (2
’ 621(5:,,,4- SZZ = e A (5 5 ))
Which implies
_ () (2 _ .
St by = ST 4§V sy, (vz.23)
since this must agree with (VI.21) at s,, when 522 = O.

Equation (VI.23)9 taken at s = @, replaces the two equalities
(VI.6) that hold in the equal threshold case. If,; as before, there is
one dynamical bound state in eigenchannel two, but none in eigenchannel

one, then

( : _
54)(00) -+ 5‘“(00):«7-1), o (vI.24)
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Thus (VI.Z}) ~mpliies that 5}11(a;} and ”é 22(q)) cennot both sgual

—7T, although each physical channel has a bound state. Evidently at

least one channel muet fail to be dynemical.

In the next Section, the complicetions which can arise in the
split threshold case will be discussed in detail. It will be shown
how for not too strong interchannel ccupling these complications do
not arise and a stronger statement analogous to that for the equal

threshold case will be obtained in place of Eq. (VI.24).
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VII. SPECIFIC EXAMPLES FOR DISTINCT THRESHOLDS

An apparatus has been produced in the foregoing éeotions 10 extend
some of the results of the equal threshold case to the more general
possibility s1 # 82' In Section VI, it was found that the composite
relation (VI.23) replaces the two Egs. (VI.6) of the degenerate system.

A broad class of examples will now be exhibited for which (VI.24) breaks

up into the two equalities (VI.6), even when the thresholds are distinct.
To do this, it is necessary to study in detail the phases between Sy
and 82.

It is convenient to rewrite the first equation (VI.1) in the form

‘ 0/2, () 62{( Sy \}F“,)

(2.) '2..{ ( 5(?')—!— 50(2’))

(VII.1)

/M

§
where " ! ﬁ
(n)

2
o= § (2)

= % C\X‘g (32 5[2) - (VII.2)

(AfZ)

o

and Sﬁf1 9 = 0 for s =z s,. The G“’% that have been introduced repre-
sent two effects : firstly phase charges of c( and ng between

s, and s, (a phenomenon that will be called "twisting"), and, secondly
possible deviations of arg(s ) from 26‘(1) (which will be called
"winding"). Note that these latter can only develop when IS l)l £ 1

‘see Egs. (IV.1) and (V.7)].

It is of interest to consider the cases in which {gﬂi)(s1) =
3@‘1)(8 ), when there is no over-all twisting or winding. If
|CX28(1)| > | ﬁQ (2)] for all s, £ &% o, then (VII.1) can be

treated by the methods used in Section VI for the equal threshold case.
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In a similar way it can be concluded that a bound state in eigenchannel
two fails to be dynamical in the physical channel one. An equivalent
statement regarding channel two (mutatis mutandis) cannot be made, since

532 =0 at s =s, and the coandition Ic{2S(1)!<ﬁ | 5 28(2)l for all

2
8, £ 8@ cannot be satisfied.

Since a specific statement can be made when there is no twisting
or winding in channel one, i.ec.,

¢ “ EaR v ' .
52 (s,)= @ (s,) (VII.3)

it is of inbterest to examine when this occurs. The existence of twisting
(phase changes of q{2) is directly related to the locations of the
diagonalization cuts. The function UJ\Z(S) is defined in (IV.6), in
terms of K(s), which is expressed in terms of the +t matrix elements

in (IV.7). Because of the phase space factors in (IV.7), K(s) vanishesg

at the thresholds s = s, and s =853 it describes some complex trajeec-
tory between S, and S, (see‘Fig. 3). It is obvious that c(z suffers

no over-all phase change, i.e.,
a 0(2(5-) = o<2(5) (vi1.4)
qod (s aly %
provided the path of K(s) does not cross one if the cuts (as in path
(2) in Pig. 3). However, this eventuality has been excluded by our
general assumption that no cut crossing is to occur (see the discussion

at the end of Section IV). Note that a sufficient condition for this .

Ik(s)l< 4 S £S5 <5 (VII.5)

which can be written directly in terms of + matrix elements, thus

2 | \S';?z t42!< }94 ‘(7,, ‘“il%} tgz} (VII.6)
S £5 €5,

The requirement is thus that the interchannel coupling be not too strong.

65/885/5



30.

Next, it will be shown that there is an appreciable ciass of

amplitudes for which winding does not occur, that is, for which

c (1) _ (]
el I = 0 forall 4% £S5, (VII.7)
| 21844(s5)
At s = 51, 8(1) =1, and at s = 52, 8(1) = e " 2v; so that
\
the trajectory of S(1/ begins at S, and ends at 5, on the unit

circle. Four possibilities are shown in Fig. 4, of which only IT and
ITT exhibit winding. In fact, ‘the criterion for no winding lies in the
possibility of deforming the trajectory topologically on to the unit

circle, without passing over the origin in the course of the deformation.

It can be shown that winding will not occur for weak coupling.
For, referring to Fig. 4, winding can only occur if the trajectory of
8(1), in its excursion from Sy to Sy intersects the positive real
‘axis in the 8(1) plane. For the quantity [@(1%]—1, introduced
through Egs. (IV.1) and (IV.5)9 the corresponding trajectory must not
intersect the lines -4 [im T<1>L]_1 $-2 and 04finm T(1d~1 { ®.
However, for zero coupling [im T(1%]~1 = -1 (see Pig. 5)9 so that for
winding to occur the coupling must deform the trajectory [im T<1%]"1 = =1
by at least one unit. This is plausibly associated with at least moderate

coupling.

It is of interest to re-analyze the example of Section II in

which the decoupled channel two had a bound state between s and S

1 2’

Suppose that the t matrix be written

t { 'RAA-—- i&g/’ ?AZ 7 - i
= }. 2, R,, - ig} | (viz.s)

where the R's are the inverse K matrix elements. The weak coupling
assumption of Section II implies that R12 is small, while the bound
state in channel two requires R22 - iS’o to have a zero between s

From (IV.1) it follows that

1

and 82.

65/885/5



[* c;ff‘gi -2

L R/
ee

A

where R,, = §’1 cot S ’ and the ze

11

occur at S = S _.
0

the pole of S

Prom (VII.9)

-e

The coefficient oX

L3y ey
—-o((ﬂS - 502/31 J

ro of -
ro © 322

c*eﬁﬁ T = N ) dz_‘ -
d(u%é-wd(§~sw,

where
2
® e

so that Im s, < O.

R

The physical 3

In particular, one has the approximate relation

S = e

A4

from which it follows that there is a resonance at

physical channel one, but that

2 9,

Kap e 7 Doy

=4 52

. .3
Ny .
S- 5%
S - 5

Re s, (m)= Re ', (00) +T

In the notation of Eq. (VI.3) one has m = 1
resonance is not dynamical in the single channel framework for channel

65/885/5

correspond to a true bound state,
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S

(vir.9)

is suppcsed to
must be positive in order that

and not a ghoset.

(VII.10)

matrix elements can be calculated from (VIL9)°

(VII.11)

= Re s in the

"R

and confirms that the
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one. The mechanism of this effect in terms of the behaviour of eigen-

amplitudes can be traced through in detail. One finds that S<1) ~

21
Te 1, 8(2 RS, N const./(s-sp)n The transformation parameters

K(s) and ﬁE [cf., Bas. (IV.4), (IV37ij always remain small but in

the neighbourhood of the resonance S(d) becomes compensatingly large

so as to control the phase change of S Note that both eigenamplitudes

11°
patently satisfy Levinson's theorem and winding does not occur. The

general form of the physical and eigenamplitudes is displayed in Fig. 6.

To summarize, for distinct thresholds and with strong coupling
the analysis can be complicated through the occurrence of phase changes
of the diagonalization coefficients (twisting) and of the expression
E% arg (S(i>)— S(i%l (windlng}, Where neither effect is)present, the
2

|

simple sufficient condition involving lc£23(1>l>'|@23 can be made.

Under the same assumption, the generalization to an n channel
problem is immediate. If U 1is the tranformation which diagonalizes

the S matrix, and which is therefore unitary above the highest thres-

hold,; then
_ 2 ) 2 ~(2) R cin)
_ ¢
SL1 = L&A S + U, 9 + 14&\4 v (VIT.13)

in analogy with the two channel formulae. This equation can then be
continued. If S(q) has a bound state, the resulting bound state in

811 will be dynamical if

¢ 2 {w)

fUs S > USSP U ST e

on the whole of the right-hand cut. While the single channel dynamical
calculation always succeeds for one of the channels in the two-channel
casey; it is possible in the many-channel case to construct examples in

which the bound state is not calculable in any of the single channels.
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VIIT. NCIE ON DTHS JHEW-MAIDFLLIAN MIETTCT

If R = ((gtnt/(gel> is given instead of 77 , <hen the appro-
priate method of caioulation is CM. Agein there is the possibility of
disagreement with the many-channel results; but the instances are not
co-extensive with those for the ¥W method. One can easily check that
the weak coupling examples which have been considered go the same way
for both methods. Squires T has given an example which ;all% for CM
but which it can be seen would succeed for FW. One can also find examples

which do the opposite and succeed for CM while failing for FW.

One would like to carry out for the CM method a parallel analysis
to that which has been developed for the FW method. The essential diffe-
rence comes at the point where one tries to develop the analogue of the

crank-shaft theorem. One now has the relation

' o 4) (A o, oo 5
e — " 7l r o P z 2 / P
T, = /1 /p a1 _ 0(2’/3/‘/"‘6 o +/30”W‘5 e (VIII.1)
2

and is led inexorably to requiring relations between lc(“ sin 6\(1)I

(2)
and |(S2 sin 6(2’
FW and even in the casze of energy independent < and /° no decision

. 5(2)

is possible without detailed knowledge of é"(1) and

. The situation is thus more complicated than for

In passing, it may be noted 2 propos of the FW method that Froissaxrt

has given an alternative calculational procedure when 02 is given. One

defines
[ \s ? (s; As'
P(s) = @XP[‘L ~ J — (virz.z)
/ .
5 ‘{ '—34 (s'-s5) |

and then makes an elastic N/D decomposition of /P [i,e.,
S =P (14219 N/D]]. Thus, D has the phase § -f/2, where [3 is

1§
the phase of P on its cut. If ’7 tends to a non-zero constant as

s = W, as would be expected for a finite number of channels, then

{S(CD ) = 0, and the previous FW classifications apply.
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IX. AN APPLICATION TO SU, SYMMSBTRIC BOOTSTRAPS

The case of several channels with coincident thresholds was
introduced into the present discussion because it furnishes a model
which is easy to evaluate. One can also look for direct applications 11 .
The most important realization of coincident thresholds in elementary
particle physics occurs when there is some kind of internal symmetry.

If the symmetry in question is only approximate, then in general the
threshold coincidence will be approximate also; but one can ask whether
useful "first order" statements can be made. In the case of charge inde-
pendence (SU2)9 the results are entirely academic. The symmetry breaking
is small so that to a good approximation one can and does work always
in terms of the eigenstates and the quesitions treated in the present
work are simply not asked. However., in the case of SU3 symmétry, which
is substantially broken in the sense that considerable phase changes
occur between the displaced thresholds, there is more potential interest.
The dynamics are now influenced by two diagonalizations - the one belonging
to the symmetry and the other belonging to phase space. Once can therefore
speak of an actual diagonalization matrix U of the form discussed in
Section IV and an "ideal" diagonalization matrix UO which would obtain
if the symmetry were unbroken. The latter simply consists of Clebsch-
Gordan coefficients 12), FPor the "ideal' case, it is easy to apply the
rules of Section VI to the UO elements and deduce which single channel
calculations would succeed and which fail.. One may then conjecture that
the resulting statements perhaps hold good for the actual situation of
" broken Symmetry9 particularly if {the inequalities on the Uo are strongly

%
satisfied o

Before proceeding to concrete instances,; a few detailed points
should be made. Firstly, the one-channel CDD vpoles which have been
discussgd only occur for resonances and bound states lying in energy
below the highest threshold. This introduces what might appear to be

an awkward distinction for a discussion of broken symmetries, although

*)

This will be referred to as the "crank-shaft analysis survives

symmetry breaking"" conjecture or CASSB.
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it arises naturclly from the terms of the problem situdied. In fact, 1t
is not a difficulty .if one categorizes situations according to actual
physical masses. For the‘examples to be discussed, the resonance does
lie below the highest threshold; and for the case of unbroken symmetry
the resonances become bound sbates if masses are taken from the mass
formula. Another related point is that in Order to make useful comments
on bootstrap calculations one really wants to discuss what happens when
certain channels are omitted altogether. Now, if a channel has its
threshold high in energy above a multichannel resonance, 1t may very
well be r~asonable to omit it. Conversely, to omit a channel may be
viewed as being equivalent to pretending that its threshold is very

high.

A further point is that charge independence (SU2) is such a good
symmetry that one wants in practice in the discussion of broken SU3 to
refer to SU2 eigenstates (precisely, eigenstates of I, 13 and  Y)
rather than the physical states. This means that the elements of UO
will not actually comprise Clebsch-Gordan coefficients but isoscalar
factors [éee Ref. 12), Egs. (10.5) and (10.6z]. In principle, an.
extension of the methods of the present paper is implied, in that one
now considers the reduction of an n channel problem to one with m
channels (n >m > 1). In general, this would be a complicated process

to analyze; in this special case it is trivial.

We now turn to some examples., Consider first the g? resonance
and assume, as is conventional, that this can be derived from a many-
channel dynamical calculation with channels 7111 , KE and RO/ (This
may very well not be true.) The corresponding "conventional" assumption
will be made in the subsequent examples. Under unbroken octet symmetry,

one can write

\i 4, _ (1x.1)
I'_-—-

~
-
ot
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or, conversely, for the af = 17 state

I > = \\% |8 > + EMOP* E 40> (1x.2)

2

Note that in Eqs. (IX.1) and (IX.2) use has been made for the first

time of the diagonalization matrix operating on state vectors (l g':> =
= Uo|§>ﬂ rather than as hitherto on the scattering matrix (S' = U;1SUO)°
A certain conciseness is thereby achieved. It is now simple to apply

the crank-shaft rules (% >-%) and deduce that a single channel dynamical
calculation in the 71 71 system with the correct prescribed inelasticity
should yield the resonance. This is a logical deduction and also useless.
But now by the CASSB conjecture, the statement can be read as referring
to the physical situation. In this case, since the KK threshold lies
rather high, it is plausible that the XK channel can be omitted alto-
gether.

Generally speaking, interesting cases are to be sought where the
many-channel aspect is fairly complicated. For another example, consider
the YT (1385 MeV), assumed to be a member of a JP = %+ decuplet. In

exact SU3 *), one has

(YL (Wn)r L (kD) L 7T A (wA - (5y)
Y=gt g ) g2z m 27
(lwzu)  (1842) (1331)  (1253)  (I7y2)

The figures in brackets under the decay products are real thresholds in
MeV. In this case, one would guess that a calculation with K = and
ziﬂz omitted would probably be successful but to have the true channels

77/(, ﬂ’:z and KN was probably an irreducible minimum.

*)

The formalism is here implicitly extended to the case of two-body

channels with unequal mass.
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In conclusion, it shoula de remarked that tue wiacle guesvion of
the consistency of broken SU3 with conventional bootstraps is as yet
extremely ill understood. What hes been offered here is a very simple
rule for making primé facie judgments on the correctness of paftiéular
dynamical models when the general notion of SU; boetstraps is assumed.
The resulting statements should, of course, only be intefpfeted as a
guide. For neither of the examples treated were they very surprising.
One has simply supplied a slightly stronger albeit still tenuous rationale

for making then.
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X. CONCLUSIONS

The question treated has been when do one channel dynamical
calculations with prescribed inelasticity reproduce the results of
many-channel dynamics. The technique employed was to work via the
eigenamplitudes. To this end, the diagonalization procedure was
analyzed in detail and individual Levinson's theorems derived for the
separate eigenamplitudes. A study of the relation of the physical to
the eigenamplitudes yielded the crank-shaft theorem (Section VI).

This led, for all the cases where the eigenamplitudes are analytic

in a neighbourhood of the unitarity cut (Section IV), to the following
general result : a multichannel dynamical resonance (or bound state)
will appear as a CDD pole in the single channel inelastic amplitude
for at least one of the channels (Section VI).. In the case of equal
thresholds (Section VI)9 it is possible by testing a simple inequality
on the diagonalization coefficients to say in which channel failure
will occur and in which success. After an analysis of "twisting'" and
"winding" (Section VII), an analogous criterion for an important subset

of cases with distinct thresholds could also be stated.

In Section IX, these results were tentatively applied to the
physically interesting question of bootstraps in broken SUB' The
idea, admittedly speculative, was to employ the above rules with exact
SU3 diagonalization coefficients to yield prognostications on the actual
broken SU3
the usual notion of taking only the lowest lying thresholds was upheld

situation. The result in the examples considered was that

by our criterion.

It is of interest to compare the present approach with that of

Bander, Coulter and Shaw 1). These authors study the amplitude A11

as a function of the coupling constants Tvij in the underlying two
T
|

channel situation. They claim that, for increasing the onset

22’

of failure coincides with the emergence of a zero of 811 from an
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unphysical sheet through the inelastic cut. Iu terms of the present

formalism, S,, = o 2s(1) (323(2) with the ?(t) unimodular and
c{2 and ﬁ real. Thus, 811 = 0 implies 8‘1‘ = -8(2) and
mf2 = ﬁiz and therefore, since X(s) = @ (Section IV), a diagonali-

zation cut crosses the unitarity cut, so that the BCS statement is
not equivalent to the present one. Evidently, this condition for success
cannot bhe sufficient since failure has been obtained here for cases where

there is no cut crossing (cf.; the remark at the end of Section II).

The whole subject of the present paper has been how one channel
CDD poles can arise in the framework of multichannel partial wave
dispersion relations. A different facet of the same physical principle
has been exposed by Mandelstam 13). The problem which he considers has
many channels through spin orbit coupling, and the question studied is
what happens when a continuation is made in total angular momentum
from high values down to the value jO where one of the orbital channels
becomes "nonsecnsieal"., The quantities compared are (a) the result
from the continuation and (b) the "physical' amplitude which results
from a calculation at the value Jj = jo with the nonsense channels

omitted. It is conclud=d that (o) and (o) differ by CDD poles.

Clearly there remain tasks for the future, in particular a
realistic treatment of high energies with the inclusion of an infinite

number of channels.

As a final word, it is worth reiterating that the question which
has formed the present topic highlights a problem which faces the
proponents of universal bootstraps. It may be that all the particles
of high energy physics are compound dynamical states; but, where, from
among the infinity of possibly inequivalent channels to which a particle

is coupled, is the dynamics to be done.
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1 and 2

Figure 3

Pigure 4
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FIGURE CAPTIONS

Analytic properties of the eigenamplitudes in the s
plane; the dotted branch cuts arise from the diagona-

lization coefficients. (Section IV.)

Cuts in K plane; cf., Eq. (IV.6). Curves (1) and (2)
show two possible trajectories of the function K(s)
between the thresholds s1 and 52.

Several instances of "winding". (Section VII.)

Complex excursions of the inverse eigenamplitude

[1(1%]_1 in the case of no "twisting". (Section VII.)

Sketch of the behaviour of the physical and eigenphases

for a weak interchannel coupling example. (Section VII.)
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