

SUSY particle searches at LHC

On behalf of the ATLAS and CMS collaborations

Iacopo Vivarelli - DISCRETE 2024 - Ljubljiana 4/12/2024

Istituto Nazionale di Fisica Nucleare

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

Desperately seeking SUSY...

As a minimum we are dealing with 124 parameters (MSSM) ...which can maybe be reduced to 19/20 (pMSSM)

SUSY conserving sect

3 coupling constants for SU(3)XSU(2)SU(1)

4 Yukawa couplings pe generation

- Given where we are with the data taking, the questions are:
 - Has the LHC found SUSY? **No**
 - Then **what SUSY** has the LHC excluded?
 - How are we covering a **parameter space with high** dimensionality?

or	SUSY breaking sector			
Dr	5 3x3 hermitian mass matrices (one per EW multiplet)			
27	3 complex 3x3 matrices (Higgs trilinear couplings to sfermions)			
	3 mass terms for the Higgs sector + 2 additional off-diagonal terms			
	Higgs VEV expectation angle eta			

Complete Vs Simplified models

Real SUSY models

- Many concurrent production processes.
- Many **different decay** modes for SUSY particles.
- Many diagrams to target.
- Direct connection to physics.
- Limits apply directly to parameters.
- But... analysis strategy very model dependent.

Simplified model

- Very few production processes (often only one).
- Very **few decay modes** (often only one).
- One (or few) diagrams to target.
- Analysis target a specific topology.
- But... limits on mass parameters should be taken with a pinch of salt.

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

Cross sections

- They depend on particle masses and (for EW), on few model parameters.
- Thumb rule for experiment sensitivity: 50 produced events determine sensitivity.
- Expected sensitivities: beyond 2 TeV for $\tilde{g}\tilde{g}$, ~ 1-1.5 TeV for $\tilde{t}\tilde{t}$, ~ 1 TeV for eweakinos.

Example decay	t
R-parity violating stop decay. Signature: no (or small) $p_{\rm T}^{\rm miss}$, many jets	$p \qquad \tilde{t} \qquad \tilde{\chi}_{1,2}^{0} \qquad \tilde{\chi}_{323}^{\prime\prime} \\ p \qquad \tilde{t}^{*} \qquad \tilde{\chi}_{1} \qquad \tilde{\chi}_{323}^{\prime\prime} \\ \tilde{b}$

LHC

Run 2		Long shutdown 2			Ru	
•••	2018	2019	2020	2021	2022	2023
140 fb-1				Toda collec	y, roug ted per	hly 330 experii

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

High luminosity LHC

Naturalness

- The naturalness of the Higgs boson mass requires:
 - A Higgsino mass of maximum few hundred GeV.
 - A top partner mass at the TeV scale.
 - A gluino mass of maximum few TeV.

$$m_h^2 = m_Z^2 \cos^2 2\beta + \frac{3y_t^2 m_t^2}{4\pi^2} \left[\log\left(\frac{m_S^2}{m_t^2}\right) + X_t^2 \left(1 - \frac{X_t^2}{12}\right) \right] + \cdots$$

Strong production - gluinos and squarks

- scenarios lead to **weaker limits**.

• These plots include many different scenarios - each with 100% branching ratio.

• Naive expectations met for scenarios with large mass separations. Compressed

Stops

- 2015-2018, **v**s = 13 TeV, 140 fb⁻¹ **OL**, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b f \tilde{\chi}_1^0$ [2004.14060] $= \mathbf{1L}, \ \widetilde{t}_1 \to t \widetilde{\chi}_1^0 / \ \widetilde{t}_1 \to bW \widetilde{\chi}_1^0 / \ \widetilde{t}_1 \to bff' \widetilde{\chi}_1^0$ [2012.03799]= 1L NN, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow bW \tilde{\chi}_1^0$ **2L**, $\tilde{t}_1 \rightarrow t \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b W \tilde{\chi}_1^0 / \tilde{t}_1 \rightarrow b f \tilde{\chi}_1^0$ [2102.01444]
- 2015-2016, Vs = 13 TeV, 36.1 fb⁻¹ $\underbrace{\qquad}\widetilde{t}_{1} \rightarrow t \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \rightarrow bW \widetilde{\chi}_{1}^{0} / \widetilde{t}_{1} \rightarrow bff' \widetilde{\chi}_{1}^{0}$ [1709.04183, 1711.11520, 1708.03247, 1711.03301]
- 2012, $\sqrt{s} = 8$ TeV, 20.3 fb⁻¹

- Search in "standard" scenarios $(\tilde{t} \rightarrow t^{(*)} \tilde{\chi}_1^0)$ in full swing.
 - Simplified model limits extend beyond 1 TeV for small neutrino mass.
- Recent focus on **more** "exotic" scenarios. Two examples:
 - RPV/stealth stop decays to many light jets.
 - Stop to c-quarks

RPV/stealth stop decays

• **o**, **1**, **or 2 leptons** in addition to **at least 6 jets**. <u>correlation loss term - ABCD</u>).

RPV/stealth stop decays

- Non excess above background prediction
- Stops exclusion up to ~ 700 GeV in RPV scenarios, 900 GeV in stealth stop scenarios

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

SUSY-23-001

Stop to charm

- Flavour-violating $\tilde{t}_1 \to c \tilde{\chi}_1^0$ can become relevant **depending** on the parameter space.
- Targeted using *c*-tagging in conjunction with exploiting ISR jets (for compressed regimes)

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

The electroweak sector

 $M_1 < M_2 \ll \mu$ $\mu \ll M_1, M_2$ higgsino LSP bino LSP m $\stackrel{\text{higgsino}}{----} \tilde{\chi}_{4}^{0}, \tilde{\chi}_{3}^{0}, \tilde{\chi}_{2}^{\pm}$ ---- $ilde{\chi}_4^0$ -- $\tilde{\chi}_3^0, \tilde{\chi}_2^\pm$ -- $\tilde{\chi}_2^0, \tilde{\chi}_1^\pm$ $\stackrel{\text{higgsino}}{\bullet\bullet\bullet\bullet\bullet} \tilde{\chi}^0_1, \tilde{\chi}^0_2, \tilde{\chi}^\pm_1$ -bino $\tilde{\chi}_1^0$ "Natural" scenarios, mSUGRA/CMSSM, dark matter density dark matter density typically too high typically too low

$$\mathbf{M}_{\widetilde{N}} = \begin{pmatrix} M_1 & 0 & -c_\beta s_W m_Z & s_\beta s_M \\ 0 & M_2 & c_\beta c_W m_Z & -s_\beta \\ -c_\beta s_W m_Z & c_\beta c_W m_Z & 0 \\ s_\beta s_W m_Z & -s_\beta c_W m_Z & -\mu \end{pmatrix}$$

$$\begin{array}{c|c} M_2 \ll \mu, M_1 & \text{product}\\ \hline \text{wino LSP} & \text{product}\\ \hline \begin{array}{c} \text{higgsino} \\ \hline \end{array} & \tilde{\chi}_3^0, \tilde{\chi}_4^0, \tilde{\chi}_2^\pm \end{array} & \text{product}\\ \hline \begin{array}{c} \text{bino} \\ \hline \end{array} & \tilde{\chi}_2^0 \end{array} & \text{transformation}\\ \hline \end{array} & \begin{array}{c} \text{sino} \\ \hline \end{array} & \tilde{\chi}_1^0, \tilde{\chi}_1^\pm \end{array} & \begin{array}{c} \text{product}\\ \text{product}\\ \hline \end{array} & \begin{array}{c} \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \end{array} & \begin{array}{c} \text{spectrum}\\ \text{spectrum \\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum}\\ \text{spectrum \\ \text{spectrum}\\ \text$$

... or gravitino LSP (in which case the phenomenology is determined by the NLSP)

GGM-like scenarios, dark matter difficult to get right.

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

Electroweak production

- Bino-LSP scenarios the "historical" electroweak SUSY.
- Limits start to knock at the TeV scale (thanks to allhadronic analyses - a nice development of Run 2)
- Focus shifted to less common scenarios.

SUSY-2020-05

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

All limits at 95% CL

Combination Observed Limit \cdots (±1 $\sigma_{\text{theory}}^{\text{SUSY}}$) Expected Limit $(\pm 1 \sigma_{exp})$

Individual Analyses Observed Limit Expected Limit

> 2L Compressed arXiv:1911.12606 3L off-shell arXiv:2106.01676 3L on-shell arXiv:2106.01676 All Hadronic arXiv:2108.07586 2L2J arXiv:2204.13072 arXiv:2310.0817

Compressed electroweakino spectra

- Wino-LSP: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 150 \text{ MeV implies}$ long-lived charginos.
- Higgsino-LSP: $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim 300 \text{ MeV may}$ imply slightly long-lived $\tilde{\chi}_1^{\pm}, \tilde{\chi}_2^0$ (but requires very large M_1/M_2 . More natural $\Delta M(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) \sim o(10 \text{ GeV}))$
 - And higgsinos at the heart of the naturalness argument
- Run 2: the **golden age** of the **compressed** scenarios.

Disappearing track

Silver bullet against **wino-like scenarios**, with sensitivity to (very compressed) higgsino scenarios.

- Looking for final states with a disappearing track, different lepton and b-jet multiplicities, utilising also specific ionisation losses (dE/dx).
- Many interpretations including wino-like and higgsino-like scenarios.

<u>SUS-21-006</u>

Mildly displaced tracks

- Similar scenario (slightly shorter lifetimes).
- The electroweakino decay is identified through an isolated track with high impact parameter.

SUSY-2020-04

SCRETE 2024 - Ljub

Using Vector Boson Fusion

Definition of VBF cross sections in SUSY far from trivial:

Interference between s-channel and t-channel EW and mixed EW/QCD diagrams very relevant for cross section determination.

Great care in making sure cross sections are sensible.

General Compressed Search

- Events categorised based on number of leptons, b-tags, jet multiplicity

SUS-23-003

Approach based on RJR variables ($R_{ISR} = \frac{\mathbf{p}_i \cdot \hat{\mathbf{p}}_{ISR}}{\mathbf{p}_{ISR}} \sim \frac{m_i}{m_P}$ for a pair-produced particle P recoiling against an ISR jet and decaying into invisible particles i)

Comparison ATLAS-CMS

- statistical fluctuation?
- Certainly something to be scrutinised carefully with the Run 3 data.
 - Bulk of sensitivity coming from soft-lepton analyses (2L and 3L channels).

• Similar excesses in ATLAS and CMS (each at the level of ~ 2σ). SUSY in plain sight or just a

A Run 3 search - displaced leptons

- The Run 3 search programme is in **full swing**. The **first Run 3 SUSY searches** are available
 - Non-pointing leptons arising from long-lived sleptons or charginos.
 - Long-lived particle decay yielding a dimeno vertex in CMS
- A showcase of improvements for Run 3:
 - Large Radius Tracking (a) HLT in ATLAS at trigger level and offline.
 - Improved L1 tracking reducing p_T thresholds for muon triggers in CMS

<u>SUSY-2022-11</u>

EXO-23-014

From simplified to UV-complete models

- The **simplified models** do not allow to make **solid statements on model parameter** exclusions.
- pMSSM scans in full swing (using different approaches):
 - One example: EW 5-parameters for ATLAS.
 - Another example: 19-parameters for CMS.

<u>SUS-2024-04</u>

• A testament to the reinterpretation capabilities of the experiments.

I. Vivarelli - DISCRETE 2024 - Ljubljiana - 4 December 2024

Summary

- Hardly to identify a sector of HEP with a **higher impact from LHC**.
- **pretty much unchanged**. Our perception is, though.
- Not many stones left unturned.....
- No significant excess. So, what SUSY has the LHC excluded?
 - Limits on gluinos and stops put **classical arguments of naturalness under stress.**
 - But higgsino parameter space much less constrained.
 - Bino-like dark matter under pressure.
 - But **Higgsino-Bino** and Wino-Bino-like DM **pretty much unscathed**.
 - Mild excess in compressed parameter region **to be followed up**.
- improvements, large radius tracking, data scouting at trigger level, machine learning.....)

• 14 years into the LHC and **no answer for naturalness and dark matter**. The relevance of the questions

Run 3 analyses in full swing. Expect a lot more than just \sqrt{L} (and a modest \sqrt{s}) scaling (upgrades + trigger

BACKUP

I. Vivarelli - DISCRETE 2024 - Ljubljiana, 4 December 2024

ATLAS dE/dx excess

Requiring time of flight of the candidate tracks to the calorimeter removes the excess.

The excess cannot be due to heavy, q=1, long-lived particles.

If insisting on a signal interpretation, a fast, q>1 particle is still a possibility

