Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

Talk
Title Foundation models
Video
If you experience any problem watching the video, click the download button below
Download Embed
Mp4:270p
(presentation)
1080p
(presentation)
720p
(presentation)
360p
(presentation)
720p
(presenter)
1080p
(presenter)
270p
(presenter)
360p
(presenter)
Copy-paste this code into your page:
Author(s) Vallecorsa, Sofia (speaker) (CERN) ; Luise, Ilaria (speaker) (CERN)
Corporate author(s) CERN. Geneva
Publication 2024
Imprint 2024-07-26
Number of pages 7111
Series (CERN openlab summer student lecture programme)
Lecture note on 2024-07-26T13:30:00
Subject category CERN openlab summer student lecture programme
Abstract Description
Foundation models, also known as large-scale self-supervised models, have revolutionized the field of artificial intelligence. These models, such as ChatGPT and AlphaFold, are pre-trained on massive amounts of data and can be fine-tuned for a wide range of downstream tasks. In this lecture, we’ll explore the key concepts behind foundation models and their impact on machine learning systems. In particular we will give a brief overview of the points below:
 
  1. What are foundation models? Challenges and opportunities.
  2. Strategies for training foundation models : self-supervision and pre-training. 
  3. How to reach adaptability and fine tuning.
  4. Some examples 
Bio

Ilaria Luise is a Senior Research Fellow at CERN, the European Center for Nuclear Research in Geneva. She works as a physicist within the Innovation Division at the CERN IT-Department. Her background is in experimental physics and big data management. She is Co-PI of the AtmoRep project, which is part of the CERN Innovation Programme on Environmental Applications (CIPEA). The project aims at building a foundation model for atmospheric dynamics in collaboration with ECMWF and the Jülich Supercomputing Center.

Sofia is a CERN physicist with extensive experience in software development in the high-energy physics domain, particularly in deep learning and quantum computing applications within CERN openlab. She has a PhD in physics obtained at the University of Geneva. Prior to joining CERN openlab, Sofia was responsible for the development of deep-learning-based technologies for the simulation of particle transport through detectors at CERN. She also worked to optimise the GeantV detector simulation prototype on modern hardware architectures. 

Copyright/License © 2024 CERN
Submitted by fariza.oulashova@cern.ch

 


 Record created 2024-07-29, last modified 2024-07-29


External link:
Download fulltext
Event details