RN

: . : nenemdan -t -
by a contractor of the U.S. Government
u:der contract No. W-31-109-ENG-38.
Accordiryly, the U. S. Government retains a
nonexclusive, royalty-free license to publish
or reproduce the published form of this
contribution, or allow others to do so, for
U. S. Government purposes.

¢6

{

OBJECT DATABASE STANDARDS, PERSISTENCE
SPECIFICATIONS, AND PHYSICS DATA*

=
= 0
=
=7
A== >
DAVID M. MALON, EDWARD N. MAY e ©
yA——— g
Argonne National Laboratory, 9700 South Cass Avenue, N /‘_’_——‘—‘—-“'—- E
Argonne, IL 60439, USA =N ==
Y= 0
o= o
ROBERT L. GROSSMAN | an
University of Illinows at Chicago —_—
Chicago, IL, USA =

CHRISTOPHER T. DAY, DAVID R. QUARRIE

Lawrence Berkeley National Laboratory

QLG
Berkeley, CA, USA

Designers of data systems for next-generation physics experiments face a bewildering
array of potential paths. On the one hand, object database technology is quite promising,
and standardization efforts are underway in this arena. On another, lightweight object
managers may offer greater potential for delivering the high performance needed from
petabyte-scale data stores, and may allow more efficient tailoring to specific parallel
and distributed environments, as well as to multilevel storage. Adding to the confusion

is the evolution of persistence services specifications such as those promulgated by the
Object Management Group (OMG). In this paper, we describe what we have learned in

efforts to implement a physics data store using several of these technologies, including a
lightweight object persistence manager aiming at plug-and-play with object databases,
and a trial implementation of the OMG Persistent Data Services Direct Access protocol.

1 Introduction

1.1 Background

Object databases provide a formidable technology, and increasing standardization
of interfaces, as exemplified by the evolution of the Object Database Management
Group’s ODMG-93 specification !, bodes well for their future role in physics data
storage. Lightweight object persistence managers, on the other hand, offer less
functionality, but have already been shown (for example, in the Petabyte Access
and Storage Solutions (PASS) project and in Fermilab’s Computing for Analysis
Project (CAP)) to be adaptable to specific high-performance environments, to op-
erate effectively with multilevel mass storage, and to provide a consistent interface
both at the workstation and at the parallel supercomputer level.

In a trial implementation, we have aimed to provide access to a physics data
store by means of a lightweight object persistence manager, in a way that is upward
compatible with ODMG-93-compliant databases. The idea is not merely that the
persistence manager can one day be replaced by a true database, but further, that
the two facilities can coexist—perhaps with the lightweight object persistence man-

*Work supported by the U.S. Department of Energy, Division
of High Energy Physics, Contract W-31-109-ENG-38.

1



ager used where performance is critical, and the database used where transactional
integrity is paramount—and that a user need not necessarily know which data are
stored by means of which technology.

One litmus test is the ability to support a reasonable subset of the Object
Management Group’s Object Query Service specification with an interface that can
be supported consistently by both a lightweight object persistence manager and a
true object database. We describe our efforts in this direction, and their connection
with efforts to implement the OMG’s persistence services specification, which offers
a different (and in some ways, philosophically conflicting) view of how objects, apart
from databases, manage persistence.

2 Approaches to Persistence

2.1 Object Database Management Group Object Database Standard

The Object Database Management Group (ODMG) is an industry consortium of
database vendors and others who have come together to agree on aspects of a
common specification for object databases. These efforts have resulted in an evolv-
ing standard (currently ODMG-93 !) whose components include: an object model;
an Object Definition Language (ODL); an Object Query Language (OQL); a C++
binding for ODL and OQL, and a C++ Object Manipulation Language; a Smalltalk
binding for ODL and OQL, and a Smalltalk Object Manipulation Language.

2.2 Object Management Group Persistent Object Services Specification

The Object Management Group (OMG) is best known for its work on the Common
Object Request Broker Architecture (CORBA). OMG has also produced specifi-
cations for a number of common object services likely to be needed in CORBA
environments; among these is the Persistent Object Services Specification 2 (POS).
While CORBA-compliant applications are not required to conform to this specifica-
tion, the goal is “to provide common interfaces to the mechanisms used for retaining
and managing the persistent state of objects.” A key notion underlying POS is that
the service is used to manage objects’ persistent state; it does not manage persis-
tent objects. The POS architecture provides interfaces for describing the location
of persistent data (PID), for exporting persistence mechanisms to object clients
(PO), for associating protocols and appropriate data service interfaces (PDS) with
particular combinations of client objects and PIDs (POM), and more. See the POS
specification ? for details.

2.3 Lightweight Object Persistence Managers

Lightweight object persistence managers offer persistence mechanisms for objects,
with less than full database functionality. While such software has been used suc-
cessfully in a wide range of applications, there is no universal agreement on what
minimal functionality a lightweight persistence manager must provide, nor on what
database functionality is necessarily omitted. Typical designs strive to add persis-

2



tence to implementation language objects in a natural way, and may be designed
for speed, for portability, or to exploit high-performance architectures.

2.4 Relationship between ODMG-93 and OMG POS

The Object Database Management Group and the Object Management Group have
striven to define their specifications with an awareness of each others’ work. While
there is substantial common ground, there are a number of differences—for example,
ODMG-93 databases store objects, for which language object mappings may be
provided; OMG POS stores CORBA objects’ states. The ODMG defines a richer
object model, including templates and some specific relationships.

There are also several areas in which the specifications interact: in POS, for
example, ODMG databases are one of many possible Datastores; moreover, POS
specifically prescribes an ODMG-93 protocol (which does not seem. however, to be
unambiguously defined). There is evidence of cooperation on other issues as well,
including, significantly, definition of an Object Database Adapter more suitable to
database applications than the CORBA default Basic Object Adapter.

3 Persistence Models: Trial Implementations

3.1 Argonne Lightweight Object Persistence Manager

Earlier PASS work successfully demonstrated use of a lightweight persistence man-
ager based on the University of Illinois at Chicago’s PTool * to build a multi-
gigabyte physics data store, to deliver parallel query capabilities ®, and to provide
transparent access to multilevel mass storage . Our primary goal in defining the
Argonne object persistence manager was to leverage this work in a way that would
provide physicists with access to these capabilities without requiring them to write
nonstandard software. If this effort is successful. data in the lightweight datastore
could migrate to a true ODMG-compliant database without requiring users to re-
specify data schema or rewrite user query code. A second goal of the effort was to
explore the minimal interface needed by lightweight persistence software in order
for ODMG databases to be buildable on top of them. A clearer understanding
of this interface would make it easier to adapt even commercial database software
to take advantage of high-performance architectures by means of special-purpose
lightweight persistence managers as backend storage providers.

The user interface is a subset of the ODMG-93 C++ binding. The implemen-
tation is evolutionary: it does not support every ODMG-defined class (classes are
added as needed), but every supported class is intended to behave as specified in
ODMG-93. The interface obeys ODMG-93 semantics even where the correspond-
ing functionality is unavailable; for example, the Transaction interface allows nested
transactions and provides a potential scoping mechanism for pointer lifetimes, even
though transactions cannot really be rolled back.

3



3.2 Physics Implementations

As part of the effort to understand these alternative approaches to persistence, three
implementations were undertaken:

e a trial implementation of CORBA-level physics objects that used the POS-
defined PDS_DA protocol for persistence. Because no such service is commer-
cially available, we implemented PDS_DA on top of two lightweight object
persistence managers—an Argonne version of UIC PTool, and the Argonne
ODMG-aware lightweight persistence manager described above.

e a trial implementation of CORBA-level physics objects that used CORBA
interfaces to ODMG-defined persistence mechanisms (e.g., class Database),
rather than OMG POS. This work required writing CORBA wrappers for the
ODMG interfaces, which were implemented using the Argonne persistence
manager. We also used the opportunity to test OMG Object Query Service *
collection interfaces as CORBA wrappers for ODMG collection classes.

¢ an implementation of a data store generated by ISAJET simulations, using
the Argonne ODMG-aware persistence manager directly from C++, with no
CORBA components. This was the easiest of the implementations in that it
needed no CORBA layers, but the most complex in terms of physics data.

4 Some Observations

A detailed description of our alternative persistence model implementations is be-
yond the length constraints of this paper, but a few comments can be made about
ODMG-93, OMG POS, and lightweight object managers.

/.1 ODMG

The evolving ODMG-93 specification looks quite promising from the point of view
of modeling physics data. The ODMG Object Definition Language was rich enough
to describe our ISAJET-based data model, and while we did not have access to
Object Query Language facilities, we were able to express physics queries in C++
using the ODMG bindings. (We did hand-code several physics queries in OQL
to investigate expressivity, but could not test them. A capability of which we
are unsure in OQL, but which would be very useful for physics applications, is
invocation of external user-defined functions or methods from with OQL queries.)
We have minor concerns about the C++ binding, and some concerns about issues
of scalability and parallelism, but many of these are expected to be addressed in
later revisions of the ODMG specification.

4.2 OMG Persistent Object Service

The overall architecture of OMG’s Persistent Object Service is appealing, though
there seem to be some minor problems and many ambiguities. While POS is suited
to storing objects’ persistent states, it is probably not appropriate as the primary

4



interface to a database. In some cases, implementing POS protocols is only the
beginning of the process of providing object persistence: while a protocol may
describe the interfaces that are available for managing persistence, a specific object’s
use of the protocol to manage its own persistence may require substantial design and
implementation effort. The amount of machinery involved in implementing POS can
be quite daunting; finally, the granularity of access to persistent state data may be
critical in deciding the appropriateness of POS for particular purposes.

4.8 Laghtweight Object Persistence Managers

While use of lightweight object persistence managers may be appropriate in a vari-
ety of settings, a persistence interface that is compatible with standards-compliant
object databases holds particular appeal. A litmus test is that data model defini-
tions and client code should not need to be changed if some or all of the data move
to such a database. A good lightweight persistence manager may provide interfaces
to functionality outside the scope of an ODMG-93 implemention (e.g., for physical
storage management ), but such functionality should be provided in a way that does
not conflict with ODMG interfaces.

A lightweight persistence manager could, in principle, cooperate with both the
OMG Persistent Object Service and ODMG databases. One can use such a per-
sistence manager as a Datastore behind OMG POS protocols, and we have done
this in our implementations. One of many possible measures of a good lightweight
object persistence manager may be whether its architecture and functionality are
sufficient to support building an ODMG-93 database management system above it,
with the lightweight manager providing the underlying persistence layer.

Acknowledgments

The submitted manuscript has been authored by a contractor of the U.S. Gov-
ernment under contract No. W-31-109-Eng-38. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S. Government purposes.

References

1. R.G.G. Cattell et al, The Object Database Standard: ODMG-98 Release 1.1
(Morgan Kaufmann, San Francisco, 1994).

2. Jon Siegel et al, Persistent Object Service Specification, OMG Document Num-
bers 94-1-1 and 94-10-7 (Object Management Group, 1994).

3. IBM et al, Joint Submission: Object Query Service Specification, OMG TC
Document 95.1.1 (Object Management Group, 1995).

4. R.L. Grossman and X. Qin in Proceedings of SIGMOD 94, (ACM, 1994).

5. D.M. Malon et al in Computing in High Energy Physics ‘94, (Lawrence Berke-
ley Laboratory, 1994).

6. E.N. May et al in Computing in High Energy Physics '94, (Lawrence Berkeley
Laboratory, 1994).






