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The electric quadrupole moment of 49Sc was measured by collinear laser spectroscopy at CERN-
ISOLDE to be Q s = −0.159(8) eb, and a nearly tenfold improvement in precision was reached for the 
electromagnetic moments of 47,49Sc. The single-particle behavior and nucleon-nucleon correlations are 
investigated with the electromagnetic moments of Z = 21 isotopes and N = 28 isotones as valence 
neutrons and protons fill the distinctive 0 f7/2 orbit, respectively, located between magic numbers, 20 and 
28. The experimental data are interpreted with shell-model calculations using an effective interaction, 
and ab-initio valence-space in-medium similarity renormalization group calculations based on chiral 
interactions. These results highlight the sensitivity of nuclear electromagnetic moments to different types 
of nucleon-nucleon correlations, and establish an important benchmark for further developments of 
theoretical calculations.
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1. Introduction

Since it was established by Mayer and Jensen [1,2], the nuclear 
shell model (SM) and the concept of magic numbers have played 
an essential role in our understanding of the structure of the nu-
clear quantum many-body system [3]. The independent-particle 
SM assumes non-interacting valence nucleons outside a spheri-
cal core, and can reasonably describe the properties of near-magic 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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nuclei [4,5], such as their ground-state spins and electromagnetic 
moments. Deviations of the observed properties from this model 
are attributed to the residual nucleon-nucleon (NN) interaction 
between the valence nucleons, and to the interaction of valence 
nucleon(s) with the core. Moments of nuclei with clear single-
particle orbit configuration, measured with sufficient precision for 
a long range of isotopes, are sensitive probes of different aspects 
of the residual interaction, which can be included in large-scale 
SM calculations. While effective interactions used to be determined 
empirically for specific model spaces [6], in the recent years, it 
has become possible to deduce more realistic interactions rooted 
in QCD, including two and three-body forces, through chiral effec-
tive field theory (χEFT) [7].

More quantitatively, within the independent-particle SM, the 
magnetic moment for a single particle (SP) occupying a SM orbit, 
the so-called ‘Schmidt moment’, depends only on the angular mo-
mentum j and the free nucleon magnetic moments [5]. It should 
thus remain constant as odd nucleons fill an orbit [4,5]. Devia-
tions from the Schmidt moments may be broadly attributed to 
two possible causes: configuration mixing of the wavefunctions 
and corrections of meson-exchange currents (MEC) to the two-
body magnetic-moment operator [8,9]. The quadrupole moment, 
on the other hand, is a good indicator of collective effects of the 
nucleus [9,10]. The SP quadrupole moment of a nucleon depends 
on the angular momentum j and the mean-square charge radius of 
the orbit by the unpaired valence nucleons. As nucleons are added 
to an orbit, the seniority scheme of the independent-particle SM 
predicts quadrupole moments to follow a linear increase with the 
number of valence particles in the SM orbit, crossing zero at half 
filling [4]. Some experimental linear trends have been observed in 
the Pb (Cd) isotopes as neutrons fill the νi13/2 (νh11/2) orbit [5,11]
and in the N = 82 (N = 126) isotones as protons fill the π g7/2

(πh9/2) orbit [12,13]. However, as these orbits are closely em-
bedded among others in the shell, the scattering of the nucleons 
among several orbits may result in the zero-crossing of the linear 
trend away from half filling. A rather unexpected, and not yet ex-
plained deviation from such linear trend, was recently observed in 
the Sn isotopes [14].

The 0 f7/2 orbit, located between magic numbers 20 and 28, 
forms a unique example in the nuclear chart where a single orbit 
is well isolated from its neighbors. One can expect that electro-
magnetic moments of isotopes with valence protons and neutrons 
in the 0 f7/2 orbit, e.g. the N = 28 isotones and Z = 21 isotopes, re-
spectively, would be excellent probes to experimentally verify the 
SP nature and correlations. In addition, the moments of N = 28
magic isotones would potentially offer an ideal platform to explore 
the seniority properties of the independent-particle SM [4], and 
the influence of E2 and M1 correlations. The electromagnetic mo-
ments of isotopes with such a simple configuration are also desired 
to validate the recent progress of ab-initio many-body methods and 
microscopic interactions derived from χEFT. Those have been con-
tinuously improved to interpret nuclear masses and radii [15–17]
but so far have only scarcely been applied to the magnetic and 
quadrupole moments, another two basic properties of the atomic 
nucleus [18–20].

This letter presents a precise measurement of the electro-
magnetic moments of the unstable nuclei 47,49Sc, yielding a first 
quadrupole moment for 49Sc. This provides key data to the system-
atics of nuclear moments associated with the 0 f7/2 orbit and facil-
itates the investigation of the SP behavior and NN correlations. The 
experimental data are compared with shell-model calculations and 
valence-space in-medium similarity renormalization group (VS-
IMSRG) calculations [21,22] based on χEFT interactions [23,24].
2

Fig. 1. Hfs spectra of 49Sc measured with the COLLAPS and CRIS methods on re-
spectively ionic and atomic Sc beam. Data are fitted with a Voigt line profile using 
SATLAS [32].

2. Experimental method

Because of conflicting data on magnetic moments from differ-
ent measurement methods [25,26], as will be discussed further in 
Sec. 3, two collinear laser spectroscopy (CLS) setups, COLLAPS and 
CRIS, are adopted for this study. This allows the moments of Sc 
isotopes to be determined unambiguously from both atomic and 
ionic hyperfine structure (hfs). Details on both setups can be found 
in Refs. [17,27,28]. In brief, the Sc isotopes were produced by im-
pinging 1.4-GeV protons onto a Ta-foil target at ISOLDE-CERN, and 
resonantly ionized with RILIS [29]. The ions were accelerated up 
to 40 keV, mass separated, and cooled for 100 ms (or 10 ms) in 
a linear Paul trap [30]. The Sc ions were released as bunches of 
∼5-μs temporal length and sent to either the COLLAPS or CRIS set-
up. At COLLAPS, the ion bunch was collinearly overlapped with a 
frequency-doubled continuous wave Ti:Sapphire laser at 364.3 nm 
to match the Doppler-shifted 3d4s 3 D1 → 3d4p 3 F2 ionic tran-
sition. The laser frequency was stabilized by a wavemeter, which 
was calibrated in real time by a diode laser locked to one hyper-
fine component of the 87Rb atom. The ion velocity was tuned to 
probe the resonant excitation of the transition. Four photomulti-
plier tubes were used to record the fluorescence photons emitted 
from the laser-excited Sc ions as a function of the scanning volt-
age to obtain the hfs spectrum. At CRIS, the ion bunches (100 Hz) 
were neutralized using a potassium vapor and then overlapped in 
time and space with two 100-Hz pulsed lasers at 246.8 nm and 
532 nm, respectively. The first frequency-tripled narrow-band laser 
was used to resonantly excite the atoms via the 3d4s2 2 D3/2 →
3d4s5p 2 P ◦

1/2 transition, and the subsequent frequency-doubled 
Nd:YAG laser to ionize them. The resonantly ionized ions were 
deflected from the beam, and recorded by an ion detector as a 
function of the laser frequency detuning to obtain the hfs spec-
trum [31].

3. Experimental results

Example hfs spectra of 49Sc measured with both methods are 
shown in Fig. 1, and analyzed using the χ2-minimization approach 
in SATLAS [32]. The extracted magnetic and quadrupole hfs param-
eters (A and B) are summarised in Table 1 and in good agreement 
with the literature values [25,33,34]. The magnetic moments (μ) of 
46,47,49Sc were extracted from two ionic and one atomic A param-
eter, using μ = μ45 I A/(I45 A45) with the re-evaluated μ(45Sc) [35]. 
The final μ measured with COLLAPS are calculated as the weighted 
average of the two sets of magnetic moments taking into account 
the correlation between A(3 D1) and A(3 F2). As presented in Ta-
ble 2, the magnetic moments measured with the two CLS meth-
ods are in excellent agreement with each other. The quadrupole 
moments (Q s) are obtained from the larger B(3 F2) parameters us-
ing Q s = Q s,45 B/B45 with the most recent recommended value of 
Q s(45Sc) [36].

Table 2 presents the newly-measured electromagnetic moments 
of Sc isotopes, along with the literature values [25,26,35–39]. The 
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Fig. 2. (a) Magnetic and (b) quadrupole moments of 41−49Sc compared to SM GXPF1A calculations [41] using the effective g-factor (geff
s = 0.9gfree

s ) and effective charges 
(eπ = 1.5e, eν = 0.5e) and to VS-IMSRG calculations (using free g-factors and bare nucleon charges) based on the NNLOsat [23] and �NNLOGO [24] interactions. Dashed 
horizontal lines indicate the effective SP magnetic and quadrupole moments of one proton in the π f7/2 orbit. (c) Magnetic and (d) quadrupole moments of N = 28 isotones, 
compared to theoretical calculations. 51V, 53Mn and 55Co moments are taken from Refs. [42–46]. The red line in (d) is a linear fit of the data. Three sketches on the top with 
exaggerated deformation represent the shapes of 41,49Sc with a proton outside 40,48Ca and of 55Co with a hole inside 56Ni.
Table 1
The hfs constants A, B of the 3 D1 and 3 F2 ionic states, and A of the 2 D3/2 atomic 
level, given in MHz.

COLLAPS CRIS

A A(3 D1) A(3 F2) B(3 D1) B(3 F2) A(2 D3/2)

45 -480.0(2) 368.5(1) -11.4(6) -54.9(9) 269.4(4)
-479.9(5)a 368.3(3)a -12.6(19)a -61.7(32)a 269.56(2)b

46 -268.2(2) 205.7(1) +8.0(6) +30.8(10) 150.5(2)
150.576(9)c

47 -526.2(2) 403.7(1) -10.2(7) -49.8(11)
49 -559.2(5) 429.3(3) -8.2(26) -39.7(19) 314.0(4)

a These values for 45Sc isotope are taken from Ref. [25].
b This value for 45Sc isotope is taken from Ref. [33].
c This value for 46Sc isotope is taken from Ref. [34].

new results of 47,49Sc are more precise than those from atomic-
beam magnetic resonance (ABMR) and nuclear magnetic resonance 
(NMR) experiments [26,39]. A systematic deviation of ∼2% is found 
between the magnetic moments of 43,47,49Sc measured using CLS 
and those measured using NMR [39] or ABMR [26]. The magnetic 
moments of 43,47Sc were measured in one ABMR experiment [26], 
and the 49Sc magnetic moment was obtained via NMR and de-
termined relative to the 47Sc ABMR moment [39], which links all 
these moments. The magnetic moments measured with CLS were 
obtained from three independent experiments at IGISOL [25], COL-
LAPS and CRIS (this work), using four ionic and one atomic states, 
and are all in excellent agreement. The 46Sc magnetic moment 
was, however, measured in another independent ABMR experi-
ment [34], which is in excellent agreement with the CLS results. 
This indicates that the discrepancy between the newly measured 
43,47,49Sc magnetic moments and those from ABMR/NMR methods 
can all be traced back to one particular ABMR experiment [26].

4. Discussion

Our measurements provide key experimental data for the sys-
tematical investigation of the magnetic and quadrupole moments 
of Z = 21 isotopes and N = 28 isotones when valence nucleons 
3

fill the unique f7/2 orbit, as presented in Fig. 2. Particularly, the 
first Q s measurement of the short-lived 49Sc is essential to vali-
date the simple seniority scheme of the independent-particle SM 
(see Fig. 2(d) and discussion below).

As presented in Fig. 2(a, b), both magnetic and quadrupole mo-
ments of 41−49Sc (Z = 21, even N = 20 − 28), characterized with 
the identical parabolic trends, approach the SP values for a pro-
ton in the π f7/2 orbit at the neutron magic numbers 20 and 
28. This points to the rather pure SP character of 41,49Sc and 
the doubly magic nature of 40,48Ca. Note that the SP moments 
are calculated using an effective gs-factor of geff

s = 0.9gfree
s and 

an effective charge of eπ = 1.5e, to compensate for the possible 
missing core excitations. The deviation of the magnetic moment 
of 43−47Sc (N = 22, 24, 26) from the Schmidt line indicates an en-
hancement of NN correlation as more neutrons/holes are added to 
the f7/2 orbit. The single proton outside the 40Ca and 48Ca cores 
induces an oblate core polarization for 41,49Sc (sketches on the top 
of Fig. 2) leading to a negative Q s (Fig. 2(b)). This core polarization 
effect is maximized around mid-shell where more particles/holes 
appear in the ν f7/2 orbit, but a more precise measurement of the 
43Sc quadrupole moment should confirm the expected quadratic 
trend for these quadrupole moments.

For the N = 28 isotonic sequence with (odd-) protons filling the 
π f7/2 orbit from Sc (Z = 21) to Co (Z = 27), the magnetic mo-
ment is expected to be constant (‘Schmidt value’ in Fig. 2(c)) from 
the independent-particle SM. However, the experimental values 
follow a characteristic linear deviation from the SP value. This phe-
nomenon can be explained as due to increasing cross-shell proton 
excitations to the upper f5/2 spin-orbit partner when the π f7/2

orbit is being filled [8,10]. A minor mixing of this M1-excitation 
into the odd-proton wave function may have a large impact on the 
magnetic moment [10,47]. Thus, the magnetic moment (μ) of an 
isotone with n protons (π f n

7/2) follows a linear trend proportional 
to n and a constant δμ that relates to the M1 spin-flip matrix el-
ement: μ(π f n

7/2) = μ(49Sc) + (n − 1)δμ. As a result, a fraction of 
such orbit mixing in 55Co induces the observed reduction of its 
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Table 2
The electromagnetic moments of Sc isotopes measured in this work using COLLAPS (in bold) and CRIS (in bold and italic) methods, compared to the literature values. The 
consistent CLS results are the recommended values, as discussed in the text.

NMR or ABMR CLS ABMR CLS

A Iπ T1/2 μ (μN) Q s,exp (b)

41 7/2− 596.3(17) ms +5.4283(14) [37]a -0.145(3) [38]b

43 7/2− 3.891(12) h +4.61(4) [26] +4.526(10) [25]a -0.26(6) [26] b -0.27(5) [25]
45 7/2− Stable +4.75400(8) [35] -0.220(2) [36]
46 4+ 83.79(4) d +3.03(2) [34] +3.040(8) [25]a +0.119(2) [34] b +0.12(2) [25]

+3.035(2)/+3.036(6) +0.124(5)
47 7/2− 3.3492(6) d +5.34(2) [26] a +5.209(2) -0.22(4) [26] b -0.200(6)
49 7/2− 57.18(13) m (+)5.61(3) [39]a +5.539(4)/+5.540(11) -0.159(8)

a These are the recommended magnetic moments from Ref. [40].
b These values are all re-evaluated relative to Q (45Sc) = -0.220(2) from Ref. [36].
μ relative to μ(49Sc), further emphasizing the relatively ‘pure’ SP 
nature of 49Sc.

In the extreme independent-particle SM, the seniority scheme 
allows an estimation of the spectroscopic quadrupole moment of 
isotones with odd protons (n) filling an orbit j [4,9]:

Q s =
(

1 − 2n − 2

2 j − 1

)
Q s.p( j) (1)

leading to a linear increase proportional to Q s.p.( j), the SP 
quadrupole moment for a proton in the orbit j [4,9,48]. This linear 
trend of the Q s is expected to cross zero when the orbit j is half 
filled. The single proton outside the doubly magic 48Ca core in-
duces an oblate core polarization for 49Sc (negative Q s), whereas 
a prolate shape is predicted with a positive Q s for 55Co (due to 
a hole inside the doubly magic 56Ni), as schematically presented 
on the top of Fig. 2. With the addition of the present precise mea-
surement of Q s for 49Sc, a linear trend can then be unambiguously 
determined from the available experimental Q s of N = 28 iso-
tones, crossing zero at the half-filling of the π f7/2 orbit (Fig. 2(d)), 
representing a textbook example for the independent-particle SM 
picture. It is worth noting that the proton cross-shell excitations, 
which strongly affect the magnetic moments (M1 correlations) 
(Fig. 2(c)), have no notable effect on the quadrupole moments (E2
correlations).

Naturally, one would expect the large-scale SM to give a good 
description of the above discussed nuclear moments. However, as 
shown in Fig. 2(a, c), the SM calculation using the GXPF1A effective 
interaction (40Ca core and pf model space) [41], does not repro-
duce well the trend of the magnetic moments for heavier scan-
dium isotopes, and systematically underestimates those of the N =
28 isotones. This may suggest a missing polarization effect of the 
40Ca core, requiring an effective interaction with a valence space 
that includes sd and pf shells and is optimized for the calcium re-
gion. While interactions exist for protons and neutrons in the sdpf
model space (e.g. SDPF-U [49] and SDPF-MU [50]), these interac-
tions have been developed for isotopes with Z = 8 − 20 (namely 
in the sd-shell) to properly account for the neutron sd − pf shell 
excitations in their neutron-rich isotopes. Thus, an interaction that 
properly takes into account proton excitations across Z = 20 yet 
needs to be developed.

With advances in many-body methods and NN+3N forces from 
χEFT [7,51], first-principles calculations of electromagnetic prop-
erties of medium-mass nuclei are now possible using the VS-
IMSRG [22,52–54], with first applications in the sd shell [19,20,
55–59]. Here, we use two chiral interactions for the first time in 
the pf space: NNLOsat [23] and �NNLOGO(394) [24]; the latter in-
cludes explicitly �(1232)-isobars and has so far only been tested 
for charge radii and binding energies [17,60]. In this work, the 
VS-IMSRG calculation follows the same procedure as in Ref. [19], 
with an increased E3max = 22 truncation on storage of 3N ma-
trix elements [61]. We decouple a pf -shell valence-space Hamil-
4

Fig. 3. Nuclear moments of N = 28 isotones calculated with VS-IMSRG and SM with 
protons constrained on different orbits, and with neutron excitation forbidden. For a 
better visualization, an intended offset δμ = 0.48 is added to the VS-IMSRG values.

tonian above a 40Ca core (or 48Ca core for N = 28 isotones), and 
the E2 and M1 operators are consistently transformed by the 
VS-IMSRG [62] to produce consistent effective valence-space op-
erators. Final energies and transition rates are obtained with the 
KSHELL code [63]. We emphasize that only bare nucleon charges 
and free g-factors are used here, which is fundamentally differ-
ent from the SM GXPF1A calculation where geff

s = 0.9gfree
s and 

eπ = 1.5e, eν = 0.5e have been used.
Similar to the SM calculation, both chiral interactions

(�NNLOGO and NNLOsat) result in a clear underestimation of the 
magnetic moments of 45,47,49Sc, and a systematic underestima-
tion of magnetic moment trend of the N = 28 isotones, as shown 
(Fig. 2(a, c)). We note that the new �NNLOGO interaction gives a 
somewhat better description along the Sc isotopic chain, which 
may benefit from the inclusion of the �(1232)-isobar degree of 
freedom.

In Fig. 2(b, d), the quadrupole moments are compared with the 
calculated moments from these theories. While the SM GXPF1A 
calculations follow reasonably well the general trend of Q s as a 
function of N , the VS-IMSRG calculations largely underestimate the 
absolute value of the experimental quadrupole moments of Z =
21 isotopes (Fig. 2(b)). A similar underestimation was already seen 
for calculated E2 matrix elements in lighter Mg isotopes [55,58], 
which is likely due to missing higher-order collective excitations 
in the VS-IMSRG calculation at the IMSRG(2) level, as discussed in 
Refs. [55,58]. Further theoretical studies are needed to understand 
the origin of missing E2 correlations in the ab-initio calculations. 
For the N = 28 isotones, as shown in Fig. 2(d), the characteristic 
symmetric linear trend of the Q s when filling the proton π f7/2
orbit is captured remarkably well by both theories. The smaller 
slope of the calculated trend using the ab-initio interaction reflects 
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only a small underestimation of the SP quadrupole moment for 
a proton (particle or hole) in the f7/2 orbit (no effective charges 
are used here). With the GXPF1A effective interaction, the slope is 
overestimated, which points to either a too large effective proton 
charge, or an overestimated value for the SP quadrupole moment. 
This can be further investigated by blocking neutron excitations 
across N = 28.

We further investigate the influence of proton M1 and E2
correlations in the pf model space on the moments of N = 28
isotones by performing calculations for protons in a gradually ex-
tended model space, as shown in Fig. 3. For consistency with the 
VS-IMSRG calculation, neutron excitations across N = 28 are inten-
tionally blocked in the SM calculations. As presented in Fig. 3 (up-
per panel), clearly, proton excitations to the π f5/2 are driving the 
linearly increased deviation of μ from the Schmidt value from 49Sc 
to 55Co, and this is captured well in both theories. On the contrary, 
these proton M1-excitations have nearly negligible impact on the 
Q s moments (Fig. 3 (lower panel)). The SM GXPF1A calculations 
for magnetic and quadrupole moments without neutron excitations 
across N = 28 (Fig. 3, right panel), show a better agreement with 
the experimental data, in comparison to the SM results performed 
in the full model space (Fig. 2(c, d)). This suggests that neutron ex-
citations across N = 28, which in turn correlatively induce proton 
excitations across Z = 28, are overestimated in the full SM calcu-
lations (Fig. 2) and a small portion of these excitations leads to a 
notable change of μ as discussed above, supporting the ‘pure’ SP 
character of 49Sc. In other words, the N = 28 shell gap seems to 
be underestimated in the GXPF1A shell model interaction.

It would be worth noting that there is a substantial differ-
ence between the performance of the theories for the N = 28
isotones (Fig. 2(c, d) and Fig. 3) and that for the Z = 21 iso-
topes (Fig. 2(a, b)). Both SM and VS-IMSRG calculations give a good 
description of the systematic trends of moments for N = 28 iso-
topes when odd protons fill the f7/2 orbit (Fig. 2(c, d) and Fig. 3). 
This benchmarks the significant progress of the ab initio calcula-
tions for the description of electromagnetic moments of the simple 
cases with magic neutron number (N = 28) and valences pro-
tons outside the doubly magic 48Ca core. As for 41−49Sc isotopes 
where enhanced NN correlations are induced by the additional 
neutron/holes in the f7/2 orbit and the possible polarization effect 
of 40Ca core, the theories are much less successful in describing 
their electromagnetic moments. This, instead, provides a systemat-
ical quantification of their deviations from experimental data along 
the entire isotopic chain, motivating further development of the 
nuclear interactions and the many-body methods when encoun-
tering more complicated correlations.

5. Summary and conclusion

In summary, electromagnetic moments of 47,49Sc were mea-
sured with improved precision and accuracy, among with the elec-
tric quadrupole moment Q s of 49Sc isotope obtained for the first 
time. A systematic investigation of electromagnetic moments has 
been performed for N = 28 isotones and Z = 21 isotopes with 
valence nucleons filling the f7/2 orbit. Thanks to the unique lo-
cation of this orbit in the SM scheme, the sensitivity of electro-
magnetic moments to the nucleon-nucleon M1 and E2 correlations 
is probed. Particularly the seniority scheme of the independent-
particle SM is experimentally confirmed based on the Q s of 49Sc 
and its N = 28 isotones, providing a textbook example. This study 
serves as a benchmark for state-of-the-art theoretical models, es-
pecially ab initio VS-IMSRG calculations using microscopic interac-
tions derived from χEFT. At the level of the experimental precision, 
none of the theories used in this work satisfactorily reproduces 
the magnetic moment trends along the Z = 21 isotopic chain or 
their absolute values for the N = 28 isotones. In particular to-
5

wards N = 28, all magnetic moments are largely underestimated, 
which may suggest that neutron M1 excitations to the f5/2 are too 
pronounced in the models. As for the quadrupole moments, the 
trend along the Z = 21 isotopic chain is reasonably reproduced by 
the SM GXPF1A calculations, although the absolute value towards 
N = 28 is clearly overestimated, suggesting that E2 excitations to 
the p3/2 orbit are also overestimated. Together with the under-
estimated magnetic moments, this points to a too small N = 28
gap in the GXPF1A interaction. The linear trend of Q s observed 
for N = 28 isotones is well described with the SM GXPF1A, but 
the absolute SP quadrupole moment (or the effective charge) is 
overestimated, as the slope is too steep. With the ab-initio inter-
actions, the quadrupole moments of Z = 21 isotopes are largely 
underestimated, pointing to missing E2 correlations when opening 
the neutron shell between N = 20 and 28. Nevertheless, the linear 
trend of quadrupole moments along N = 28 isotones is very well 
captured, and the slope is only a little less steep than observed, 
illustrating that the SP quadrupole moment (without use of effec-
tive charge) is well reproduced by the ab-initio theory. The present 
work highlights the progress made in advanced nuclear theory. It 
paves the way for a coherent description of basic nuclear prop-
erties with further development of the nuclear interactions and 
the many-body methods, e.g. a more proper effective SM inter-
action for the calcium region in the sdpf model space, VS-IMSRG 
approach with all operators truncated at the three-body level and 
decoupling a cross-shell Hamiltonian as well as inclusion of MEC.
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