Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

002801559 001__ 2801559
002801559 003__ SzGeCERN
002801559 005__ 20221031170145.0
002801559 0247_ $$2DOI$$a10.5194/acp-20-9183-2020
002801559 0248_ $$aoai:cds.cern.ch:2801559$$pcerncds:CERN
002801559 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2018461$$d2022-02-14T16:46:33Z$$h2022-02-15T05:00:05Z$$mmarcxml
002801559 035__ $$9Inspire$$a2018461
002801559 041__ $$aeng
002801559 100__ $$aSimon, Mario$$uFrankfurt U.
002801559 245__ $$9submitter$$aMolecular understanding of new-particle formation from $\alpha$-pinene between −50 and +25 °C
002801559 260__ $$c2020
002801559 300__ $$a25 p
002801559 520__ $$9submitter$$aHighly oxygenated organic molecules (HOMs)
contribute substantially to the formation and growth of atmospheric aerosol particles, which affect air quality, human
health and Earth’s climate. HOMs are formed by rapid, gasphase autoxidation of volatile organic compounds (VOCs)
such as α-pinene, the most abundant monoterpene in the atmosphere. Due to their abundance and low volatility, HOMs
can play an important role in new-particle formation (NPF)
and the early growth of atmospheric aerosols, even without any further assistance of other low-volatility compounds
such as sulfuric acid. Both the autoxidation reaction forming
HOMs and their NPF rates are expected to be strongly dependent on temperature. However, experimental data on both
effects are limited. Dedicated experiments were performed at
the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber
at CERN to address this question. In this study, we show that
a decrease in temperature (from +25 to −50 ◦C) results in a
reduced HOM yield and reduced oxidation state of the products, whereas the NPF rates (J1.7 nm) increase substantially.
Measurements with two different chemical ionization mass
spectrometers (using nitrate and protonated water as reagent
ion, respectively) provide the molecular composition of the
gaseous oxidation products, and a two-dimensional volatility
basis set (2D VBS) model provides their volatility distribution. The HOM yield decreases with temperature from 6.2 %
at 25 ◦C to 0.7 % at −50 ◦C. However, there is a strong reduction of the saturation vapor pressure of each oxidation
state as the temperature is reduced. Overall, the reduction in
volatility with temperature leads to an increase in the nucleation rates by up to 3 orders of magnitude at −50 ◦C compared with 25 ◦C. In addition, the enhancement of the nucleation rates by ions decreases with decreasing temperature,
since the neutral molecular clusters have increased stability
against evaporation. The resulting data quantify how the interplay between the temperature-dependent oxidation pathways and the associated vapor pressures affect biogenic NPF
at the molecular level. Our measurements, therefore, improve
our understanding of pure biogenic NPF for a wide range of
tropospheric temperatures and precursor concentrations.
002801559 540__ $$3publication$$aCC-BY-4.0$$uhttps://creativecommons.org/licenses/by/4.0/
002801559 542__ $$3publication$$dAuthor(s)$$g2020
002801559 65017 $$2SzGeCERN$$aAstrophysics and Astronomy
002801559 65017 $$2SzGeCERN$$aChemical Physics and Chemistry
002801559 690C_ $$aARTICLE
002801559 690C_ $$aCERN
002801559 693__ $$aCLOUD
002801559 700__ $$aDada, Lubna$$uHelsinki U.
002801559 700__ $$aHeinritzi, Martin$$uFrankfurt U.
002801559 700__ $$aScholz, Wiebke$$uInnsbruck U.
002801559 700__ $$aStolzenburg, Dominik$$uVienna U.
002801559 700__ $$aFischer, Lukas$$uInnsbruck U.
002801559 700__ $$aWagner, Andrea C$$uFrankfurt U.$$uU. Colorado, Boulder
002801559 700__ $$aKürten, Andreas$$uFrankfurt U.
002801559 700__ $$aRörup, Birte$$uHelsinki U.
002801559 700__ $$aHe, Xu-Cheng$$uHelsinki U.
002801559 700__ $$aAlmeida, João$$uCERN$$uLisbon U.
002801559 700__ $$aBaalbaki, Rima$$uHelsinki U.
002801559 700__ $$aBaccarini, Andrea$$uPSI, Villigen
002801559 700__ $$aBauer, Paulus S$$uVienna U.
002801559 700__ $$aBeck, Lisa$$uHelsinki U.
002801559 700__ $$aBergen, Anton$$uFrankfurt U.
002801559 700__ $$aBianchi, Federico$$uHelsinki U.
002801559 700__ $$aBräkling, Steffen$$uUnlisted, CH
002801559 700__ $$aBrilke, Sophia$$uVienna U.
002801559 700__ $$aCaudillo, Lucia$$uFrankfurt U.
002801559 700__ $$aChen, Dexian$$uCarnegie Mellon U.
002801559 700__ $$aChu, Biwu$$uHelsinki U.
002801559 700__ $$aDias, António
002801559 700__ $$aDraper, Danielle C
002801559 700__ $$aDuplissy, Jonathan
002801559 700__ $$aEl-Haddad, Imad
002801559 700__ $$aFinkenzeller, Henning
002801559 700__ $$aFrege, Carla
002801559 700__ $$aGonzalez-Carracedo, Loic
002801559 700__ $$aGordon, Hamish
002801559 700__ $$aGranzin, Manuel
002801559 700__ $$aHakala, Jani$$uHelsinki U.
002801559 700__ $$aHofbauer, Victoria$$uCarnegie Mellon U.
002801559 700__ $$aHoyle, Christopher R$$uPSI, Villigen$$uZurich, ETH
002801559 700__ $$aKim, Changhyuk$$uPusan Natl. U.$$uCaltech
002801559 700__ $$aKong, Weimeng$$uCaltech
002801559 700__ $$aLamkaddam, Houssni$$uPSI, Villigen
002801559 700__ $$aLee, Chuan P$$uPSI, Villigen
002801559 700__ $$aLehtipalo, Katrianne$$uHelsinki U.$$uFinnish Meteorological Inst.
002801559 700__ $$aLeiminger, Markus$$uInnsbruck U.
002801559 700__ $$aMai, Huajun$$uCaltech
002801559 700__ $$aManninen, Hanna E$$uCERN
002801559 700__ $$aMarie, Guillaume$$uFrankfurt U.
002801559 700__ $$aMarten, Ruby$$uPSI, Villigen
002801559 700__ $$aMentler, Bernhard$$uInnsbruck U.
002801559 700__ $$aMolteni, Ugo$$uPSI, Villigen
002801559 700__ $$aNichman, Leonid$$uManchester U.
002801559 700__ $$aNie, Wei$$uNanjing U.
002801559 700__ $$aOjdanic, Andrea$$uVienna U.
002801559 700__ $$aOnnela, Antti$$uCERN
002801559 700__ $$aPartoll, Eva$$uInnsbruck U.
002801559 700__ $$aPetäjä, Tuukka$$uHelsinki U.
002801559 700__ $$aPfeifer, Joschka$$uFrankfurt U.$$uCERN
002801559 700__ $$aPhilippov, Maxim$$uLebedev Inst.
002801559 700__ $$aQuéléver, Lauriane L J$$uHelsinki U.
002801559 700__ $$aRanjithkumar, Ananth$$uLeeds U.
002801559 700__ $$aRissanen, Matti P$$uHelsinki U.$$uTampere U. of Tech.
002801559 700__ $$aSchallhart, Simon$$uHelsinki U.$$uFinnish Meteorological Inst.
002801559 700__ $$aSchobesberger, Siegfried$$uUEF, Kuopio
002801559 700__ $$aSchuchmann, Simone$$uCERN
002801559 700__ $$aShen, Jiali$$uHelsinki U.
002801559 700__ $$aSipilä, Mikko$$uHelsinki U.
002801559 700__ $$aSteiner, Gerhard$$uInnsbruck U.
002801559 700__ $$aStozhkov, Yuri$$uLebedev Inst.
002801559 700__ $$aTauber, Christian$$uVienna U.
002801559 700__ $$aTham, Yee J$$uHelsinki U.
002801559 700__ $$aTomé, António R$$uBeira Interior U., Covilha
002801559 700__ $$aVazquez-Pufleau, Miguel$$uVienna U.
002801559 700__ $$aVogel, Alexander L$$uFrankfurt U.$$uCERN
002801559 700__ $$aWagner, Robert$$uHelsinki U.
002801559 700__ $$aWang, Mingyi$$uCarnegie Mellon U.
002801559 700__ $$aWang, Dongyu S$$uPSI, Villigen
002801559 700__ $$aWang, Yonghong$$uHelsinki U.
002801559 700__ $$aWeber, Stefan K$$uCERN
002801559 700__ $$aWu, Yusheng$$uHelsinki U.
002801559 700__ $$aXiao, Mao$$uCERN
002801559 700__ $$aYan, Chao$$uHelsinki U.
002801559 700__ $$aYe, Penglin$$uCarnegie Mellon U.$$uAerodyne Research, Billerica
002801559 700__ $$aYe, Qing$$uCarnegie Mellon U.
002801559 700__ $$aZauner-Wieczorek, Marcel$$uFrankfurt U.
002801559 700__ $$aZhou, Xueqin$$uFrankfurt U.$$uPSI, Villigen
002801559 700__ $$aBaltensperger, Urs$$uPSI, Villigen
002801559 700__ $$aDommen, Josef$$uPSI, Villigen
002801559 700__ $$aFlagan, Richard C$$uCaltech
002801559 700__ $$aHansel, Armin$$uInnsbruck U.
002801559 700__ $$aKulmala, Markku$$uHelsinki U.$$uHelsinki Inst. of Phys.$$uNanjing U.$$uBeijing U. of Chem. Tech.
002801559 700__ $$aVolkamer, Rainer$$uU. Colorado, Boulder
002801559 700__ $$aWinkler, Paul M$$uVienna U.
002801559 700__ $$aWorsnop, Douglas R$$uHelsinki U.$$uAerodyne Research, Billerica
002801559 700__ $$aDonahue, Neil M$$uCarnegie Mellon U.
002801559 700__ $$aKirkby, Jasper$$uFrankfurt U.$$uCERN
002801559 700__ $$aCurtius, Joachim$$uFrankfurt U.
002801559 773__ $$c9183-9207$$n15$$pAtmos. Chem. Phys.$$v20$$y2020
002801559 960__ $$a13
002801559 980__ $$aARTICLE