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Abstract. We present a novel data format design that obviates the need for data
tiers by storing individual event data products in column objects. The objects
are stored and retrieved through Ceph S3 technology, with a layout designed to
minimize metadata volume and maximize data processing parallelism. Perfor-
mance benchmarks of data storage and retrieval are presented.

1 Introduction

The HL-LHC poses a significant challenge for the CMS experiment’s data management
model. A combination of higher pile-up and finer detector granularity will result in each
collision event of data or simulation requiring considerably larger byte-storage [1]. The over-
all event rate to storage, currently at approximately 1 kHz, is also anticipated to increase to at
least 7.5 kHz. In the early years of Run 4, several new subdetector components will come on-
line, and their low-level data will need to be validated and synthesized into high-level reduced
data suitable for analysis. This process will be challenging if the data products pertaining to
those detector elements are not easily accessible. Future innovative analysis may necessi-
tate different data reduction strategies. Given these considerations, the amount of data that is
regularly accessed by end-user analysts is expected to grow significantly in the coming years.

An inherent limitation in the current CMS data management model is organization of
data around files. File-based organization fundamentally forces certain data products, or
collections of related fields (data columns) pertaining to an event to be grouped together with
the same data access quality of service (QoS). In the current workflow model, large-scale
tasks transform datasets from one set of columns to another more compact set, to be able to
afford keeping the latter available with high QoS (i.e., on magnetic disk at several sites.) It is
not currently possible to have different subsets of data columns kept at high QoS for different
datasets at granularities beyond the data tier, a statically defined set of columns. A more
flexible data model that can keep only the needed data columns available at high QoS may
significantly reduce storage volume risk.

2 Data-Tier Storage Model

In the current CMS computing model, data tiers represent what subset of the detector in-
formation per event is stored in a particular dataset (e.g. a collection of files). The RAW
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data tier is the unprocessed output of the CMS detector, and is committed to archival stor-
age (usually tape) while active storage (usually magnetic disk) is dominated by intermediate
derived/reduced data formats such as AOD and MiniAOD [2]. For both collider data and
simulation, these reduced data tiers are processed by analysis end-users to form data formats
with simple data types, NTuples. A proliferation of end-user analysis formats has necessitated
frequent access of AOD/MiniAOD tiers up to the present day. More universal end-user NTu-
ple formats such as NanoAOD [3] effectively define a new data tier and have helped reduce
the need to access upstream data tiers, however they are only expected to meet the needs of a
subset ( 50%) of analysis use cases. An illustration summarizing the data tier model is shown
in Fig. 1.
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Figure 1. Illustration of the data tier model as used for data management in the CMS experiment.

Attempts at universal formats such as NanoAOD involve a trade-off in that only a subset
of information is kept for each event. Innovative physics analyses often require quantities
not saved in NanoAOD as they were not considered pertinent at the time the NanoAOD
column set was defined. An analysis that requires missing columns will have to run their own
derivation over MiniAOD or upstream data tiers to extract the necessary columns and add
them to NanoAOD.

Even upstream of NanoAOD formats, the inflexibility of the data tier system leads to a
sub-optimal computing model: analysis users cannot access the AOD data tier as it is too
large to fit the entire CMS working dataset on disk at that tier. This forces forward-copying
certain data products from that tier onward, duplicating information only for the sake of
accessibility; and in the case of issues in a data re-proecessing (e.g. re-MiniAOD), the old
and new data may only differ for a small subset of the data columns, yet the remainder have
to be re-written so downstream analysis workflows can access it efficiently.

All centrally managed datasets in CMS are concretely a collection of files written in the
ROOT [4] format, with an Events TTree and extra metadata. In this TTree, each data product
is stored as a TBranch. Some data product elements are further split into smaller columns
for improved compression, but a product is accessed as one unit within the CMS offline
software (CMSSW) framework [5]. TBranch objects reference several TBaskets, each of
which contain serialized data products for a range of events. In Fig. 2, each TBasket accessed
by an example CMSSW workflow reading a MiniAOD file is represented as a rectangle,
where the height is the number of events and width is proportional to the compressed bytes.



The top 6 largest MiniAOD products represent half of the file size. The second largest data
product, LHEEventProduct_externalLHEProducer__GEN., is copied directly from the
AOD tier.

patPackedCandidates_packedPFCandidates__PAT.

LHEEventProduct_externalLHEProducer__GEN.

patTriggerObjectStandAlones_slimmedPatTrigger__PAT.

patPackedGenParticles_packedGenParticles__PAT.

patJets_slimmedJets__PAT.

patMuons_slimmedMuons__PAT.

patJets_slimmedJetsAK8__PAT.

recoGenParticles_prunedGenParticles__PAT.

patJets_slimmedJetsPuppi__PAT.
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Figure 2. Layout of a file in a representa-
tive CMS dataset (simulation of semi-leptonic
tt̄ production), where rows represent event in-
dices, and columns are sized proportional to
the average compressed size of a given data
product. The labels of the 9 largest data prod-
ucts are shown on the x axis. Unfilled rectan-
gles represent data products that were not ac-
cessed.

2.1 Projected Usage

CMS computing plans for the HL-LHC assume that a majority of analyses will utilize cen-
trally produced NanoAOD and that the bulk of intermediate formats currently kept on disk
(often with multiple copies) will not be kept on active storage. Even with such assumptions,
the disk storage needs of CMS in the first year of Run 4 will exceed one Exabyte across
all sites, representing a factor of four increase over the needs in Run 3 (Fig. 3, left) [6]. A
plethora of non-NanoAOD data tiers (Fig. 3, right) is expected to be available on disk in 2031
in current projections, and the mixture may well change with detector commissioning needs.
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Figure 3. Left: annual disk space requirement estimated for CMS processing and analysis needs.
Right: estimated disk space requirements per data tier for 2031, with a total expected usage of 900 PB.

3 Object Stores

Object stores, which operate on a key-value principle, allow for highly-granular access to
information via efficient metadata lookup. The evaluation of sub-file or object-based gran-
ularity is a key R&D goal for Data Organization Access and Management (DOMA) in the
HEP Software Foundation Community White Paper [7] which was further enforced in the



2021 Snowmass Planning Process [8]. Object stores are widespread in industry and are near-
universal in cloud storage with the Amazon S3 API emerging as a de facto access protocol
across them. A central object store can also provide the backbone of a content delivery net-
work (CDN) for end-users and allow for analysis without need for an analysis NTuple format.

To concretely explore the possibilities of object storage for event data in CMS, we de-
veloped an object data format, a test cluster using Ceph object store technology, and a S3
input and output module in a prototype event processing framework similar to CMSSW, as
discussed in the following subsections.

3.1 An object data format

In our object data format, one index object holds metadata for an entire primary dataset. For
each data product, or column of data, a stripe of events is written as an object in an S3 bucket.
Each event data product is serialized with standard ROOT IO. The stripe size is chosen on
first write, once the compressed output buffer reaches a target stripe size, usually 100k-1MB,
and the number of events evenly divides a configurable event batch size. The index object
may be replaced by a database, to more easily add and remove products. By forcing the
number of events to be a constant even divisior of the event batch size, the metadata volume
grows as (N products) + (M events) despite the N*M growth of the number of stripe objects.
The data stripes will not exactly meet the target size, but will have a distribution centered very
close to the target due to the independent identically-distributed nature of the event data. To
handle very small data products which would never reach the target stripe size, we optionally
collect them into product groups following a greedy algorithm. This does not inherently
prevent independent access of columns in that stripe, as byte-range addressing is available in
the S3 protocol. Although this object store system assumes all objects are online-accessible,
infrequently used column stripes could be concatenated and offloaded to tape systems based
on a caching policy.

Significant improvements in long-term disk storage needs can be realized with this object
store scheme. In a mock example (see Table 1), using average per-data-product sizes for
a CMS semi-leptonic tt̄ production primary dataset, two MiniAOD versions (v1, v2) are
produced from the same parent dataset, where the latter is produced to update electron data.
In the object store scheme, there is no need to re-produce other (unchanged) data products.
In any case, data products such as genParticles would never need to be copied forward in
the MiniAOD production.

Table 1. Mock data usage example

Data product kilobytes per event
Data tier model Object store model

genParticles (upstream) 5.7 5.7
genParticles (MiniAODv1) 5.7 -
genParticles (MiniAODv2) 5.7 -
slimmedElectrons (MiniAODv1) 1.3 1.3
slimmedElectrons (MiniAODv2) 1.3 1.3
Other event products (MiniAODv1) 48.7 48.7
Other event products (MiniAODv2) 48.7 -
Total 117.1 57



3.2 Test Ceph Cluster

A pilot cluster has been assembled to gain experience in managing a Ceph installation and for
evaluation purposes. Nine disk servers, retired from the Fermilab dCache disk pool, provide
a total 2 PB of disk drives of vintage 2014-2018, totaling 288 Ceph Object Store Daemons
(OSDs). Two servers provide 20 TB of NVMe across 32 OSDs for the metadata pool. All
machines have 10 to 100Gbps networking. The cluster supports filesystem access using the
xrootd [9] protocol via an edge machine with CephFS mounted, and S3 object access via a
RadosGW edge machine. For all performance tests, client machines are accessing the cluster
from within the Fermilab network.

For the S3 object access, three buckets are set up with different Ceph pool configurations.
In the first configuration, each object is split into 16 kibibyte (KiB) chunks and each chunk is
further split into 4 data blocks of 4 KiB and 2 parity blocks using an erasure coding scheme,
dubbed EC4+2. The bucket also maintains an index of all objects in it, where each item in
the index contains about 300 bytes of metadata such as the last access time and owner. The
index is stored in a triply-replicated NVMe pool using Ceph’s key-value object type. In a
second configuration, the same erasure-coded pool is used but the bucket index is disabled.
Without the bucket index, objects can still be read and written, but cannot be listed, so an
external metadata database would be necessary to manage object lifecycle properly. In the
last configuration, all data is stored a triple-replicated disk pool, dubbed Rep3.

3.3 Prototype Client

The HEP-CCE root_serialization project provides a C++ framework for performance
experiments with various I/O packages from within a multi-threaded program. [10] The
program mimics behaviors common for HEP data processing frameworks, and uses a In-
tel Thread Building Blocks (TBB) thread pool to schedule parallel tasks. The number of
threads in the TBB thread pool is configurable. Within this framework, S3 input and output
modules have been developed to read from and write to S3 buckets, respectively. This allows
to explore the performance and parallelization behavior of writing to an Ceph S3 service in
comparison to local files with ROOT or other formats. The S3 protocol is implemented with
libs3 [11]. Requests are performed asynchronously in a separate thread from all other tasks.
Network errors are handled with an exponential backoff with retry mechanism.

4 Performance Results

Using the object data format, test cluster, and prototype event processing framework de-
scribed in Section 3, we evaluated the storage and read/write performance against a baseline
of current MiniAOD event size and processing rates. Scaling behavior is probed both in
single- and multi-process setting, to understand threading efficiency and client load limits of
the cluster, respectively.

4.1 Storage Efficiency

A MiniAOD input dataset is converted into the object data format with various settings of
event batch size, target stripe size (Section 3.1), and stripe compression. The storage effi-
ciency, measured in average kilobytes per event, is shown in Table 2. We find that the object
storage format has generally a larger size per event than the input, especially when LZMA
compression is not used. Even when LZMA is used, the object format cannot compress as



well as MiniAOD due to a limitation in the ROOT object serialization when not used in con-
junction wtih TTree I/O: the object fields cannot be split further into struct-of-array types,
which hinders compressability. A special consideration for Ceph is that small objects incur
additional storage overhead (listed in % ) due to the minimum object size granularity of 4
KiB. With larger target stripe sizes, as well as with use of product groups, this overhead is
reduced. In Fig. 4, the distribution of output stripe sizes is shown for each of the storage
configurations shown in Table 2. The amount of small product stripes is significantly reduced
with the use of product groups.

Table 2. Comparison of data volume with object store scheme and input MiniAOD ROOT file

Format Compression Event batch size Target stripe size kB per event
(granularity overhead)

MiniAOD input LZMA - - 55.7
Object ZSTD 720 128KiB 71.4 (6.5%)
Object ZSTD 720 512KiB 70.6 (3.5%)
Object LZMA 720 512KiB 61.8 (3.7%)
Object (groups) ZSTD 720 512KiB 70.6 (1.4%)
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Figure 4. Distribution of object stripe sizes in the output dataset, for various configurations of the
object data format writer.

4.2 Single-client scaling

We performed a set of tests where all data products in the MiniAOD tier are read and written
as fast as possible to/from the test object store cluster, using a single executable client pro-
cess. The executable’s thread scaling properties are probed, with the metric being the events
processed per second. In the read-write test, events are: read, decompressed, deserialized,
serialized, compressed, and written. For the read-only chain, only the first three steps are
performed. Tests were run on a 24-core machine with 10Gbps network connection to the
Ceph cluster. The tests are performed for two configurations of event batch size and target
stripe size. For each configuration, the source and output modules target one of three S3
buckets with different storage configurations, as described in Section 3.2. Fig. 5 shows good
scaling behavior with increased thread count, and negligible performance difference between
the storage configurations. As a point of reference, CMS production jobs reading MiniAOD
and producing NanoAOD run at a CPU-limited rate of about 10 events/second/thread.
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Figure 5. Single-client read-only (left) and read-write (right) thread scaling tests.

4.3 Multi-client scaling

We performed a test of converting data in MiniAOD from the ROOT file format to the object
format at scale, where the input files are read from Fermilab’s dCache disk cluster over xrootd
and written to the test cluster via S3. In this test, the conversion processes are single-threaded,
and up to 400 simultaneous workers are writing objects with a target size of 512KiB to the
EC4+2 bucket. The events per second written to the object store is shown as a function
of worker count in Fig. 6, left. A saturation point is observed with approximately 350-400
workers writing 6300 events/s (450 MB/s) to the data pool. In total, 4.5 TB of data was
written into 7.4 million objects.

Once the data was written, we performed a read-only test similar to Section 4.2, with
4 threads per worker and several independent worker processes accessing the test cluster in
parallel. The results are shown in Fig. 6, right. In this case, there is a larger variation in
cluster performance at high worker count, and no apparent saturation is reached. Further
tests with additional workers are necessary. In this test, we can directly compare the scaling
performance with the single-client scaling results, and they appear consistent.
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Figure 6. Scaling Left: multi-client write test. Right: read-only test.



While the scaling tests were in progress, performance profiles of the client application
showed that the I/O latency is fully hidden when the S3 server is not heavily utilized, but
server saturation can cause the client applications to stall and show poor CPU efficiency. As
this is a client application with no CPU-heavy tasks other than decompression and deseri-
alization, we expect that in a realistic processing task, the I/O latency would remain in the
shadow of the CPU-bound TBB tasks.

5 Conclusion
In conclusion, the object data format provides novel data management capabilities with re-
spect to a data tier and file-based format. In particular, it shows promise in reducing the
total storage requirements as well as providing more flexibility in defining what data are eas-
ily accessible to analysis tasks. In a prototype processing framework accessing a Ceph S3
object storage cluster, we find that the data volume is in line with expectations and service
scaling is promising, with one Ceph RadosGW node serving 350-400 parallel clients before
performance saturation.

To fully realize the possibilities of this object data format, additional software develop-
ment will be needed. A high priority is to migrate the object I/O modules from the prototype
event processing framework to CMS offline software, possibly leveraging the RNtuple inte-
gration efforts, as RNtuple also provides an object backend with a very similar design as the
one presented here. [12] A new metadata service will be required to track which objects are
available, and close integration with the workflow management system will be required.
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