Nothing Special   »   [go: up one dir, main page]

CERN Accelerating science

If you experience any problem watching the video, click the download button below
Download Embed
Preprint
Report number arXiv:2006.09991
Title Evolution of a plasma column measured through modulation of a high-energy proton beam
Author(s)

Gessner, S. (CERN) ; Adli, E. (Oslo U.) ; Apsimon, O. (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Apsimon, R. (Lancaster U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Bachmann, A.-M. (CERN ; Munich, Max Planck Inst. ; Munich, Tech. U.) ; Batsch, F. (CERN ; Munich, Max Planck Inst. ; Munich, Tech. U.) ; Bracco, C. (CERN) ; Braunmuller, F. (Munich, Max Planck Inst.) ; Burger, S. (CERN) ; Burt, G. (Lancaster U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Buttenschon, B. (Greifswald, Max Planck Inst.) ; Caldwell, A. (Munich, Max Planck Inst.) ; Chappell, J. (U. Coll. London) ; Chevallay, E. (CERN) ; Chung, M. (UNIST, Ulsan) ; Cooke, D. (University Coll. London) ; Damerau, H. (CERN) ; Demeter, G. (Wigner RCP, Budapest) ; Deubner, L.H. (Philipps U. Marburg) ; Dexter, A. (Lancaster U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Doebert, S. (CERN) ; Farmer, J. (Heinrich Heine U., Dusseldorf) ; Fedosseev, V.N. (CERN) ; Fiorito, R. (Liverpool U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Fonseca, R.A. (ISCTE, Lisbon) ; Friebel, F. (CERN) ; Garolfi, L. (CERN) ; Goddard, B. (CERN) ; Gorgisyan, I. (CERN) ; Gorn, A.A. (Novosibirsk, IYF ; Novosibirsk State U.) ; Granados, E. (CERN) ; Grulke, O. (Greifswald, Max Planck Inst. ; Denmark, Tech. U.) ; Gschwendtner, E. (CERN) ; Hartin, A. (U. Coll. London) ; Helm, A. (Lisbon, IST) ; Henderson, J.R. (Lancaster U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Huther, M. (Munich, Max Planck Inst.) ; Ibison, M. (Liverpool U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Jolly, S. (University Coll. London) ; Keeble, F. (U. Coll. London) ; Kelisani, M.D. (CERN) ; Khudyakov, V.K. (Novosibirsk, IYF ; Novosibirsk State U.) ; Kim, S.-Y. (UNIST, Ulsan) ; Kraus, F. (Philipps U. Marburg) ; Krupa, M. (CERN) ; Lefevre, T. (CERN) ; Li, Y. (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Liu, S. (TRIUMF) ; Lopes, N. (Lisbon, IST) ; Lotov, K.V. (Novosibirsk, IYF ; Novosibirsk State U.) ; Martyanov, M. (Munich, Max Planck Inst.) ; Mazzoni, S. (CERN) ; Minakov, V.A. (Novosibirsk, IYF ; Novosibirsk State U.) ; Molendijk, J.C. (CERN) ; Moody, J.T. (Munich, Max Planck Inst.) ; Moreira, M. (Lisbon, IST ; CERN) ; Panuganti, H. (CERN) ; Pardons, A. (CERN) ; Pena Asmus, F. (Munich, Max Planck Inst. ; Munich, Tech. U.) ; Perera, A. (Liverpool U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Petrenko, A. (CERN ; Novosibirsk, IYF) ; Pukhov, A. (Heinrich Heine U., Dusseldorf) ; Rey, S. (CERN) ; Ruhl, H. (LMU Munich (main)) ; Saberi, H. (CERN) ; Sherwood, P. (U. Coll. London) ; Silva, L.O. (Lisbon, IST) ; Sosedkin, A.P. (Novosibirsk, IYF ; Novosibirsk State U.) ; Sublet, A. (CERN) ; Tuev, P.V. (Novosibirsk, IYF ; Novosibirsk State U.) ; Turner, M. (CERN) ; Velotti, F. (CERN) ; Verra, L. (CERN ; Milan U.) ; Verzilov, V.A. (TRIUMF) ; Vieira, J. (Lisbon, IST) ; Welsch, C.P. (Liverpool U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Wendt, M. (CERN) ; Williamson, B. (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Wing, M. (U. Coll. London) ; Woolley, B. (CERN) ; Xia, G. (Manchester U. ; Cockcroft Inst. Accel. Sci. Tech.) ; Zevi Della Porta, G. (CERN)

Imprint 2020-06-17
Number of pages 22
Subject category physics.plasm-ph ; Other Fields of Physics ; physics.acc-ph ; Accelerators and Storage Rings
Accelerator/Facility, Experiment CERN AWAKE
Abstract Plasma wakefield acceleration is a method for accelerating particle beams using electromagnetic fields that are orders of magnitude larger than those found in conventional radio frequency cavities. The core component of a plasma wakefield accelerator is the plasma source, which ranges from millimeter-scale gas jets used in laser-driven experiments, to the ten-meter-long rubidium cell used in the AWAKE experiment. The density of the neutral gas is a controlled input to the experiment, but the density of the plasma after ionization depends on many factors. AWAKE uses a high-energy proton beam to drive the plasma wakefield, and the wakefield acts back on the proton bunch by modulating it at the plasma frequency. We infer the plasma density by measuring the frequency of modulation of the proton bunch, and we measure the evolution of the density versus time by varying the arrival of the proton beam with respect to the ionizing laser pulse. Using this technique, we uncover a microsecond-long period of a stable plasma density followed by a rapid decay in density. The stability of the plasma after ionization has implications for the design of much longer vapor cells that could be used to accelerate particle beams to extremely high energies.
Other source Inspire
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)



 


 Record created 2020-07-01, last modified 2023-11-10


Fulltext:
Download fulltext
PDF